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SUMMARY

The theory of wavelets has found wide applications in nonparametric estimation, especially for density and related
functionals. It has been adapted to many other situations in addition to density estimation for iid data. Such procedures may
potentially be useful for nonparametric density estimation in agricultural setting such as in modeling yield of crops and crop
insurance claims distribution. This article presents some recent developments in this area in a comprehensive way dealing with

different data types in addition to the iid setup.
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1. INTRODUCTION

In many statistical applications it is assumed that
the underlying random variable X of interest is
absolutely continuous with a distribution function F(x)
that admits a probability density function (pdf) f(x), x
€ R. As is well known that various population
characteristics can be obtained from the pdf, it is
therefore of interest to estimate the underlying pdf.

The standard approach of density estimation,
known as the parametric approach assumes that this pdf
belongs to some family characterized by a set of
parameters. Estimates of these parameters naturally
provide a plug-in estimator of the pdf. However, if the
family of the underlying distributions can not be very
well established, one requires non-parametric
estimation of the underlying density. Such inferences
are useful in many applied fields including that of
agricultural economics and crop insurance. Chaubey
and Dewan (2010) cite examples of density estimation
in the context of cotton yield and maize production.
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Kernel density estimators developed around 1960’s
(Rosenblatt 1956 and Parzen 1962) have been very
popular in the statistical literature and a plethora of
articles dealing with various aspects of the technique
and issues are now available in the textbooks, (see
Prakasa Rao 1983, Silverman 1986, Wand and Jones
1995) with along with developed soft wares
(see Hardle 1995). In the last 20 years, the subject of
nonparametric density estimation is enriched by
considerable mathematical advance in theory of
wavelets that provide an orthogonal expansion of
functions that may be continuous or with jump
discontinuities. This representation is especially useful
for density estimation due to the fact that the
coefficients in the expansion are expectations of certain
known functions given in terms of the wavelets and
hence they can be estimated easily by the corresponding
sample averages. Furthermore, with the availability of
the new data these coefficients can be easily updated
without knowledge of the complete data set. This
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feature is very useful for large data sets. An additional
advantage of the wavelet methodology is its
applicability for the data sets that are not necessarily
generated as a sequence of independent and identically
distributed (iid) random variables. It has been
demonstrated by Walter and Blum (1979) and
rigorously proved by Terrel and Scott (1992) that
virtually all non-parametric density estimation
algorithms are asymptotically kernel methods and it can
be shown that it holds exactly true for a special class
of wavelet estimators called linear wavelet density
estimators. This feature makes the linear wavelet
density estimators easily amenable to the methods of
kernel estimators for studying its properties. Walter and
Ghorai (1992) discuss the advantages and disadvantages
of the method of wavelet density estimation. The reader
may refer to Hardle e al. (1998) and Vidakovic (1999)
for a detailed coverage of wavelet theory in statistics
and to Prakasa Rao (1999Db) for a recent comprehensive
review and application of these and other methods of
nonparametric functional estimation.

The objective of this article is to describe some
recent developments in the theory of linear wavelet
density estimators. We present some technical details
in Section 2 for making the article self contained, but
this section could be quickly browsed before the next
sections. Section 3 gives the basic form of the linear
density estimator for the iid data and Section 4
discusses its adaptation for the censored data. We
discuss the applicability of this new technology for data
under multiplicative censoring in Section 5 and for
biased (or weighted) data in Section 6. Section 7 is
devoted to linear wavelet density estimation for a
component density from a mixture of densities. An
unattractive feature of the wavelet method is in
producing possibly negative estimate of the density in
some regions. This problem has been addressed by a
few authors that has been elaborated in Section 8. In
Section 9 we introduce linear wavelet estimator in a
density convolution model.

2. PRELIMINARIES ON WAVELETS AND
BESOV SPACES

Here we provide a brief introduction to the wavelet
system and Besov spaces that have become essential to
the statistical literature. For the details of the theory and
applications of wavelets, the reader may refer to the
excellent text by Vidakovic (1999) or to the excellent

survey by Antoniadis et al. (1994). For properties of
the Besov spaces, the reader is referred to Meyer (1992)
and Triebel (1992) (cf. Leblanc 1996 and Hardle ef al.
1998).

2.1 Wavelet System

A wavelet system is composed of an infinite
collection of functions that are obtained by dilation and
translation of two basic functions ¢ and i called the
scaling function and mother wavelet, respectively. The
function ¢ is assumed to satisfy

[~ oyax =1
and is obtained as the solution from the equation

Px)= D, Cp 2x —h),

ke

for a given sequence of constants {C,}, and the function
W is given by

px) = Y (-1)C 4 p2x—h).

ke

Define

D) =22 A x k), (. k) e 7
and

w0 =222 x— k), (. k) e Z7.

Suppose that the coefficients {C,} satisfy

ZCka+21 _ 2 if [=0
keZ 0 if [#0.

It is known (¢f. Daubechies 1992) that under some
additional conditions on ¢, the collection {¥;; (/. k) €
7%} forms an orthonormal basis for L*(R), and {¢j0, o

k € Z} constitute an orthonormal basis for V;, for every
fixed j, € Z as well.

Definition 2.1. The scaling function ¢ is said to be
r-regular for an integer » > 1, if for every nonnegative
integer / < r, the /-th derivative of @, denoted ¢m, is
such that, for any integer £ > 1,

[P <1+ [x])™,

for some c; = 0 depending only on &.

Definition 2.2. A multiresolution analysis of LX(R)
consists of an increasing sequence of closed spaces {V}
of LA(R) such that

() NjezV; =10}
(i) UjezV; = L’(R);
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(iii) there is a scaling function ¢ € ¥, such that
{@x — k); k € Z} forms an orthonormal basis for

Vos
(iv) for all k € Z and all & € LA(R), h(x) € Vy =
h(x—k)eV,

(V) h(x) € V, = h(2x) € V;u,

Mallat (1989) has connected the multiresolution
analysis to wavelet theory by showing that given any
multiresolution analysis, it is possible to construct a
function v, (called the mother wavelet), such that for
any fixed j € Z the family {¥;,; k € Z} constitutes an
orthonormal basis of the orthogonal complement ¥, of
Viin V. so that {¥; (/, k) € 7% is an orthonormal
ba51s of LX(Z) (cf. Daubechles 1992).

The corresponding multiresolution analysis is said
to be r-regular if the scaling function ¢ is so. Suppose
that both the functions ¢ and ¥ belong the space of
functions with » continuous derivatives denoted by ",
for some 7 > 1, and have compact supports included in
[-N, N], for some N > 0. It follows, from Corollary 5.5.2
in Daubechies (1988), that the mother wavelet  is
orthogonal to polynomials of degree <, i.e., for any /
e {0,..., }

J.:oxll//(x) dx =0.

Using such wavelets, any function 7 € LX(R) can
be expanded in the form

f0) =Y o iBior )+ X, D, B (x)
keZ Jj2j, keZ

for any j, € Z. The so called wavelet coefficients ¢,
and f3; , are given by

= [ A0 )

and

Bi= | _f0w e
respectively (cf. Daubechies 1992).

Note that any /'€ L(R) satisfying supp(f) < [-L, L]
with L > 0 can be expanded in the form

fo) = oo™+ XD B (),

keK;, Jj2jokeK;

where K; = K, (N, L) is a set of consecutive integers
with a length proportional to 2/. This wavelet
decomposition (and the associated notations) will be
consider in our statistical results.

2.2 Besov Spaces

Besov spaces are normed spaces defined for
weakly-differentiable functions belonging to LZ*(R). We
present the following definition of a weakly
differentiable function f from Hardle ef al. (1998).

Definition 2.3. Let f € L*(R) be an integrable function
on every bounded interval. It is said to be weakly
differentiable if there exists a function g defined on the
real line which is integrable on every bounded interval
such that

[ gtwdu = ) - fx).

The function g is defined almost everywhere and
is called the weak derivative of f.

Definition 2.4. Let p > 1 and m = 0 be an integer. A
function /'€ L”(R) belongs to the Sobolev space I7,(R),
if it is m-times weakly-differentiable and the m-th weak
derivative /'™ e I”(R). The space W, (R) is equipped
with the norm || f ||, defined by

Ip

m
Ll = | 201
u=0

where || /]|, denotes the norm for Z”(R).

Let f € L(R) for some p > 1. Let Ayfix) = fix + h)
— fx) and define Aff = A,(A,f). For £ >0, let

w, (f 1) = suppy<, 14, f I,

and
2 _ 2
wy, (fs1) = supjp<, 185 f 1, -

Let ¢ > 1 and £be a function on [0, «) and define
llell, by

1/q
lell, = (j |8(t)|th) if 1<g<oo

essup, |&(7)| if g=oo

whenever these quantities exist.

Definition 2.5. Let p 21, ¢ 2 1 and s = m + o where
m 2= 0 is an integer and 0 < o < 1. The Besov space
B, , is the space of all functions f'such that /' W[;" (R)
and wz( £ 1) = e(0)* where ||8||Z < co. The space

B, , is equipped with the norm || f ”B‘ called the

Besov norm, defined by

£
1l = 0 N+l
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Suppose that f belongs to the Besov class
F;,q(M’L) = {fg D, q’”f”B‘ <M

supp(f) < [-L, L1}.

Let us consider the wavelet basis and notations in

(2.1). Then, taking j, =0, forany 0 <s<r+1,p=>1

and ¢ = 1, the Besov norm of fcan be written in terms
of the wavelet coefficients

£l =Moo ll, +( X @718,
pP.q .120
where o=s + 1/2 — 1/p and ||7j"||gp represents the
following norm for a double sequence {7}

Ip
17;. 1,

Z |7j,k|p

keKj

(cf. Hérdle et al. (1998), p. 123).

3. LINEAR WAVELET DENSITY ESTIMATION
FOR i.i.d. DATA

We observe 7 iid random variables X, ..., X, with
a common unknown pdf /. We want to estimate f from
Xjs..., X,,. Doukhan and Leon (1990) and Kerkyacharian
and Picard (1992) introduced the linear density
estimator in terms of the projection of fon V), with j,
depending on n, j, /" e when n — oo,

f(x) = 2 Qjo, k¢]0 i (X), (3.1

ke K
where

ln
=;§ Dok (X;)-

Note that &jy, is an unbiased estimator of ¢, =

[~ A0
E(@jo i) = E(@ouX))

= [~ 0080400 = ag

The properties of the above linear estimator have
been studied for a variety of error measures and density
classes, see Leblanc (1996), Tribouley (1995), Varron
(2008) and Giné and Nickl (2009). One of the main
results about the linear estimator is following theorem
which shows that the rate of convergence is optimal.

Theorem 3.1. Suppose that f e F (M L) with s >

1/p,p=2and g = 1. Let f be (3. 1) w1th]0 satisfying
20 < 0429 Then there exists a constant C > 0 such
that

E|f - £I3
Donoho and Johnstone (1995) showed that linear
smoothing methods are incapable of achieving the
optimal mean-square rate of convergence for curves
whose smoothness is distributed inhomogeneously (i.e.,
when 1 < p <2). In order to obtain a result like Theorem
3.1, one has to consider a non-linear wavelet estimator
(hard thresholding, soft thresholding, . . .). There are
some contributions in the case of dependency of
observations. Leblanc (1996) obtained L”-losses where
{X;} are sequence of mixing random variables. Prakasa
Rao (2003) and Doosti et al. (2006) derived the rate of
convergence in the case of positively associated and
negatively associate sequences, respectively. Doosti and
Nezakati (2008) extended the results for m-dependent
random variables.

< Oy 25/0+29)

4. LINEAR WAVELET DENSITY ESTIMATION
UNDER RANDOM CENSORSHIP

We consider the random censorship model from
the right, where two sequences of random variables,
{X;} and {Y,}, are considered. We regard {X,} as
survival times (or failure times), having a common
unknown distribution function F and pdf f. Let the
survival times X, be censored from the right by the
censoring times Y, with a common distribution function
G. We only observe the n pairs (Z, &), . . ., (Z,,, . . .,0,)
where, for any i € {1, ..., n},

Z,= min(¥, X)),
=X, = T),

I denotes the indicator function. In this random
censorship model, we assume that the survival times
{X;} are independent of the censoring times {Y}}.
Following the convention in the survival analysis

literature, we assume that, for any i € {1, .. ., n}, both
X; and Y, are nonnegative random variables.

The distribution functions /' may be estimated by
using the Kaplan-Meier estimator

5 1(Z,;)<x)
sl



Yogendra P. Chaubey et al. / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 169-179 173

where Z) < Z,) <... £Z,, denote the order statistics
of Z,,....Z,, and ¢ is the concomitant of Z e é‘(m)
= 6 if Z,,) = Z;. The Kaplan-Meier estimator of the
censoring distribution may similarly be given by

A 0 =5 T@=0
G,(x) = 1—]‘[[1——(’)] .

izl n—i+1

Note that d,,/n(1 - én(Z(_m))) is the jump of the
Kaplan-Meier estimator F, at Z,. Here our interest is
in estimating f'based on (Z,, 9)), . . .(Z,, J,).

There is an extensive literature on the right
censorship model with independent failure and
censoring times. Density estimation was studied by
Antoniadis ef al. (1999), Li (2003) and Li ef al. (2008).
Let T’ < 7 be a fixed constant, where 7; = inf{x:
H, = 1} < oo is the least upper bound for the support
of H, the distribution function of Z; and f,(x)= f(x)/
(x < 7). Here we estimate f(x), for x € (oo, T), that in
turn provides the estimate of f{x) over the interval

(=2, D).

A wavelet based density estimator may be
motivated from Li (2003) as given by

fito) = D &0,k Pjo0,k (X)

ke K;,

4.1)

where

D

0.k J:, 0.4 (I (x<T) dF; (x)
1 i G1(Z; <T)¢jo « (Z)
1-G,(Z)

-y

The following theorem is a result of Chaubey
et al. (2010), when we consider d = 0.

Theorem 4.1. Suppose that fie F, (M, L) with s > 1/
p,p=2and g > 1. Let fl be (4.1) with j, satisfying
2% ~ p"*29) Then there exists a constant C > 0 such
that

Ell /i~ I3 < G0

S. LINEAR WAVELET DENSITY ESTIMATION
UNDER MULTIPLICATIVE CENSORING

We observe n iid random variables Y, .. ., ¥, with
a common unknown pdf g supported on (0, ). For any
ie{l,..., n}, we know that

Y,= UX,

where U, ...,U, are n iid unobserved random variables
with uniform distribution on [0, 1] and X, ..., X, are n
iid unobserved random variables with a common
unknown pdf f supported on (0, e). We want to estimate
ffrom Y,,...7,.

It is straightforward to derive that density g can
be expressed in terms of f'in the following manner

g0)= [y e 0. )

Hence, the problem is seen to be a statistical
inverse problem in the following sense: we observe
Y,,....Y, with pdf g which is related to another density
fby g = Kf, where K is a linear operator. Vardi (1989)
termed the above model as a multiplicative censoring
model and showed how it unifies several well-studied
statistical problems, including non-parametric inference
for renewal processes, certain non-parametric
deconvolution problems, and estimation of decreasing
densities.

A natural attempt for estimating f would be to
make an estimate g of g by standard methods and then

if K exists use f = K'§ as an estimate of /. For a
review of these ideas see Andersen and Hansen (2001).

Different estimators may be obtained based on a
Kernel method or a series expansion of the desired pdf
. For areview of these ideas see O’Sullivan (1986) and
references therein. Another direction is to expand f
based on a singular-value decomposition of K. In the
statistics literature this was popularized by Johnstone
and Silverman (1990, 1991). For recent contributions
drawing on more general spectral theory for bounded
operators, see Dey et al. (1996), Mair and Ruymgaart
(1996) and Van Roij and Ruymgaart (1996). The most
recent direction is that of applying wavelets as ba-sis
functions in the reconstruction, see Abramovich and
Silverman (1998) and Donoho et al. (1995).

Abbaszadeh ez al. (2010) introduced the two
estimators described below. We define the linear

wavelet estimator fl by

]?1 (x)= 2 &jo,k(bjo,k (x),

ke K;,

(5.1
where

N 1
Ajoy = ;2(¢j0,k(Yi)+Yi(¢j0,k)l (X;)).
i-1
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Note that &, is an unbiased estimator of &,

= J.:f(x)quo,k(x)dx. It follows from an integration by
parts that

E(djo,k) = E(¢j0>k(Y1) + Yl(¢j09k),(Yl))
= [ (0u) + x(80, (x)g)ex
= -, ¥ OBox)dx

= [, S G0ux)d = gy

We define the linear wavelet estimator fz by
x n
7= 2 2@ (180, (52)
€K,y i=l

They derived upper bound on the rate of
convergence which provides a pseudo-consistency
result for their estimators given in the following
theorems.

Theorem 5.1. Suppose that f e Flf’ g M, L) with s 2

I/p,p=1and g=>1. Let fl be (5.1) with j, satisfying

20 = gCUH2D here, for any p’ > max(2, p), 8’ =

s+ 1/p” + 1/p. Then there exists a constant C > 0 such
that

25’

~ 2 — .\',
Ellfi-fly < Cn b

Theorem 5.2. Suppose that /' € F, , (M, L) with s >
I/p,p=1and g = 1. Let fz be (5.2) with j, satisfying

20 = pMU0+2) where, for any p’ > max(2, p), s = s

+ 1/p” — 1/p. Then there exists a constant C > 0 such
that

2=

Ellfp-fl3 < Cn .

6. DENSITY ESTIMATION FOR A BIASED
SAMPLE

We observe n iid random variables Y, ..
an unknown pdf g of the form

ERUCONICINS
— 4

.Y, with

gx) €ER,

where w is a known positive function, fis an unknown

pdf of a random variable X and u = Jj w(x)f(x)dx is
an unknown normalization parameter. We want to
estimate f from ¥,.... 7Y,

n

This model has several applications in various
domains such as biology, see Buckland et al. (1993),
industry, see Cox (1969), and economics, see Heckman
(1985). We may equally refer to the survey by Patil and
Rao (1977) on several practical examples of biased
distributions.

The density estimation problem for biased data has
been considered in several papers. See Efromovich
(2004), Brunel et al. (2009), Chesneau (2010c) and
Ramirez and Vidakovic (2010).

Ramirez and Vidakovic (2010) proposed the linear
wavelet estimator f defined by

FO =Y @or8j0x ), (6.1)
ke K,
where
U950k X)
Qigpy = =) ——.
jO,k HE W(Yl)

Note that &, is an unbiased estimator of &,

N .[_och ()0 (x)dlx
; Bjo.x (1)
E(¢; =F| y=2=—"~
(aJO,k) (y W(Yl) ]
_ [ Lo w f@)

LA p
N .[:oﬂx)@'o,k (X)dx = 04 .

As the parameter pis not known, it is estimated by

A= / 2?:1(1/ w(Y;)) . Ramirez and Vidakovic (2010)

showed that the inverse of this estimator is unbiased
for 1/u. Doosti and Dewan (2010) investigated an upper
bound on L -loss for the estimator given by Ramirez
and Vidakovic (2010) which extends such a result for
the L*-consistency given in Ramirez and Vidakovic
(2010). The following theorem is a version of the main
result in Doosti and Dewan (2010).

Theorem 6.1. Suppose that f€ F, , (M, L) with s >
1/p,p 21 and g = 1, and there exists a constant B > (

such that w(x) = B, x € R. Let f be (6.1) with

1/(1(1+257))

Ji satisfying 2° = n where, for any p” > max(2,

p), 8" =s+1/p” — 1/p. Then there exists a constant C >
0 such that

25"

Ef -/l < Cn ™
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Chaubey and Doosti (2010) proposed positive
wavelets density estimator for biased sample and
derived the formula for its IMSE.

7. DENSITY ESTIMATION OF A COMPONENT
FROM MIXTURES

We observe n independent random variables
X, ....X, such that, for any 7 € {I,...,n}, X; depends
on a random indicator Y; taking its values in {1,...,m}.
Applying the Bayes theorem, the pdf of X; is

h(x)= D wli)ffx), x € R, (7.1)

d=1
where w (i) = P(Y; = d) and, for any d € {1,...,m}, 1,
is the conditional density of X, given {¥; = d}. We
suppose that all these densities are unknown and weight
w(i) is known. For a fixed v € {1,...,m}, we aim to
estimate f, from X,.. ., X,

ne

Such an estimation problem has several
applications in various domains such as biology,
industry and economics. It was firstly studied by
Maiboroda (1996). The constructions of wavelet
estimators (linear and non-linear) has been considered
by Pokhyl’ko (2005). Let us now present the
construction of the linear one.

First of all, we remark that there exist m real
numbers a, (1),...,a, (m) such that, for any d €
{1,....mj},

1 m
= a,(DHwy (i) =
ng=1

and

1 ifd=v,
0 otherwise

(a,(1),...,a,(n)

_ : 1< b2

= argmln(bl’”.’bn)eRn ;z{ (A
=

Pokhyl’ko (2005) developed the linear estimator
f defined by

F®="Y Gjoidioi). (7.2)
ke K
where
A 18 .
Gjo.x = — 2, f0..(X).
i=1

Note that & is an unbiased estimator of ¢, ; =

[~ 0G0 x)clx

A 1 & )
B(@jo.6) = — 2, a(DE@uX))
i=1
= lia @) ...
nig
S owa O fr (00 4 (x)ddx
d=1

- 2 ijfd(x)@o,k(X)dx ..
d=1

EWACHO

i=1

[7 £, 00Budx = 1.

Theorem 9.1 below is proved by Pokhyl’ko
(2005).

Theorem 7.1. Suppose that f, € F, , (M, L) with s >

1/p,p22and g = 1. Let fbe (7.2) with j, satisfying
20~ (nz,)""*)and z,= (1/n) Y. a} (i) . Then there
exists a constant C > 0 such that

z s/(14+2s)
Elf-fl5 < C(;"JZ

This result has been extended to the estimation of
the derivatives of f, by Prakasa Rao (2010). Chesneau
(2010) has investigated the estimation of £, by a linear
wavelet estimator from pairwise positively quadrant
dependent (PPQD) X,.. .. X,.

8. POSITIVE WAVELET DENSITY
ESTIMATOR

Janssen (1994) showed that there are no
continuous non-negative orthogonal scaling functions.
Hence, the pdf may be negative in the tails. This is not
an attractive feature of the usual wavelet method, hence
modifications may be necessary.

There are two approaches. First we estimate a
transformation of f and then the density function
estimator is obtained by taking the inverse
transformation. For instance, The log-transformation
was introduced by Leonard (1973) and Clutton-Brock
(1990). Penev and Dechevsky (1997) and Pinheiro and
Vidakovic (1997) discuss estimation of the square root
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of a density. For further details see Chapter 7 of
Vidakovic (1999). Walter and Shen (1999) introduced
the second approach by proposing direct smooth non-
negative wavelet estimator that is defined through the
function p,, given by

Pal) = X, ol f = .
JEZ
Walter and Shen (1999) showed that there exists o, >

0, such that for o € [, 1], p,(x) > 0 for all x e R.
Non-negative wavelet kernels are defined as

K x.y) = (“—“JZ S — Kpy — .

1+ he?

The dilation of K (x, y) is defined as
K, (. 1) =2 K (2x, 2y).

We observe n iid random variables X|,....X,, with a
common unknown pdf f. Then a positive wavelet
density estimate of f'is defined as

A 1
Fio(x) = ;ZKQJO (x, X).
i=1

Ghorai (2003) derived the asymptotic distribution
of integrated squared error of positive wavelet density
estimator by using Martingale central limit theorem.
Ghorai and Yu (2004) derived asymptotic formula for
the IMSE of positive wavelet density estimator and they
proved the consistency of the density estimator.
Theorem 8.1 shows the formula for IMSE of the
estimator.

Theorem 8.1. Assume £, /', /" are continuous and
f” exists piecewise with well-defined left and right
limits. Also assume f'is monotone in the tails. Then

IMSE (f30) = [ E((f0(x) = £ (x))*)dx
=2°B(a, pyn”!
A (|| 713 27 40, 20n!
+0, (2779,
where A (o] £ 7|13) = 4021 — o) || 7|13 and B(es p)

= :_azl[lll -1+ 2a(1_a2)—1]2a2|1|.
o

9. DENSITY ESTIMATION IN A DENSITY
CONVOLUTION MODEL

We observe n iid random variables Y,..., Y, such

that, for any 7 {1,...,n},
Y, =X, +¢€,

where X, ..., X, are n unobserved iid random variables
with a common un-known pdf fand &,..., ¢, are n
unobserved iid random variables with a common known
pdf g. Forany i € {1,....n}, X; and & are independent.
We want to estimate f from Y,.... 7,

n

Methods and results can be found in Caroll and
Hall (1988), Devroye (1989), Fan (1991), Pensky and
Vidakovic (1999), Fan and Koo (2002), Butucea and
Matias (2005), Comte et al. (2006), Delaigle and
Gijbels (2006) and Lacour (2006). Wavelet estimators
have been developed by Pensky and Vidakovic (1999)
and Fan and Koo (2002).

Let us present the construction of the linear one
developed by Fan and Koo (2002). We define the
Fourier transform of a function h by

F) = [ he)e ™ dy,

whenever this integral exists. The notation j_” will be
used for the complex conjugate f.

We consider the ordinary smooth case on g: there
exist two constants, ¢« > 0 and 0> 1, such that
Cx

[ F W2 —= 57
(1+2)°2
This assumption controls the decay of the Fourier
coefficients of g, and thus the smoothness of g.

_ Fan and Koo (2002) studied the linear estimator
f defined by

fF@="3 & 1 (0, ©.1)
keK;,
with
noo. f . .
Y| G0 oy g,
2en 7 F(g)(x)

Note that &; ; is an unbiased estimator of o =
Jic S (X)@, ((x)dx. It follows using the equality

E (¢ ™) = F(f)(x)F(g)(x) and the Parseval-Plancherel
theorem, we obtain

oo f(¢J’k)(X)E e_ixy;

) dx
= F(g)(x)

E(djo,k) =
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) J F@y, ) @)
~ F(g))

- i 7 0,0 0F () (0 e
J S0 i)y = g .

Theorem 9.1 below is proved in Fan and Koo
(2002).

— () (%) F(g)x) dx

Theorem 9.1. Suppose that /'€ F, (M, L) with s >
l/p,p22and g21.Let f be (9.1) with j; satisfying
2/0 = p(*20429). Then there exists a constant C > 0 such
that

E”f _f”% < Cn—ZS/(1+2§+23)‘

This result has been extended to the deconvolution
of a component from mixtures by Chesneau (2010b).

ACKNOWLEDGEMENTS

The main part of the paper has been done while the third
author was visiting Concordia University, Montreal, Canada
on an invitation from the Department of Mathematics and
Statistics. He is very grateful to the Department for the
financial support and thankful to the members of the
Department for their hospitality.

REFERENCES

Abbaszadeh, M., Doosti, H. and Gachpazan, M. (2010).
Density estimation by wavelets under multiplicative
censoring, Preprint.

Abramovich, F. and Silverman, B.W. (1998). Wavelet
decomposition approaches to statistical inverse problems.
Biometrika, 85, 115-129.

Andersen, K. and Hansen, M. (2001). Multiuplicative
censoring: Density estimation by a series expansion
approach. J. Stat. Plann. Inf., 98, 137-155.

Antoniadis, A., Grégoire, G. and McKeague, 1. (1994).
Wavelet methods for curve estimation. J. Amer. Statist.
Assoc., 89, 1340-1353.

Antoniadis, A., Gregoire, G. and Nason, G. (1999). Density
and hazard rate estimation for right-censored data by
using wavelet methods. J. Roy. Statist. Soc., 61, 63-84.

Brunel, E., Comte, F. and Guilloux, A. (2009). Nonparametric
density estimation in presence of bias and censoring. 7est,
18(1), 166-194.

Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake,
J.L. (1993). Distance Sampling: Estimating Abundance
of Biological Populations. Chapman and Hall, London.

Butucea, C. and Matias, C. (2005). Minimax estimation of
the noise level and of the signal density in a
semiparametric convolution model. Bernoulli, 11(2),
309-340.

Caroll, R.J. and Hall, P. (1988). Optimal rates of convergence
for deconvolving a density. J. Amer. Statist. Assoc., 83,
1184-1186.

Chaubey, Y.P. and Dewan, 1. (2010). Smooth estimation of
survival and density functions for stationary associated
sequences: Some recent developments. J. Ind. Soc. Agril.
Statist., 64, 261-272.

Chaubey, Y.P. and Doosti, H. (2010). Positive wavelet linear
density function estimation. Preprint, Department of
Mathematics and Statistics, Concordia University,
Montréal, Québec, Canada.

Chaubey, Y.P., Doosti, H., Shirazi, E. and Prakasa Rao, B.L.S
(2010). Linear wavelet-based estimation for derivative
of a density under random censorship. J. Iran. Statist.
Soc., 9, To appear.

Chesneau, C. (2010a). Wavelet linear estimation of a density
from observations of mixtures under quadrant
dependence, Preprint, LMNO.

Chesneau, C. (2010b). Wavelet density estimators for the
deconvolution of a component from a mixture,
Preprint, LMNO.

Chesneau, C. (2010c). Wavelet block thresholding for density
estimation in the presence of bias. J. Korean Statist. Soc.,
39, 43-53.

Clutton-Brock, M. (1990). Density estimation using
exponentials of orthogonal series. J. Amer: Statist. Assoc.,
85, 760-764.

Comte, F., Rozenholc, Y. and Taupin, M.L. (2006). Penalized
contrast estimator for density deconvolution. The Can.
J. Stat., 34, 431-452.

Cox, D. (1969). Some sampling problems in technology. /n
New Developments in Survey Sampling (N. L. Johnson
and H. Smith, Jr., eds.). Wiley, New York, 506-527.

Daubechies, 1. (1988). Orthogonal bases of compactly
supported wavelets. Statistica Sinica, 41, 909- 996.

Daubechies, 1. (1992). Ten Lectures on Wavelets, CBMS-NSF
regional conferences series in applied mathematics.
SIAM, Philadelphia.



178 Yogendra P. Chaubey ef al. / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 169-179

Delaigle, A. and Gijbels, 1. (2006). Estimation of boundary
and discontinuity points in deconvolution problems.
Statistica Sinica, 16, 773-788.

Devroye, L. (1989). Consistent deconvolution in density
estimation. Can. J. Stat., 17, 235-239.

Dey, A K., Mair, B.A. and Ruymgaart, F.H. (1996). Cross-
validation for parameter selection in inverse estimation.
Scand. J. Statist., 23, 609-620.

Donoho, D.L. and Johnstone, I.M. (1995). Adapting to
unknown smoothness via wavelet shrinking. J. Amer:
Statist. Assoc., 90, 1200-1224.

Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard,
D. (1995). Wavelet shrinkage: asymptopia?
(with discussion). J. Roy. Statist. Soc., B57,
301-369.

Doosti, H. and Dewan, 1. (2010). Wavelet linear density
estimation for associated stratified size-biased sample,
Preprint, Indian Statistical Institute, Delhi Centre, New
Delhi, India.

Doosti, H. and Nezakati, A. (2008). Wavelet linear density
estimation for M-dependent random variables. JDUBS,
1(2), 51-55.

Doosti, H., Fakoor, V. and Chaubey, Y.P. (2006). Wavelet
linear density estimation for negative associated
sequences. J. Ind. Statist. Assoc., 44, 127-135.

Doukhan, P. and Leon, J.R. (1990). Une note sur la dé viation
quadratique déstimateurs de densités par projections
orthogonales.C.R. Acad. Sci. Paris t310, série, 1,
425-430.

Efromovich, S. (2004). Density estimation for biased data.
J. Statist. Plann. Inf., 32(3), 1137-1161.

Fan, J. (1991). On the optimal rates of convergence for
nonparametric deconvolution problem. Ann. Statist.,
19, 1257-1272.

Fan, J. and Koo, J.Y. (2002). Wavelet deconvolution. /EEE
Trans. Inf. Theo., 48, 734-747.

Giné, E. and Nickl, R. (2009). Uniform limit theorems for
wavelet density estimators. Ann. Prob., 37, 1607-1646.

Ghorai, J.K. (2003). A central limit theorem for the /, error
of positive wavelet density estimator. Ann. Inst. Statist.
Math., 55, 619-637.

Ghorai, J.K. and Yu, D. (2004). Data-based resolution
selection in positive wavelet density estimation. Comm.
Statist.-Theory. Methods., 33(10), 2393-2408.

Hardle, W. (1990). Smoothing Techniques: with
Implementation in S. Springer, New York.

Hardle, W., Kerkycharian, G., Picard, D. and Tsybakov, T.
(1998). Wavelets, Approximations, and Statistical
Applications. Lecture Notes in Statistics, 129, Springer,
New York.

Heckman, J. (1985). Selection bias and self-selection. In: The
new Palgrave : A Dictionary of Economics, 287-296.
MacMillan Press, Stockton, New York.

Janssen, A.J.LE.M. (1994). The Smith -Barnwell condition and
non-negative scaling functions. /EEE Trans. Info. Theo.,
38, 884-885.

Johnstone, I.M. and Silverman, B.W. (1990). Speed of
estimation in positron emission tomograghy and related
inverse problems. Ann. Statist., 18, 251-280.

Johnstone, I.M. and Silverman, B.W. (1991). Discretization
effects in statistical inverse problems. J. Complexity, 7,
1-34.

Kerkyacharian, G. and Picard, D. (1992). Density estimation
in Besove spaces. Statist. Prob. Lett., 13, 15-24.

Lacour, C. (2006). Rates of convergence for nonparametric
deconvolution. C. R. Acad. Sci. Paris Ser. I Math.,
342(11), 877-882.

Leblanc, F. (1996). Wavelet linear density estimator for a
discrete-time stochastic process: L -losses. Statist. Prob.
Lett., 27, 71-84.

Leonard, T. (1973). A Bayesian method for histograms.
Biometrika, 60, 297-308.

Li, L. (2003). Non-linear wavelet-based density estimators
under random censorship. J. Statist. Plann. Inf., 117,
35-58.

Li, L., MacGibbon, B. and Valenta, C. (2008). On the
optimality of wavelet-based nonparametric regression
with censored data. J. Appl. Prob. Statist., 3, 243-261.

Maiboroda, R.E. (1996). Estimators of components of a
mixture with varying concentrations. Ukrain. Mat. Zh.,
48(4), 562-566.

Mair, B.A. and Ruymgaart, E.H. (1996). Statistical inverse
estimation in Hilbert scales. SIAM J. Appl. Math., 56,
1424-1444.

Mallat, S.G. (1989). A theory for multiresoution signal
decomposition: The wavelet representation. /EEE Trans.
Patt. Anal. Mach. Intel., 11, 674-693.

Meyer, Y. (1992). Wavelets and Operators. Cambridge
University Press, Cambridge.

O’Sullivan, F. (1986). A statistical perspective on ill-posed
inverse problems (with discussion). Statist. Sci., bf 1
502-527.



Yogendra P. Chaubey ef al. / Journal of the Indian Society of Agricultural Statistics 65(2) 2011 169-179 179

Parzen, E. (1962). On estimation of probability density and
mode. Ann. Math. Stat., 33, 1065-1070.

Patil, G.P. and Rao, C.R. (1977). The weighted distributions:
A survey of their applications. In: Applications of
Statistics (P.R. Krishnaiah, ed.) 383-405. North-Holland,
Amsterdam.

Penev, S. and Dechevsky, L. (1997). On non-negative
wavelet-based density estimators. J. Nonpar. Stat., 7,
365-394.

Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet
estimator for non-parametric density deconvolution. Ann.
Stat., 27, 2033-2053.

Pinheiro, A. and Vidakovic, B. (1997). Estimating the square
root of a density via compactly supported wavelets.
Comput. Statist. Data Anal., 25, 399-415.

Pokhyl’ko, D. (2005). Wavelet estimators of a density
constructed from observations of a mixture. Theor. Prob.
Math. Statist., 70, 135-145.

Prakasa Rao, B.L.S. (1983). Non-parametric Functional
Estimation. Academic Press, New York.

Prakasa Rao, B.L.S. (1999a). Estimation of the integrated
squared density derivative by wavelets. Bull. Inform.
Cyb., 31, 47-65.

Prakasa Rao, B.L.S. (1999b). Nonparametric functional
estimation: An overview. In: Asymptotics,
Nonparametrics and Time Series, Ed. Subir Ghosh,
Marcel Dekker Inc., New York, 461-509.

Prakasa Rao, B.L.S. (2003). Wavelet linear density estimation
for associated sequences. J. Ind. Stat. Assoc., 41,
369-379.

Prakasa Rao, B.L.S. (2010). Wavelet linear estimation for
derivatives of a density from observations of mixtures
with varying mixing proportions. Ind. J. Pure Appl.
Math., 41, 275-291.

Ramirez, P. and Vidakovic, B. (2010). Wavelet density
estimation for stratified size-biased sample. J. Statist.
Plann. Inf., 140, 419-432.

Rosenblatt, M. (1956). Remarks on some nonparametric
estimates of density functions. Ann. Math. Stat., 27,
832-837.

Silverman, B.W. (1986). Density Estimation for Statistics and
Data Analysis, Chapman and Hall, London.

Terrel, GR. and Scott, D.W. (1992). Variable kernel density
estimation. Ann. Stat., 20, 1236-1265.

Tribel, H. (1992). Theory of Function Space II, Birkhatiser
Verlag, Berlin.

Tribouley, K. (1995). Density estimation by cross-validation
wavelet method. Statistica Neerlandica, 45, 41-62.

Van Roij, A., Ruymgaart, F. (1996). Asymptotic minimax
rates for abstract linear estimators. J. Statist. Plann. Inf.,
53, 389-402.

Vardi, Y. (1989). Multiplicative censoring, renewal processes,
deconvolution and decreasing density: Non-parametric
estimation. Biometrika, 76, 751-761.

Varron, D. (2008). Some asymptotic results on density
estimators by wavelet projections. Stat. Prob. Lett., 78,
2517-2521.

Vidakovic, A. (1999). Statistical Modelling by Wavelets,
Springer, New York.

Walter, G. and Blum, J. (1979). Probability density estimation
using delta sequences. Ann. Stat., 7, 328-340.

Walter, G. and Ghorai, J. (1992). Advantages and
disadvantages of density estimation with wavelets. In:
Proceedings of the 24th Symp. on the Interface, Ed. H.
Joseph Newton, In-terface FNA, VA, 24, 234-343.

Walter, G.G. and Shen, X. (1999). Continuous non-negative
wavelets and their use in density estimation. Commu.
Statist.-Theory Methods, 28(1), 1-17.

Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing.
Chapman and Hall, New York.



