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SUMMARY

Consider a sequence of stationary non-negative associated random variables with common marginal density f{x). Here
we present a review of recent developments for estimating the density f'and the corresponding survival function by smoothing
the empirical survival function studied in Bagai and Prakasa Rao (1991). These are contrasted with other estimators available

for non-negative i.i.d. data.
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1. INTRODUCTION

Consider a probability space (Q, F, P) and a
sequence {X,, n > 1} of random variables defined on
it. A finite collection of random variables {X1, ...., X,,}
is said to be associated if for every pair of functions
h(x) and g(x) from R” to R, which are nondecreasing
componentwise,

Cov(h(X), g(X)) = 0

whenever it is finite, where X = (X7, X5, ..., X})). An
infinite sequence {X,, n = 1} of random variables is
said to be associated if every finite subset is associated.

The concept of associated random variables was
introduced by Esary er al. (1967) in the context of
reliability studies. Now these are of considerable
interest in many areas of statistical enquiry. They are
prominently featured in theory of life testing and
reliability (Barlow and Proschan 1981), statistical
physics (Newman 1980, 1983) and percolation theory
(Cox and Grimmet 1984). The reader may be referred
to Newman (1984) for a wealth of results on asymptotic
theory involving associated random variables and to
Roussas (1999) and Prakasa Rao and Dewan (2001) for
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an extensive review of several probabilistic and
statistical results concerning associated random
variables.

Suppose {X,, n = 1} is a stationary sequence of
associated random variables, where stationarity is meant
to indicate that the joint finite dimensional distributions
are invariant to translation of the indices by an integer
k. Suppose that the density of X exists that is denoted
by /. We denote by F' and S = 1 — F, respectively, the
distribution function and the survival function of Xj.
In this paper we concentrate on nonparametric
estimation of these functions. When the observations
are i.i.d., several authors have suggested density
estimators based on kernels, histogram methods,
orthogonal functions, etc. (see, e.g. Prakasa Rao 1983,
Devroye 1989 and Wand and Jones 1995).

Density estimation is not uncommon to the field
of agricultural statistics. For example, Qaim (2003)
shows a graph of yield density for cotton in India of
biotechnology-hybrid and non-biotechnology
counterparts (see their Figure 1, pp. 2119). See also
Ferreyra et al. (2001) where density estimation is used
in assessing maize production risk associated with
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climate variability. Agricultural field trials are also
considered spatially dependent. Hallin ez al. (2001)
model such data by a spatial linear process that is a
particular case of positive association considered in this

paper.

The most commonly used estimator of the density
function is the kernel estimator (Rosenblatt 1956,
Parzen 1962) given by

1 n
ﬁur=HTZMu—&ww (1.1)

ni=1

where k is the kernel function, which is generally a
symmetric density function with mean zero and
variance 1 and 4, is the bandwidth.

Bagai and Prakasa Rao (1995) showed that such
kernel type density estimator can be extended to
associated sequences and showed that the resulting
estimator is strongly consistent, pointwise as well as
uniformly, over certain sets. Roussas (1991) studied
strong uniform consistency of kernel estimates of » —
th order derivative of funder some regularity conditions
on the kernel and the band- width. In this paper they
also considered estimators of the failure rate function
r(x) = f(x)/S(x) and the survival function S(x) based
on the kernel estimator f,,(x). Later Dewan and Prakasa
Rao (1999) considered a general method of
nonparametric density estimator in this context given

by
DR 13
fo 00 = =2, 0(x, Xo) (1.2)
i=1

where @,(x, v), n =1, 2, ... is a sequence of Borel-
measurable functions defined on R” that integrate to 1
(with respect to x). This estimator is a generalization
of the histogram type estimator, the kernel type density
estimator and the density estimator obtained by the
method of orthogonal series.

Note that in the context of life-testing and
reliability studies and other areas, the underlying
random variables are defined on the nonnegative
support. And in such a case, the direct use of kernel
density estimator, where & is a usually asymmetric
function, is not desirable (as noticed by Silverman
1986). Since this estimator assigns positive mass for x
in the interval (—o, 0), a properly normalized truncated
kernel estimator has to be used to get a proper density

estimator. This may not be a satisfactory solution,
especially, when the true density takes value zero at
x = 0. This point is illustrated in Fig. 1 that gives the
true density of a gamma distribution with shape
parameter 2 and scale parameter 1 along with the kernel
estimator, and its truncated version for a sample size
100. Here the kernel used is Gaussian and the
bandwidth /4 is selected using rule of thumb estimator
[see Silverman (1986, page 48, Eq. (3.31))]. We see
here that the density near x = 0 is grossly inaccurate.

0.4+ —
— true density
- - kernel estimator
0.3 ... truncated kernel
estimator
= 0.2-
014!
0.0-
I T T T 1
0 2 4 6 8

Fig. 1. Kernel density estimator for a sample of gamma density
with shape parameter = 2, kernel = Gaussian, sample size
=100.

Several direct methods are now available to deal
with this problem for the i.i.d. data. Bagai and Prakasa
Rao (1996) suggested the use of a kernel & which is
defined only on the positive part of the real line.
However, this approach makes use of only the first
order statistics for the value of x in [X,..,;, X(,-+1).,) wWhere
X;.,, denotes the i" order statistic from the random
sample {X|, ...., X,;}.

Gawronski and Stadmiiler (1980, 1981) have
investigated the asymptotic properties of the density
estimator based on smoothing histogram using Poisson
weights motivated by a result in Feller (1965, Lemma
1, pp- 229). Chaubey and Sen (1996), independently
suggested a truncated version of this density estimator
that was found to be unsuited for estimation of the mean
residual life function (see Chaubey and Sen 1999). A
subsequent modification resulted in the same estimator
as proposed by Gawronski and Stadmiiler (1980). This
has been extended recently, to the case of associated
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data in Chaubey and Dewan (2009a). This method uses
the whole data in contrast to the method of Bagai and
Prakasa Rao (1996), however, it may not be quite
appropriate at the lower most boundary for removing
the bias. This problem was addressed in Chaubey et al.
(2007) for i.i.d. sequences. They used a generalization
of Hille’s lemma along with a perturbation idea. This
method is appropriate for dealing with the boundary
bias problem at zero and fits in with the generalized

estimator anR (x). This has been studied recently by

Dewan and Chaubey (2009b) for the case of non-
negative associated sequences.

The class of estimators introduced by Chen (2000)
using Gamma kernels and those by Scaillet (2004)
using inverse Gaussian and reciprocal inverse Gaussian
kernels, proposed for smooth density estimation for
non-negative i.i.d. data may be similarly adapted for
associated sequence also. These are not highly desirable
in comparison to the estimator given in Chaubey et al.
(2007), as their variances seem to blow up at x = 0, and
their behavior for estimating densities that may not be
zero at x = 0 is not clear. Chen’s estimator has been
more thoroughly investigated recently by Zhang (2010).
The author reports that “our study finds that the Gamma
kernel estimator at x = 0 is actually the reflection
estimator when the double exponential kernel is used
and is only boundary problem free when the estimated
density has a shoulder at x = 0 (i.e., the first derivative
of the density at x = 0 is zero). For densities not
satisfying the shoulder condition, we show that the
gamma kernel estimator has a severe boundary problem
and its performance is inferior to that of the boundary
kernel estimator.”

A qualitative comparison of new estimators for the
sample used in Fig. 1 is illustrated in Fig. 2. The value
of A, used here is obtained from the working rule 4,, =
n/max(Xj, ..., X;) [see Chaubey and Sen (2009)]. Both
the density estimators, the one based on Poisson
weights (as in (2.12) with 4, = 12.52) and the Gamma
kernel estimator (as in (2.14), v, = h and g,
= 0), are seen to avoid the boundary value problem near
zero. These smoothing constants may be obtained using
cross-validation methods as discussed in Chaubey and
Sen (2009) for the Poisson weight estimator and in
Chaubey et al. (2007) for the asymmetric kernel
estimator, however, we have used their rough values
just to demonstrate the qualitative aspect of the new
estimators.

0.57
0.4 — True density
' _ Poisson weights
estimator
0.3 -~ Gamma kernel
> .
= estimator
c
[0
0 0.2- \
0.1 \\
0.0-
I T T T 1
0 2 4 6 8

Fig. 2. Poisson weight density estimator and Gamma kernel density
estimator for a sample of gamma density with shape
parameter = 2, sample size = 100.

The purpose of the present article is to review
some of these recent developments for smooth
estimation of density and survival functions for non-
negative associated sequences. In Section 2, we present
the generalized smoothing lemma to motivate the new
estimators of the density and survival functions as
studies in Chaubey and Dewan (2009a, b). Section 3
presents some properties of the resulting smooth
survival function estimator and Section 4 presents those
for the smooth density estimator. The final section
contains some concluding remarks.

2. THE GENERALIZED SMOOTHING LEMMA
AND SMOOTHING OF THE EMPIRICAL
DISTRIBUTION FUNCTION

Before we present the lemma that is the key to
discussions of the results in this paper, we start with
results of Bagai and Prakasa Rao (1991) concerning the
empirical survival function S,(x) based on a sequence
of associated random variables {X,, n = 1} given by

1 n
)= =YY (%) @.1)
nNiZ;
where
1 if X.>x
Yi(x) = :
0 otherwise



264 Y.P. Chaubey et al. / Journal of the Indian Society of Agricultural Statistics 64(2) 2010 261-272

Note that when the underlying random variable is
continuous, the empirical survival function needs to be
modified, in such a way as to produce smooth estimator.
Suppose that F(x), is absolutely continuous, so that F(x)
admits a density function f{(x). With this objective any
non-parametric density estimator for f(x) may be
properly integrated to produce the desired estimator. For
example suppose we consider the kernel density
estimator (considered by Dewan and Prakasa Rao
1999),

1 i X— X i
Jn(x) = k (2.2)
r]hn j=1 hn
where k(.) is a suitable kernel and {A,, n > 1} is a
bandwidth sequence,then a nonparametric (smooth)

estimator of the survival function S(x) is given by

l n
Spk(x) = n—ZKn(x, X)) (23)
j=1
where
K= [ k[—sr;nyJ ds 2.4)

As indicated in the introduction, kernel density
estimator (and hence the resulting survival function
estimator) may not be universally appropriate, suitable
modifications may be necessary in specific situations.
Chaubey and Dewan (2009a,b) have investigated the
adaptation of smoothing the empirical survival function
as presented in Chaubey and Sen (1996) and Chaubey
et al. (2007) to associated sequences. These are
motivated by the following lemma, which is a slight
variation of Lemma 1 given in Feller (1965, §VII.1).

Lemma 2.1. Let u# be any bounded and continuous
function. Let Gy ,, n = 1, 2, ... be a family of

distributions with mean ,(x) and variance hs (x) then

we have as u,(x) — x and /,(x) > 0

(%) = [~ u(d)dGyu(t) = u(x) (2.5)

The convergence is uniform in every subinterval
in which #,(x) — 0 and # is uniformly continuous.

This generalization may be adapted for smooth
estimation of the distribution function by replacing u(x)

by the empirical distribution function F,(x) = 1 — §,(x)
as given below

F.(X) = [~ Fi0dGy (o) 2.6)

Strong convergence of Ifn(x) parallels to that of

the strong convergence of the empirical distribution
function as stated in the following theorem.

Theorem 2.1. If & = h,(x) — 0 for every fixed x as
n — oo we have

sup,| F (%) - F)| 35 0 @2.7)

as n — oo,

Technically, G, , can have any support but it may
be prudent to choose it so that it has the same support
as the random variable under consideration; because
this will get rid of the problem of the estimator
assigning positive mass to undesired region.

For Ifn(x) to be a proper distribution function,
Gy (1) must be a decreasing function of x, which can

be shown using an alternative form of Ifn(x) :

F,00 =1~ li G nl(X7) (2.8)
niZ1

In addition to being computationally attractive, this
form provides an insight into the usual kernel estimator.
This also leads us to propose a smooth estimator of the
density given by

AR
fn(x) = Tdx

n
- ivd 2.9)
n/= dx

Remark 2.1. It is interesting to note that the form of
the above density estimator is similar to the general
method proposed by Dewan and Prakasa Rao (1999),
with

O ) =—% )
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Densities with Non-Negative Support

Smoothing based on Poisson weights

Considering Gy, defined by a Poisson distribution
attaching weights py(4,x), k=0, 1, 2, ... to the lattice
points k/4,, in (2.5), we obtain Hille’s approximation
lemma. Replacing u(x) by S,(x), we get a smooth
estimator of survival function as considered in Chaubey
and Dewan (2009a):

(2.10)

n

S ()= 2 S [ 3 kamnx)

P
i) = eHM_ k=0,1, ..,

- @2.11)

and /4, is a sequence (possibly stochastic) of constants
tending to infinity as # — eo. The corresponding
estimator of the density, that was originally proposed
in Gawronski (1980) in the context of i.i.d. data, is
given by

iy = ——S ()

= Ay X Pl Ak, Ay)
k=0

(2.12)

where

wik, A,) = {s{%}- sn(k/l—ﬂﬂ
n n

Smoothing based on Asymmetric Kernels

Using the representation (2.8), Chaubey and
Dewan (2009b) proposed the following estimators of
the distribution and density functions with support
[0, o), generalizing the estimator based on Poisson
weights. Let O,(x) represent a distribution on [0, o)
with mean 1 and variance v2, then an estimator of F(x)
is given by

oy 1o Ivg (X
Frog=1- nngvn( Xj

(2.13)

where v;, = 0 as n — oo. Obviously, this choice uses
G(xm)(t) = Oy, (#/x) which is a decreasing function of x.

This leads to the following density estimator

drte) = L% Rl
S (Fr 00) = nnglxiqvn( X]

where ¢,(.) denotes the density corresponding to the
distribution function Q,(.).

However, the above estimator may not be defined
d -+
—(F7 (X
dx( n (X))

exists. Moreover, this limit is typically zero, which is
acceptable only when we are estimating a density ' with

£0) = 0.

Hence in view of the more general case where
0 £ f(0) < oo, Chaubey and Dewan (2009b) adapt the
following perturbed version of the above density

estimator:
X
— z , x>0
n(x +E.)7 X+E,

(2.14)

where &, | 0 at an appropriate (sufficiently slow) rate
as n — oo. In the sequel, we illustrate our method by
taking O,(.) to be the Gamma (& = 1A, p=v )
distribution function.

at x = 0, except in cases where lim,_y

fr (¥ =

Next we present a comparison of our approach
with some existing estimators.

Kernel Estimator. The usual kernel estimator is a
special case of the representation given by Eq. (2.9),
by taking G, ,(.) as

_ k=X
Gx,n(t)_K( h )

where K(.) is a distribution function with mean zero and
variance 1.

(2.15)

Transformation Estimator of Wand ef al. The well
known logarithmic transformation approach of Wand
et al. (1991) leads to the following density estimator:

Zk[ log (X, /x)]

where £(.) is a density function (kernel) with mean zero
and variance 1. This is easily seen to be a special case
of Eq. (2.9), taking G, , again as in Eq. (2.15) but

£(L
fH(x) =



266 Y.P. Chaubey et al. / Journal of the Indian Society of Agricultural Statistics 64(2) 2010 261-272

applied to log x. This approach, however, creates
problem at the boundary which led Ruppert and Marron
(1994) to propose modifications that are
computationally intensive.

Estimators of Chen and Scaillet. Chen’s (2000)
estimator is of the form

where g, ,(.) is the Gamma(a = a(x, b), B= b) density
with 5 — 0 and ba(x, b) — x. This also can be
motivated from Eq. (2.5) as follows: Take u(¢) = f) and

note that the integral J. fDgy ,()dt can be estimated by

n! zinzl Zx.n(X;). This approach controls the boundary

bias at x = 0; however, the computation of integrated
mean squared error (IMSE) is not tractable. Moreover,
estimators of derivatives of the density are not easily
obtainable because of the appearance of x as argument
of the Gamma function. Scaillet’s (2004) estimators
replace the Gamma kernel by inverse Gaussian (IG) and
reciprocal inverse Gaussian (RIG) kernels. These
estimators are more tractable than Chen’s; however,
they assume value zero at x = 0 which may not be
desirable in all cases.

3. ASYMPTOTIC PROPERTIES OF SMOOTH
ESTIMATORS OF THE SURVIVAL
FUNCTION

It is useful to describe the asymptotic properties
of S,(x) before considering those for the smooth
estimators. The following theorems regarding weak and
strong convergence of S,,(x) were established in Bagai
and Prakasa Rao (1991).

Theorem 3.1. [Bagai and Prakasa Rao (1991)] Let
{X,, n =2 1} be a stationary associated sequence of
associated random variables with bounded continuous
density for Xj. Assume that, for some 7 > 1

f‘, {Cov (X1, X))} '3 = 0@ )

j=n+1

Then

3.1)

S,(x) = S(x) a.s.asn —> oo

Theorem 3.2. [Bagai and Prakasa Rao (1991)] Let
{X,, n =2 1} be a stationary associated sequence of
random variables satisfying the conditions of Theorem
3.1. Then for any compact subset J C R

sup[|S,(x) = S(x) | :xeJ] > 0 as.asn — oo

Yu (1993) established uniform strong consistency
assuming S(x) to be continuous.

Theorem 3.3. [Yu (1993)] Let {X,, n > 1} be a
sequence of associated random variables having the
same continuous marginal distribution function F(x) for
Xpyn2 1. 1f

« 1
2,5 CovlXy, ) < o0
n=1

(3.2)

where T,= Z?ZlXj, then, as n — o

SUP_cocy<oo | Sp(x) = S(x) | — 0 a.s.

If the sequence {X,, n = 1} is stationary, then the
condition in Eq. 3.2 can be relaxed to

01
Y = Cov(X,, X)) < oo (3.3)

i=1"
Bagai and Prakasa Rao (1991) also obtained the
asymptotic law of S,,(x) that is quoted below.

Theorem 3.4. [Bagai and Prakasa Rao (1991), Theorem
3.3] Let {X,,, n > 1} be a stationary sequence of
associated random variables with bounded continuous
density for X and survival function S(x). Suppose that
n — oo and

i {Cov(Xy, X))} ' <o (3.4)
j=2

Then, for all x such that 0 <S(x) <1, Jn [S,(x) — S(x)]/
o(x) converges in distribution to a standard normal
distribution, where

(x) = S)[1 - Sw)]
+2 i (PLX; > x, X; > x] - §°(x)}
j=2

Chaubey and Sen (2009a,b) established the
following version of Glivenko-Cantelli theorem for
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én (X) similar to the one obtained in Bagai and Prakasa
Rao (1991) for S,,(x). Note that here and elsewhere

én(x) will be used to denote either of ér'?(x) or
S+
S, ().

Theorem 3.5. Let {X,,, n > 1} be a stationary sequence
of associated random variables with bounded
continuous density for Xj. Assume that, for some,
r>1,

2 {COV(XI,)(})}IB _ O(n_(r_l))
j=n+1
and max(Xq, X, ...
IS, = S = sup{|S,(¥) - S@)| : x e R} - 0 as.,

, X;) = oo. Then for A,, — oo

as n — oo, (3.5)

Chaubey and Dewan (2009a) use Bahadur-type
representation established by Ekisheva (2001) to
establish the order of closeness of éﬁ and S,,, however

we require a stronger condition than used in Bagai and
Prakasa Rao (1991).

Theorem 3.6. Suppose that 4, = O(n) as in Theorem
2.1, whenever f(x) is absolutely continuous with a
bounded derivative 7’(.) a.e. on R", and

3 neov(Xy, X,) < oo (3.6)

n=1

18P~ S, = O (log m)) as. as n — oo (.7)

Remark 3.2. The above theorem can be shown to hold

+ . o, .
for S7(X), under appropriate conditions on the

convergence of v, and &, following similar steps as in
Chaubey et al. (2007).

The asymptotic law of the smooth estimators is
found to be the same as that of the raw estimator as
given in the following theorem.

Theorem 3.7. Let {X,,, n > 1} be a stationary sequence
of associated random variables and assume that the
conditions in Theorem 3.1 are satisfied. Then, for all x

such that 0 < S(x) < 1, Vn[§,(x) - S()I/ow)

converges in distribution to a standard normal
distribution, where

c*(x) = S@[1 - SE)]

+2 i (PLX; > x, X; > x] - $°(x)}
j=2

4. ASYMPTOTIC PROPERTIES OF SMOOTH
ESTIMATORS OF f
Kernel Estimators

Bagai and Prakasa Rao (1995) assumed the
following conditions

(A1) k(.) is a bounded density function of bounded
variation on R satisfying (i) limy, 5 jrk(u) = 0,
(i) [ lk(uydu < oo.

(A2) k(x) is differentiable and supy | £'(x) | £ ¢ < eo.

(B) Forall/and >0, 2 ; Cov(Xj, X)) < u(r),

it =jlz
where u(r) = ¢ * for some o > 0.

and obtained the following expressions for the mean
and variance of the kernel density estimator under these
conditions:

2
E[fy)] = /%) — by f O3+ % 707 + O(P)
.1

where
%= f°° ‘k@)dx, j= 1, 2

1
Var[f,,(x)] = n—hn[ f (x)8,+0(h, )] + O(1/ nh?)
4.2)
where

Bo= [ Kxdx

The following theorem concerns the strong point
wise convergence of f,(x).

Theorem 4.1. Let {X,, n > 1} be a stationary associated
sequence of random variables. Suppose that conditions
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(A) and (B) hold. Then for x € / where [ is a compact
subset of R,

f(x) — E| f,(x)] > 0 a.s. as n — inf.
The above theorem also gives point wise convergence
at continuity points of f.

Corollary 4.1. Under the assumptions of Theorem 4.1,
fn(x) = f(x) a.s. at continuity points x of fas n — eo.

Under further assumption on #,, uniform
convergence over a compact subset is obtained.

Theorem 4.2. Let {X,,, » > 1} be a stationary associated
sequence of random variables. Suppose that conditions
(A) and (B) hold. Further let

h4 = O@?) for y > 0

and for some constant C > 0
|AxD) = fx2) | < Clxp —xa, x1, % €1
then for x € 7 where [ is a compact subset of R

SUpyes| fu(x) —fix)| > 0 as.asn — oo
General Method of Density Estimator
Dewan and Prakasa Rao’s (1999) general density

estimator anR(X) was proposed for the case of

associated sequences based on similar method given by
Foldes and Revesz (1974) for i.i.d. case. They studied
conditions leading to the exponential rate of
convergence for the uniform consistency in probability
of the estimator and obtained the following theorem.

Theorem 4.3. Let {X,,, » > 1} be a stationary associated
sequence of random variables with common marginal
density function f. Consider the following conditions

to hold:
(A1) | Ax1) —Axo)| < K|x

—xo| if x1, x5 € [a, b]
4.3)

(A2) [ |x["fix)dx < oo for some y > 0 (4.4)

Let {@,(x, ¥)} be a sequence of Borel-measurable
functions of bounded variation in y for every fixed x.
Then

Pnlx, ¥) =

where @,(x), i =

¢1I’l(xa )’) - ¢2n(x> )’)

1, 2 is monotone in y for fixed x.

(4.5)

(B1) Suppose that there exists two positive numbers
o and 7 and an interval [c, d] containing [a, b]
such that for each » the interval [c, d] can be

divided into disjoint left closed intervals | én),
s =1, 2, ... for which

1 n
= = U (4.6)

and

| Gu(x1, ¥) = Gulxa, W S xp = x2 | (4.7)
provided that x| and x, belong to the same

interval | én)_

(B2) Suppose that

Var(¢y,(x, X)) < by, i = 1,2 (4.8)

n
hy, < wiegn (4.9)

where w(n) = O(nﬂ), for some £ > 0, and
Ww(n) — oo as n — oo,
(B3) There exists a positive constant C such that
| @in(x, W < Chy, i = 1,2 (4.10)

(B4) Suppose that there exists a v> 0 and a sequence
of positive numbers &, — 0 such that

| @(xn Vo) | < &,
whenever

4.11)

|x, = Vol > n” and n > np(e)  (4.12)

(BS5) Suppose that @;,(x, v), i = 1, 2 is differentiable
with respect to y such that

| 4, (e 0| < by (4.13)
where (Z)I'n (x, ¥) denotes the derivative with
respect to y and there exists 7> 0 such that

b
1 =0 (4.14)
(C1) Assume that

204 ) £ 02y = fix) as n > o0 (4.15)

uniformly in [a + &, b — 0] for some J> 0.
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(C2) Finally assume that

n
%2 Cov(Xy, X)) = 0™ (4.16)
=

for some 0> 3/2.

Then

kn
Pr(supa+§£x£b—5|fn(x) _f(x)l 2¢6< G_E

4.17)

as n — oo, where k1 is a positive constant depending
on & dand f.

Density Estimator Based on Poisson Weights:

For 7 (.), defined by (2.12), Chaubey and

Dewan (2009a) established the following theorem on
strong consistency.

Theorem 4.4. Let {X,, n > 1} be a stationary sequence
of associated random variables with bounded
continuous density fand derivative f”. Assume that, for
some 7 > 1

f‘, {Cov(Xy, X3 = 0 D)

j=n+1

and the sequence of the constants {A,, n > 1} is such
that

we have
SUpxer | ]:np(x) — filx)| > 0as.asn — o
(4.18)
Density Estimator Based on Asymmetric Kernels

The bias and variance of f, (x) is given in
Chaubey and Dewan (2009b). The bias is given by:

Bias [ £7(0) | = (02 + &) /'@ + 0(V +¢,)
(4.19)

For computing the variance Chaubey and Dewan
(2009a) made the following assumptions as given in
Chaubey et al. (2007):

AD [ (ay, ()" dr = oM™ D) as v, - 0

for1<m<3

(A2) Iig)= lim v, ["(qy, () dr exists
v, >0 o

(@, )"

(A3) with G, ()= —
I, (@, @)Mdu

, 1<m<3,and

asv, — 0

(i) Hmyy = [ WV (0= 1+ O(,)

(i) ofrw” = [ - ,leyvn)z q;],vn(t)dt
— 2
B O<Vn)

4+ F
Jo "y,

(iii) sup (t)dt < e
O< Vv, <€,

for some >0, £>0

(A4) Let p (. y) = yqvn( Y j

X+8n

D[
ay l//n(xa J/) n X+£n

Y y
+
X+, an[X+€nJ

Sup

Suppose y < C, where C is a

d
a—yll/n (%)

positive constant.

(A5) Forall/and r >0, . Cov(X;, X) < u(l)

Jl=jlzr

where u(r) = ¢ ¥ for some o > 0.
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We then have

Var f ¥(x) =
4 () nv, (X+¢,) n(x+e,)*

1L,(@f (¥ +0 1 J

—1
+o((nvy) )
asv, = 0, & — 0, nv, - oo.

(4.20)

Using above results, the Mean Integrated Squared

+ . .
Error of f(x) is given by

MSE( f/(x)) = Var ( f}(x)) + Bias® [ £7(X) ]

= Iz(q)f(x_) +[(xv§+£n)f,(x)]2

nv, (x+¢,)

+ O[n(Tlgn)‘l}- o(vﬁ + 5n)

-1
()
Thus fn+(x) is asymptotically unbiased and weakly

consistent for f{x).

It also therefore follows that the mean integrated
squared error is

MISE( f(x)) = j:MSE( £ (%) Jx

I,(a) foo f(X)
0

nv, (x+¢,)
+ J:[(XVZ + en) f ’(X)de

- 1
+ | ————dx
J.O n(x+ gn)4

+o (Vr21 + 5n)+ o((nvn )_1)
The leading term of integrated mean square error
is the asymptotic MISE,

1,(a) ro f ()
0

nv, (x+¢,)
+ f [(xv +é& )f’(x)de
+ foo

AMISE [fﬂ =

n(x+ £ )4

Chaubey and Dewan (2009b) proved the following
theorem on uniform consistency for the asymmetric
kernel estimator (see the theorem below) however, the
question of asymptotic normality of the density
estimator in the associated case is an open problem.

Theorem 4.5. Let {X,, n> 1} be a stationary sequence
of associated random variables with bounded
continuous density for Xj. Assume that, for some » > 1

(BI) f‘, {Cov(Xy, X' P =0 @)

j=n+1

B2) v,—>0,8—>0asn—

a0 (527

(B4) sup uqg, (u) <ee, and

u>0,v,>0 n

x>0

(BS) A() is Lipschitz continuous on [0,e0).

Then, for any compact set J c R,
sup [[fu(x) —fAx) x € J| = 0 as. as n — oo.

5. CONCLUSIONS

Here we have reviewed some recent results on
non-parametric estimation of the survival function and
the density function of a sequence of stationary
associated random variables. These may be of special
importance in the field of agriculture, where we
encounter nonnegative data such as crop yields.
Moreover, agricultural data may be considered to be
spatially dependent that can be modeled using positive
association. It is shown here that the usual Parzen-
Rosenblatt estimator, proposed under the i.i.d. setup
may still be applicable under positive association in
general. Further, it can be appropriately modified using
asymmetric kernels for the case of non-negative data.
The usefulness of the new estimator is illustrated
through an example.

A numerical study to compare various estimators
available in literature is being done and will be reported
elsewhere. One could also study recursive kernel type
estimators for the survival function and the density
function in this context. Associatedness is one of many
types of dependence structures of interest in statistical
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literature (see Shaked and Shanthikumar (2007)), viz,
¢-mixing or strong mixing. Estimators considered here
may also be studied for these other kinds of dependent
sequences and there is already a vast literature on some
of these (e.g. kernel type estimators), but we believe
that a review of these is beyond the scope of this paper.
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