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SUMMARY

Discrete data such as count data or data in the form of proportions arise in biological investigations and other similar
fields. These data often show variation greater or smaller than predicted by the simple probability models such as the Poisson
or the binomial model. Several discrete models have been used for modeling the counts or proportions by many authors
(see, for example, Byers ef al. 2003; Consul and Jain, 1973; Efron, 1986; Gibson and Austin, 1996; Kupper and Haseman,
1978; and Saha and Paul 2005). This article reviews briefly several aspects and the properties for some of the most commonly
used discrete models for modeling counts or proportions, namely the negative binomial, the generalized Poisson, the double
Poisson, the generalized negative binomial, the beta-binomial, the correlated binomial, the multiplicative binomial, and the
double binomial models. The maximum likelihood method is outlined for the estimation of the parameters of these models.
Comparison studies of these models are considered in light of goodness of fit test as well as model selection criteria through
real-life data occurring in agricultural and toxicological fields.

Keywords : Beta-binomial, Biological data, Double binomial, Negative binomial model, Extra dispersion parameter.

1. INTRODUCTION introduced the negative binomial model as a mixture
of Poisson and gamma distribution. Many authors have
used this distribution for analyzing the extra dispersed
count data (see, for example, Newbold 1927, Bliss and
Fisher 1953, Barnwal and Paul 1988, White and
Bennets 1996, and Byers et al. 2003). More details
about the properties and applications of the negative
binomial model is reviewed by Bartko (1961). Jain and
Consul (1971) proposed another alternative extra
dispersed model, called a generalized negative binomial
distribution, by compounding the negative binomial
distribution with another parameter which takes into
account the variations in the mean and the variance.
Consul and Jain (1973) derived the generalized Poisson
distribution by approximating the generalized negative
binomial distribution using Stirling’s formula on the

Discrete data such as count data or data in the
form of proportions occur in a wide variety of
disciplines. These data often show variation
significantly larger or smaller than that predicted by a
simple model such as a Poisson or binomial model.
This would happen when there is a possible correlation
in the occurrence of the events, which indicates that an
extension of the simple Poisson model is necessary. For
example, an agricultural data set given in Table 1 shows
that the observed variance exceeds its mean, hence a
Poisson model is inappropriate. Several alternative
models that take into account the extra Poisson
variation have been used by many authors (Greenwood
and Yule 1920, Jain and Consul 1971, Consul and Jain
1973, Efron 1986). Greenwood and Yule (1920)
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Table 1. Frequency distribution of red mites on
apple leaves

Number of adult females Frequency

) )

0 70

1 38

2 17

3 10

4 9

5 3

6 2

7 1
Mean ( V) 1.1467
Variance (Sz) 2.2737

two gamma functions. Efron (1986) develops the
double Poisson distribution by using the double
exponential family. Holla (1966) also introduced a
Poisson-inverse Gaussian distribution as an alternative
to the negative binomial model. Sometimes, a Poisson-
log-normal distribution can be used as an extra dispersed
Poisson model by taking a log-normal distribution as a
mixing density. The major disadvantage for some of the
distributions is that the probability must be computed
numerically. However, among all these distributions, the
negative binomial is popular due to its simplicity.

The negative binomial, generalized negative
binomial, generalized Poisson, Poisson-inverse
Gaussian, and Poisson-log-normal distributions are
members of the family of mixed Poisson distributions,

whereas the double Poisson distribution is a member
of the double exponential family. Not much work has
been done on comparing their behavior. Kaas (1995)
studied the comparison of the negative binomial,
Poisson-inverse Gaussian, and Poisson-log-normal
distributions and conclude that NB has lighter tails than
the Poisson-inverse Gaussian and Poisson-log-normal
distributions. Joe and Zhu (2005) also studied the
skewness of the negative binomial and generalized
Poisson distributions and showed that the generalized
Poisson distribution can be more skewed.
Nikoloulopoulos and Karlis (2008) compared the four
distributions: the negative binomial, generalized
Poisson, Poisson-inverse Gaussian, and Poisson-log-
normal distributions. They showed that the negative
binomial model differs from the generalized Poisson,
Poisson-inverse Gaussian, and Poisson-log-normal
models, whereas the generalized Poisson and Poisson-
inverse Gaussian distributions behave quite the same.
The purpose of this study is to investigate whether these
differences are really shown by real-life data. In
addition, we include the double Poisson and generalized
negative binomial distributions, which were not
included in previous studies, along with other
distributions in our study.

In studies where the experimental unit is a litter,
it has been observed (Weil 1970) that an inherent
characteristic of data from these types of studies is the
‘litter effect’, i.e., there is a tendency of littermates to
respond more alike than animals from different litters.
This litter effect is also known as the extra-dispersion
or the intra-litter correlation or the intra-class

Table 2. Toxicological data from Paul (1982). (i) Number of live foetuses affected by treatment.
(ii) Total number of foetuses.

Dose Groups

Control, C @@ 1 1 4 0 0 0 001
@Gy12 7 6 6 7 810 7 8

Low dose, L G o 1 1 0 2 0 1 0 1
g 511 7 912 8 6 7 6

Medium dose, M (i) 2 3 2 1 2 3 0 4 0
i) 4 4 9 8 9 7 8 9 6

High dose, H g 1 0 1 0 1 0 11 2
g 910 7 5 4 6 3 8 5

~ © , © L, O© o O

—

20 5212001 00003240
178 927 9711104 810128 7 8
03 0015003

6 96 759 16 9

4 0 0665 410 36

6 7 313 6 811 7 6 10 6

4 1 1 42 3 1

4 5 3 86 8 6
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correlation. In some binary-data situations it is
interpreted as ‘heritability of a dichotomous trait” (see
Elston 1977, Crowder 1982). For example, a set of
toxicological data provided in Table 2 shows the
discrepancy between the observed variances and those
predicted by the binomial model, indicating over-
dispersion in the proportion data sets. It is, therefore,
important to analyze the extra dispersed proportions by
an extended binomial distribution that takes into the
account the variability shown in the proportion data
occurring in biological investigations.

Different extra dispersed models for analyzing
proportions have been used by many authors (Altham
1978, Kupper and Haseman 1978, Efron 1986, Saha
and Paul 2005). Williams (1975) introduced the beta-
binomial model which is a mixture of binomial and beta
distributions. Many authors have used this distribution
for analyzing extra proportion data (see, for example,
Crowder 1978, Donvan et al. 1994, Gibson and Austin
1996, Klein-man 1973, Otake and Prentice 1984 and
Paul and Islam 1995). Kupper and Haseman (1978)
developed the correlated binomial distribution by taking
into account the correlation between the siblings in the
same litter ignoring the interlitter variation. Altham
(1978) proposed the additive generalized binomial
model based on Lancaster’s definition of no second-or
higher order interaction. This model is identical to the
correlated binomial model of Kupper and Haseman
(1978). Altham (1978) also developed a two-parameter
multiplicative binomial model by drawing analogy with
a model in a 2" contingency table with no second-and
higher-order interactions. Efron (1986) introduced what
he called a double binomial model from the double
exponential family. Due to its simplicity, many authors
have used the beta-binomial distribution for the analysis
of extra dispersed proportion data. No work has been
done about a theoretical comparison for the behavior
of these models. Little is known about an application
based comparison of some of the models. Altham
(1978) compared the beta binomial, correlated binomial
and multiplicative binomial models and preferred to use
both the correlated binomial and multiplicative
binomial models over the beta-binomial model, whereas
Paul (1982) studied the comparison among these three
models in terms of the C(¢) test of Tarone (1979) and
concluded that the beta-binomial model is superior to
the correlated binomial and the multiplicative binomial
models. In our comparison study, we include all four

models that are candidates for the analysis of any real-
life extra dispersed proportions occurring in biological
investigations.

The purpose of this article is to conduct a
comparison study of some well-known competing
discrete models for the analysis of both the count and
proportion data occurring in biological fields in light
of the well-known model selection criteria as well as
the usual goodness of fit test. In applied fields, one
could be wonder the use of the most suitable model in
a particular case so we aim to reducing this problem in
this study. In addition, we aim to detect the differences
among the competing models for counts or proportions.

This article is organized as follows. Section 2
reviews some competing models for the analysis of any
real-life count data. The five competing models for
analyzing proportions are discussed briefly in Section
3. Section 4 introduces the maximum likelihood
methods for the estimates of the parameters of the
negative binomial and the beta-binomial distributions.
The goodness of fit test and the model selection criteria
are discussed briefly in Section 5. Section 6 shows
whether the researcher in applied fields can really
identify the underlying distribution uniquely from
agricultural data as well as toxicological data. A
discussion can be found in Section 7.

2. THE COMPETING MODELS FOR COUNT
DATA

There is a wide range of discrete models for the
analysis of extra dispersed count data, for example, see
Dean et al. 1989, Efron 1986, Hinde 1982 and Jain and
Consul 1971. In this section, we review briefly the
probability mass functions and their properties of five
candidate parametric models for count data below.

2.1 The Poisson Model

A common phenomenon when analyzing data in
the form of counts is to assume a Poisson model, which
has a probability mass function as

_vvy

folv== (M

for y =0, 1, 2,..., where y is the number of adult
females in Table 1. The mean and variance of the
Poisson random variable ¥ are 4 = vand o = v,
respectively. Note that the underlying model of counts
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would be the Poisson model if data come from a pure
random mechanism or if the homogeneity assumption
of the population under investigation holds. For many
biological studies, these are violated due to the
mechanism applied for their investigations. As a result,
data obtained from these experiments show extra
variability compared to Poisson data. This model is a
member of the generalized linear model (GLM) family.

2.2 The Double Poisson (DP) Model

For over-dispersed count data, Efron (1986)
proposed the double Poisson model, which has a
probability mass function as

_ 0
0)y’e (y+v0) ev
folv )= ——o — )
yle(v, 0) y
for y =10,1,2,..., and @ > 0, where the normalizing

constants ¢(Vv, 6) can be calculated as

o —(y+v0) 0
(v, )= ZM(QT , 3)

y=0 y! y

which are intractable so that this model is difficult to
fit by standard methods. The mean and the variance of
the double Poisson variable Y are u# = v/c(v, 6) and
o= vi[Oc(v, 9))], respectively. Setting &= 1, this model
yields a Poisson distribution. Note that this model will
be over dispersed for 0 < &< 1 or under dispersed for
@ > 1. This model is a member of the double
exponential family.

2.3 The Negative Binomial (NB) Model

A popular and convenient model for extra
dispersed count data is the negative binomial model. Let
Y be a negative binomial random variable with mean v
and dispersion parameter 7. We write ¥ ~ NB(V, 1),
which has a probability mass function as

~ T+t H( Y
Pr(Y = =
rr=ylvo yIr(z ™ (1+rv]v(1+rv]

“)
fory=0,1,...; v>0;and 7> 0. The mean and variance
of the negative binomial variable Y are ¢ = vand o=
(1 + zv), respectively. The limiting distribution of the
NB(v, 1), as 7— 0, is the Poisson(v); that is, this model
is not over dispersed for 7= 0. Note that this model
will be over or under dispersed for 7> 0 or 7 < 0,
respectively.

2.4 The Generalized Negative Binomial (GNB)
Model

Using Lagrange’s expansion Jain and Consul
(1971) have obtained a generalized negative binomial
model, which has the probability mass function

a_lr(by + a_l)
Y@ +{b-1}y +1)

fyleb,a)= cy(l—c)“71+(b_1)y

(%)
fory=0,1,2,..;a>0,0<c<1,and |cb| < 1. The
mean and variance of the generalized negative binomial
variable Y are ¢ = v and = w1 —o)(1 —cb), with
v = cla(l — cb), respectively. Note that if b = 1, this
model yields the negative binomial model and if b = 1
and a — 0, this model becomes the classical Poisson
model.

2.5 The Generalized Poisson (GP) Model

Applying James Stirling’s formula to the two
gamma functions of a generalized negative binomial
model using A4, = ¢/a and A, = bc, Consul and Jain
(1973) obtained a generalized Poisson model, which has
the probability mass function

A + yﬂz)y—le—(ﬂﬁyﬂg)
y!

fory=01,2...,4, >0and -1 < A, < 1. The mean
and variance of the generalized Poisson variable Y are
u=vand o= vl — A,)% with v=1/(1 — 4,),
respectively. Note that this model will be over-dispersed
or under-dispersed for 0 < A, < 1 or 4, > 1,
respectively, and if 4, = 0, this model yields the
classical Poisson (4,).

oA, ) = ; (6)

3. THE COMPETING MODELS FOR
PROPORTION DATA

Different parametric models have been used in a
wide range of biological fields for modeling the
correlated binary data (see, for example, Altham 1978,
Barnwal and Paul 1988, Efron 1986, Kupper and
Haseman 1978, and Prentice 1986). We briefly discuss
the probability mass functions and their properties of
all five competing parametric models for the data in the
form of proportions as follows.
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3.1 The Binomial Model

The usual method for the analysis of the data in
the form of proportions is to assume the binomial
model, which has a probability mass function as

folm = (’;Jnyu — (7

fory=20,1,2 ...,n and 0 <7< 1, where n is the
number of live foetuses in the litter and y is the number
of affected foetuses in Table 2. The mean and variance
of the response variable of ¥ are £ = nr and o =
na(1 — ), respectively. This model is a member of the
generalized linear model (GLM) family.

3.2 The Beta-Binomial (BB) Model

The most commonly used model for extra
dispersion in binomial data is the beta-binomial model
(Williams 1975), which has a probability mass function

o -1z

B(a, B)

fory =0, 1, 2,..., n, where B(.) is the beta function.
Obviously, when 6 — 0, the BB(x, 6) becomes
Binomial(z). The mean and variance of the beta
binomial response Y are y# = nx and o= nn(l — 1)
[1 + nd/(1 + ), respectively. The parameter p =
d(1 + 6) can also be interpreted as the interclass
correlation, that is, the relationship between the siblings
in the same litter. This distribution will be over-
dispersed for &> 0 and under-dispersed for 8 < 0. Note
that the limiting distribution of this model, as 8 — 0,
is the binomial(n, 7).

3.3 The Correlated Binomial (CB) Model

By taking correlation between the siblings in the
same litter into account Kupper and Haseman (1978)
proposed the correlated binomial model, which has a
probability mass function

ol z ¢)= (’;Jﬂ(l —

1+—P _(y—nn) +yQr 1) —n7?)
2 (1-7m)?
9

This model is identical to the additive generalized-
binomial model of Altham (1978). The binomial model
corresponds to a special case when p = 0. This
distribution will be under-dispersed or over-dispersed
for p < 0 or p > 0, respectively.

3.4 The Multiplicative Binomial (MB) Model

By drawing an analogy with a model in a 2
contingency table with no second-and-higher order
interactions, Altham (1978) introduced a two-parameter
multiplicative generalization of the binomial model,
which has a probability mass function

n \n.y (o }ﬁY("—y)
v)  k(zy.m

for y=10,1,2,..., n, and ¥ > 0, where k(x, ¥, n) is the
intractable factor as

k(r, y, n) = z (’;)ﬂy A-=" 7/0,»'(n—y)

y=0

f(ylrt,7)=[ (10)

For y= 1, this model becomes the usual binomial
model. This model will be over-dispersed or under-
dispersed for > 1 or ¥ < 1, respectively. This model
is a member of the exponential family.

3.5 The Double Binomial (DB) Model

Efron (1986) developed the double-binomial
model for extra dispersed binomial data, which has a
probability mass function

n \nm]ﬂ-)’(ﬂ"'l) (1- ﬂ_)(n—y)(7]+1)
v ) e, my? (n— y)n

fory=0, 1, 2,..., n, where c(x, n, n) is the intractable
factor as

f(ylﬂ,ﬂ)=( an

n (1 M Y@M +D (1 _ (=)D
( \n T (1-m) (12)

omnn)=Y -
Jour’ v (n— y)( »n

For 77= 0, this model becomes the binomial model.
This model will be over-dispersed or under-dispersed
for -1 < n <0 or 7> 0, respectively. This model is a
member of the double exponential family.

4. ESTIMATION OF THE PARAMETERS IN
THE MODELS

Fitting an appropriate model for given data, we
consider the maximum likelihood method to estimate
the parameters in the models. We briefly discuss the
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maximum likelihood (ML) methods for the negative
binomial and the beta-binomial models in Sections 4.1
and 4.2. We also provide R functions to obtain the ML
estimates of the parameters of the negative binomial and
the beta-binomial models in Sections 4.3 and 4.4.

4.1 The Maximum NB Likelihood Estimator

Let Y,,..., Y, be a random sample from the
negative binomial distribution. Then the log-likelihood,
apart from a constant, can be written as

I= i[y,- ln(V)—( )ln(l+rv)+ Zln(l+a])]

i=1 Jj=0
(13)

The ML estimates of vand 7are then obtained by
maximizing [/ or alternatively, by solving,
simultaneously, the estimating equations (see also
Piegorsch 1990)

yz_1+Tyi —
U,= Z{[V —HW} 0, and (14)
z yi—V o
=Y |=In( - - =0.
§[ = g;)r(uaj) 0
(15)

Similar to the ML estimates of the NB model, one
can easily obtain the maximum likelihood estimates of
the parameters involved for other candidate models for
count data discussed in Section 2.

4.2 The Maximum BB Likelihood Estimator
Let Y,..., ¥, be a random sample from the beta-

binomial distribution. Then the log-likelihood, apart
from a constant, can be written as

i=1]j=0 j=0

m i m—y -1
Z[ZIn{ﬂ+]9}+ Y, In{l-z+j6)
(16)

n—1
- D {1+ j6)
j=1

The maximum likelihood estimates of /rand & can
be obtained by maximizing / or alternatively,

simultaneously, by solving the estimating equations (see
also Saha and Paul 2004)

i[yz_"l 1. _ni—ﬁ—l 1

P j:0ﬂ+]0 s 1-7+ j6O

] =0,and (17)

m | y— . ni—yl.—l J "i_lj
D e e

s 1-7+ j6O s
(18)

Similar to the ML estimates of the BB model, we
can easily obtain the maximum likelihood estimates of
the parameters involved for other candidate models for
data in the form of proportions discussed in Section 3.

5. THE GOODNESS OF FIT AND MODEL
SELECTION CRITERIA

In this section, we consider a few methods to
compare the models in Sections 2 and 3 based on the
goodness of fit as well as the model selection criteria.
Many different techniques have been used by different
authors (see, for example, Bliss and Fisher 1953,
Cochran 1954, Paul 1982, and White and Bennetts
1996). The following goodness of fit and model
selection criteria can be used to determine the better
model among many competing parametric models
discussed in Sections 2 and 3 for the real-life data
occurring in biological investigations.

Bliss and Fisher (1953) and Cochran (1954) used
the Pearson’s chi-square for the goodness of fit for
discrete data, which is given by

P 2(0,-—1:1)2

- E
where O; and E; are the observed and expected
frequencies for cell i, respectively. This chi-square
statistic can be calculated alternatively when data are

2

not in the form of frequency distribution as X2 = Zi K,

where r; = [y, — E(Y))]/ {/var(Y;) is the ith residual. The
smaller value of this statistic gives the better fitted
model for given data.

Lindsey (1974) used the log-likelihood method for
model selection criteria. This statistic is measured by
—2logL, where L is the maximum likelihood for the
model. The smaller value of this statistic gives the better
model for given data.

Akaike’s Information Criteria (AIC) (Akaike 1973)
and Bayesian Information Criteria (BIC) (Schwarz
1978) are frequently used for the model selection,
which are, respectively, given by

AIC = 2log(L) + 2p,
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Table 3. The comparative statistics for all five competing models for data in Table 1

Model Parameter ML Estimate Standard Error a é*
Poisson v 1.1467 0.0874 1.1467 1.1467
GP ﬂ‘l 0.7787 0.0860 1.1467 2.4866
Ay 0.3209 0.0595
DP v 0.8317 0.2004 0.8915 2.62114
2 0.3401 0.0891
NB v 1.1467 0.1273 1.1467 2.4299
T 0.9760 0.2628
and BCI = 2/og(L) + plog(n), form of frequencies of mites on the 150 leaves are given

where p is the number of parameter estimated and # is
the total number of observations. The smaller values of
AIC and BIC give the better model for given data.

Table 4. Goodness of fit and model selection criteria for
five models for data in Table 1.

Model —2logL AIC BIC Va

Poisson | 485.62 | 487.62 | 48780 | 26.65
GP 44549 | 449.49 | 449.84 2.89
DP 44439 | 44839 | 448.74 2.02
NB 256.17 | 139.959 | 260.17 2.49
GNB 44352 | 44952 | 450.05 2.07

6. APPLICATIONS

To address a comparison study of competing
parametric discrete models for counts or proportions
described previously, we use two different real-life data
sets from biological investigations. The first refers to
an agricultural data example where data are counts with
extra dispersion, whereas the other treats a toxicological
data example where data are in the form of proportions
with extra dispersion.

6.1 An Agricultural Example (Count Data)

We now consider the data previously analyzed by
Bliss and Fisher (1953) and Clark and Perry (1989).
The data consists of counts of the number of European
red mites on apple leaves. There were six Macintosh
trees which were provided the same spray treatment in
a single orchard. Garman (1951) selected 25 leaves at
random from each of the six trees and counted the
number of adult females on each leaf. The data in the

in Table 1. More details about the study are given in
Garman (1951) of The Connecticut Agricultural
Experiment Station. The comparative statistics for all
competing models are listed in Table 3.

Note that ML estimates of the parameters for all
models are obtained based on the R program discussed
in Section 4.1. The ratio of variance to mean is
d =2.2737/1.1467 = 1.9828, which indicates that the
data are quite dispersed. The estimates of the dispersion
parameters and estimated variance 62 for the GP, DP,
NB, and GNB models also indicate that data in
Table 1 are significantly dispersed. One more feature
of this dataset is the larger zero fraction which is 0.467
and no heavy tail exists because of no extreme values
of counts so one could try zero infiated distributions.

Based on the preliminary analysis, we found that
extra dispersed models for counts fit these data.
Furthermore, we compared the fit of all five different
count distributions to these data based on the goodness
of fit test and model selection criteria discussed in
Section 5, and the results of the models of Poisson, GP,
DP, NB, and GNB are reported in Table 4. These results
in Table 4 indicate that NB fits the data better than other
four models based on all three model selection criteria,
whereas DP fits the data better than other four models
in terms of goodness of fit test. The fitted models for
the data in Table 1 are plotted in Fig. 1. Fig. 1 clearly
shows that Poisson model does not fit the data, whereas
the other four models fit the data very well. We also
see from Fig. 1 that none of the four models shows a
clear winner over the others.
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Fig. 1. Fitted Poisson, Generalized Poisson (GP), Double Poisson
(DP), negative binomial (NB), and generalized negative
binomial (GNB) models for the data in Table 1.

6.2 A Toxicological Example (Proportion Data)

The data in Table 2 refer to live foetuses in a litter
affected by treatment, and the number of live foetuses,
for each of four dose groups: control (C), low dose (L),
medium dose (M), and high dose (H). More details
about the study are given in Paul (1982). The estimates
of the parameters 7 and @ for the four groups are
obtained using R program given in Section 4.2. The
estimates of the parameters and their standard errors for
all five completing models are reported in Table 5.

Note that the ML estimates of 7 and 6 for NB
model and their standard errors are in agreement with
those given by Paul (1982). The observed variances for
all four groups C, L, M, and H are 0.4465, 0.2435,
1.0472, and 0.6186, whereas the respective predicted
variances by a binomial model are 0.1465, 0.1617,
0.5100, and 0.2960. These results indicate that the data
in Table 2 for all groups are quite dispersed. The
estimates of the dispersion parameters for BB, CB, MB,
and DB models also indicate the extra dispersion of
these datasets. As a result, we fit all four extra dispersed
models for these data and compared the fit in terms of
goodness of fit test and model selection criteria
described previously. The results of the fit of binomial,
BB, CB, MB, and DB models are given in Table 6.
Based on the model selection criteria DB, BB, DB, and
MB are, respectively, better fitted models for the
treatment groups C, L, M, and H, whereas BB is better

Table 5. The estimates of the parameters and their standard
errors for all five competing models for
data in Table 2

Treatment| Model | Parameter ML Standard
Estimate Error

C Binomial V4 0.1349 0.0233

BB V4 0.1404 0.0380

2 0.2148 0.0957

CB V4 0.1376 0.0302

P 0.0134 0.0049

MB V4 0.3216 0.0594

4 0.7980 0.0467

DB V4 0.0621 0.0674

n —0.7704 0.1529

L Binomial V4 0.1353 0.0297

BB V4 0.1272 0.0373

2 0.1054 0.0813

CB V4 0.1351 0.0370

P 0.0092 0.0066

MB V4 0.1437 0.0796

4 0.9861 0.1181

DB V4 0.1172 0.0487

n —0.4838 0.2687

M Binomial V4 0.3444 0.0387

BB V4 0.3505 0.0678

2 0.3155 0.1091

CB V4 0.3296 0.0521

P 0.0280 0.0084

MB V4 0.4281 0.0352

¥ 0.8404 0.0394

DB V4 0.3131 0.0849

n -0.7177 0.1241

H Binomial V4 0.2277 0.0417

BB V4 0.2387 0.0548

2 0.1132 0.0944

CB V4 0.2387 0.0502

P 0.0189 0.0155

MB V4 0.3430 0.0635

¥ 0.8172 0.0708

DB V4 0.2131 0.0629

n —0.4740 0.2289
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Table 6. Goodness of fit and model selection criteria for five models for data in Table 1.

Treatment # of Litters Model —2logL AIC BIC Vs
C 27 Binomial 91.59 93.59 93.02 66.31
BB 77.24 81.24 80.10 28.07
CB 80.91 84.91 83.77 31.52
MB 81.13 85.13 83.99 30.59
DB 76.40 80.40 79.26 34.98
L 19 Binomial 50.60 51.60 51.88 29.41
BB 46.93 50.93 49.49 17.68
CB 47.43 51.43 49.99 21.35
MB 50.58 54.58 53.14 2791
DB 48.05 52.05 50.61 24.02
M 21 Binomial 99.40 100.40 100.72 55.27
BB 82.01 86.01 84.66 21.11
CB 89.65 93.65 92.29 31.21
MB 89.94 93.94 92.59 29.33
DB 78.72 82.72 81.36 16.57
H 17 Binomial 55.39 57.39 56.62 28.52
BB 52.90 56.90 55.36 18.44
CB 53.01 57.01 55.47 21.33
MB 51.19 55.19 53.65 20.32
DB 52.13 56.13 54.59 15.81

fitted model for treatment groups C and L, and DB is
better fitted model for treatment groups M and H in
terms of goodness of fit test.

7. DISCUSSION

We have conducted a comparison study of some
competing discrete models for the analysis of both the
count and proportion data occurring in biological fields
based on the model selection criteria and the goodness
of fit test. We have discussed several aspects of the
negative binomial, the generalized negative binomial,
and generalized Poisson distributions for modeling the
count data. We also have reviewed the properties of the
beta-binomial, the correlated binomial, the
multiplicative binomial, and the double binomial
distributions for modeling the data in the form of
proportions. The Pearson’s chi-square for the goodness
of fit test and the model selection criteria AIC, BIC, and
-2logl. were used to determine the better model for real
life data. From the analysis of a set of agricultural data,

we have found that the negative binomial model would
be the better model in terms of all model selection
criteria considered here, whereas the goodness of fit test
suggested that the DP would be an appropriate model.
However, the graphical presentation of all four fitted
models showed evidence that any of the four models
would be appropriate for modeling the agricultural data.
For a set of toxicological data analysis, we have found
that no unique model among the BB, DB, CB, and MB
distributions can be recommended for modeling four
treatment groups of datasets. To draw any clear
guidelines for the choice of these distributions for
modeling counts or proportions occurring in biological
fields, further studies are necessary in light of
simulation-based methods for model evaluation. Further
study in this regard is continuing through a simulation
study based on a parametric bootstrap approach of
model evaluation using a Mahalanobis squared distance
proposed by Allcroft and Glasbey (2003).
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