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SUMMARY

Here we propose a kernel based density estimator for the weighted univariate data under multiplicative censoring that
may be useful in the context of inference for certain agricultural data. Asymptotic formulae for the MSE and MISE of the new
estimator are derived and it is shown that the optimal rate of convergence of MISE of the new estimator is slower than that in

the case of i.i.d. data as may be expected.
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1. INTRODUCTION

Consider a probability space (Q, 7, P) and a
random variable (rv) X defined on Q — H, where
H = (a, b) is an interval of the real line. For the
continuous case, let f(.) denote the probability density
function (pdf) of X and g(.) a nonnegative function
satisfying 4 = Eg(X) < o, then the random variable Y
with pdf £y

) = s fx (y) (1.1

is said to have size-biased or weighted distribution,
corresponding to the distribution of X.

The examples of such distributions can be found
in many applied fields including agriculture, ecology
and forestry [see Rao (1965), Patil and Ord (1975),
Patil and Rao (1977) and Rao (1977) and Patil and Rao
(1978)]. The reader may also refer to Ricker (1969) that
exemplifies the concerns of not incorporating the
weighting function in the context of a fisheries study
that may hold in other contexts also. Gupta and
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Kirmani (1990) have further discussed the role of
weighted distributions in stochastic modeling whereas
Navarro et al. (2001), Nair and Sunoj (2003) and Sunoj
(2004) consider characterizing such distributions from
various considerations. Recently, Ramirez and
Vidakovic (2010) consider wavelet based density
estimation and Chaubey et al. (2010) focus on
nonparametric density estimation using a histogram
smoother based on weights generated by an appropriate
Poisson distribution.

Here we consider another practical situation,
where the observations ¥; may be further damaged
according to multiplicative censoring [see Vardi
(1989)]. This results in observing Z, = U;Y,,i=1,2, ...,
n, where {U,, ..., U,} is a random sample from the
uniform distribution on (0, 1). In the agricultural
context Y may represent actual crop production without
damage. We are interested in estimation of the density
[y from the observations Z, ..., Z,. Vardi (1989) showed
how this model can be useful in statistical problems,
including non-parametric inference for renewal
processes, certain non-parametric deconvolution
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problems, and estimation of decreasing densities. It is
straight-forward to derive the density f, can be
expressed by fy in the following manner:

j“—iny) dy (12)

o=

The problem is indirect since we observe a
multiplicative censoring version of ¥ and want to
estimate the density of an unobserved X. Andersen and
Hansen (2001) have considered density estimation
using series expansion. The method proposed here is
based on kernel smoothing that may be considered as
extensions of the proposals by Bhattacharyya et al.
(1988) and Jones (1991) for multiplicative censoring
coupled with weighted data.

The organization of the rest of the paper is as
follows. In Section 2, we motivate the form of the
estimator based the kernel density estimator of £, and
in Section 3, we obtain its MSE and MISE. Here the
form of the optimal smoothing parameter is also derived
that can be used adaptively in computations.

2. KERNEL DENSITY ESTIMATOR UNDER
MULTIPLICATIVE CENSORING

Suppose we have a random sample Z,.,..., Z, taken
from a continuous, univariate density f,, its kernel
estimator [see Wand and Jones (1995)] is given by

F) = 12 Kz - @1

:

where

Ky(u) = %K(%)

K(.) being the kernel function that has the following
properties:

K(2)2 0, [Kz)dz =1, [zK(z)dz = 0,
0< j ZK(z)dz < oo. (2.2)

A natural estimator of the r-th derivative fz(r)(z),
is given by taking the r-derivative of fz(z), namely

n
i@ = L Y g0[224 (2.3)
VA nhr+1 g{ h

assuming that K is r-times differentiable.

It is clear that from Eq. (1.2) that fy (2) = — zf5, (2),
hence using Eq. (1.1), the pdf £, can be written in terms
of f, as

1y () =ty f7(2)
= = 2.4
MO Tem T e @4
and therefore a natural estimator of fo (z) is given by
5 ~Qzf; (2)
= —=—. 2.5
Ix (@) 2(2) 2.5

An estimator 4 of parameter i required in the
above density estimator is given below that has the
property that E(1/4) = 1/u [see Lemma 2.1 below]
similar to the estimator in the length-biased case [see
Cox (1969)]:

—1

lz;l:lg(zi)_g(zi)zi for g(z)#z

2
n 8(z)

=
Il

g(2)=1z

—1
LG i for
i 27’l i=1 Zi
(2.6)

Lemma 2.1: Let {Z,...., Z,} be a random sample from
density f, then 1/ is unbiased for 1/4.

Proof : First, it is easily verified that for g(y) # y,

J‘ywdz = —— . Hence, for g(y) #y,
0 2y 8( )

E( 1 )z £| 8@ -2z
H g (2)
~g(2)—g'(2)z
= [T 8 2 p oy
I i A
= g(2)-8'(2)z wfy(y)dd
0 g% L -
ZJ Iyg(z) g(z)z \g(y)fx(y)
010 () J My

L j fredy =~
U
For the case when g(y) =y, it is clear from (1.1)
that E(1/Y) = 1/u. Further, from the representation
Z = UY, we have

(1) rere(2)2e(2)
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Hence, (1/2n) )" (1/Z,) is unbiased for £(1/Y) =
1/ and the proof of the lemma is completed.

3. ASYMPTOTIC PROPERTIES OF THE
ESTIMATORS

A common way to measure the performance of the
estimator fx (z) is the MISE given by

MISE (fx) =R = [Rd: 3.1

where
R,= MSE(fy (2)) = E(fy () ~/s2)*  (3.2)
Theorem 3.1. Assume that f;, is absolutely continuous

and that I( fZ) (z) dz <eo. Also, assume that K satises
(2.2). Then MSE fX (2)) is given by

P LR(K )f. (z)+—M S (K (2)
: gZ(Z) e Z 4 2 z

+0(L3+ h4] (3.3)

nh
and the MISE (fy ) is given by

2

R=E_ Rk )j( szz(Z)dZ

nh’
2,402
MK o 2 . 1
dz+ 0| —+Hh" |.
+ , J(g(z)fz(z)) z+ (nh3+ J
(3.4
where

R(K') = [K(u) du
and
My(K) = j W K(u) du.

Proof : First we compute the expectation and variance
of f;(z). We have

o 1 ’
E(fz(2) = ZE(Kh(Z_Zi))
L .,
= —(K,* ) (2)
h
_1ld
= hdZ(Kh*fz)(Z)

= AL pfazt
- dz[IhK( p )fz(t)dt]

V(fr(2) =

d
d—ZUK(u)fZ(z ~ hut) du |
d ,
d—z[fK(u)(fz(z)—hufz(z)
2.2
s f7(2)+ )du]
2
2

’ h ”m,
f7(2) +?M2(K) () +0?),

E(f5(2))* = (E(f5(2))
2 ’ 1 ’
E(ZKh(Z -Z) ) (K * £, (2)
i=1

K2 * £,)(2)

1 4 ’
pr) E{ZKh(zZi)Kh(sz)]

i#j

1 ’
iU f2)2(2)

1,
7(!@3 * £,)(2)

_(n(nz_ : —1]12(19; “ 1R @)

n

’Z*fz>(z>——<1<h*fz> (2)

K2 * f) ()= (Kj * £ ()|

— j K2 (z=1) [y (0)di = [ K (z=1) f; ()t |

j K’Z(Z ) £, (dt

J ’(Z )fz (t)dt]

%[JK'Z () £ (z — uh)du

_%J‘K'(u) £,z —uh)du]
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- % [K2@) (f,()+ 0))du
n

1 ,
—WIK ) (fz(2)+O0) )du

1 , 1
Hence

A~ 1 ,
MSE(f7(2)) = 7R(K )1 f7(2)
n

nt 1
+7M22(K) (fZ,”)Z(Z)"FO(%‘FhA‘.)
and
o 1 ,
MISE(f;) = 7R(K)
n

h4 1
+ M) [ (e + 0(7 +1 ]

Next we note that the estimate 1/ 4 in Lemma 2.1
is unbiased and strongly consistent. Hence,

2.2

MISE(fy (2)) = 55— MSE(f5(2)

g (2)

22
- 22 (LR(K )f2(2)
g2 (2)

h4M 2(K) (Y (2) |+0 L+h4
4 2 Z h

and

2 2
A y7i ,
MISE(fy) = << R(K) | ( : )] f2(2)dz

2,4 2
1M (K) "z
d.
+ 2 J( (Z)f (Z)) z

+0 %+h4
nh

This completes the proof of the theorem.

The asymptotic optimal bandwidth that minimizes

MISE( fX) is seen to be given by

2
3R(K) j(g(zz)} f(2)dz

B = (3.5)

nM; (K)j( f7(2) dzJ

Thus we find that the best bandwidth decreases at
rate n_%, and plugging 4. into (3.4) shows that if the
om).
Comparing this with the optimal rate of order n

attainable in the case of kernel density estimation for
the i.i.d. data, we conclude that the optimal rate in the
present case is somewhat slower than that for the i.i.d.
data.

optimal bandwidth is used then R =

Remark : Chaubey and Srivastava (1991) have
considered characterizing the distribution of random
variables subject to multiplicative censoring where the
censoring random variable U is not necessarily uniform.
For example U may have a general Beta(p, q)
distribution. The proposed estimator can be easily
generalized to this case.
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