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SUMMARY

We introduce a new Bayesian robust estimation approach to deal with contaminated data. The formulation is based on
latent indicator variables which are used to down-weight potential outliers. The posterior distributions (and functionals) of the
parameters of interest and the indicator variables are derived using a Gibbs sampler. A diagnostic plot from the posterior
distribution of the latent variables provides visual evidence of the relative weights attached to each observation. This approach
is simple and rather general in its applicability. We show examples from linear and generalized linear regression, as well as

multivariate estimation.
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1. INTRODUCTION

When not all observations follow the assumed
idealized distribution, the data are termed
contaminated. Classical maximum likelihood
estimation does not work well under this situation, in
the sense that the outliers can have substantial influence
on the estimates. More robust distributions are
suggested to fit the model, such as replacing a normal
distribution with a 7 distribution for heavy tailed data,
or using a negative binomial distribution instead of a
poisson distribution for the over-dispersed counts.
Another strategy is to develop special robust estimation
methods to deal with this problem. A common
contamination model is

(I =) * f1(x) + o * f5(x) (M
which assumes most observations come from
distribution f,(x), while a few “bad” observations come
from distribution f,(x). The probability of an
observation being “bad” is taken to be o

From a Bayesian viewpoint, Box and Tiao (1968)
and Justel and Pena (1996, 2001) suggested the
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variance-inflation model (1 — @) * N(6, 0®) + o * N(6,
kzoz); Guttman (1973) and Verdinelli and Wasserman
(1991) suggested the mean-shift model (1 — @) * N(6,
02) + o *x NO+ A, 02), where k and A are positive
constants. Both models are special cases of the common
contamination model (1). However, these robust models
assume that possible outliers come from a normal
distribution with different location parameter or large
variance, which may not be a good approximation to
the true situation sometimes. In addition, the choice for
the location shift constant or the variance-inflation
constant could affect the final inference.

To extend these Bayesian robust models to more
general cases, we propose a new approach using latent
Bernoulli indicator variable attached to each
observation. If the indicator variable takes the value 1,
the corresponding observation will be included in the
model construction. Otherwise, the corresponding
observation will not participate in the modeling.
Through iteratively updating the distributions of the
indicator variables, we down-weight the influence of
those suspicious observations. Our model also belongs
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to the common contamination model and can be written
as

(I —0) = flx; O) + o g(x) 2

A subtle but important difference between our
method and the other models is that we do not formally
specify the spurious distribution g(x) and will not make
inference of @based on “bad” observations. Instead, we
approximate g(x) using the average value of the

predicted densities at the observations, {f()ﬁ ;é)} ,

where @ is the maximum likelihood estimate (MLE)
of @ with all data. The reasons for this approximation
will be explained in Section 2. The conditional posterior
distributions of &and the Bernoulli indicator variables
are calculated by using a Gibbs sampler. A summary
statistic is derived from the indicator variables’
(conditional) posterior distribution which provides a
relative importance measure of observations for making
inference, and could be used for identifying possible
outliers.

Using the simulated data and some real data sets,
we will show that our estimates have lower mean square
error (MSE) than the ordinary least square (OLS)
estimates. Also, we will show that masking has less
effect on our method for several data sets when the
traditional mean-shift or variance-inflation model fails.
Our method can also be extended easily to scenarios
like generalized linear regression or multivariate
estimation. In that sense, our method will be shown to
be quite general in nature.

The paper is organized as follows. Section 2
introduces the general mathematical formulation.
Section 3 demonstrates our method with several data
sets. In Section 4, the proposed method is summarized
and discussed.

2. THE BAYESIAN ROBUST ESTIMATION
ALGORITHM

Suppose we have observed data X[ X5 ey X, MoSE
observations come from distribution f{x; ), and a few
come from another distribution g(x) with unknown
density function. x will have a distribution function as
Formula 1. The goal is to estimate the unknown
parameter 6 where @ might be a vector. Suppose we
know which distribution each observation comes from
and use a latent indicator variable vector b = by, by,
- » b, } to denote it. If the observation x, comes from

Ax; 0), then the corresponding b, = 1; if x; belongs to
g(x), then b, = 0. The likelihood function can be written
as

;0% g0x)™
i=1

Usually b is unknown and we can assume that b,
follows a Bernoulli distribution with parameter ¢, where
q = Prob(b; = 1). Compared with Formula 1, we can
see that ¢ = 1 — . Following the Bayesian analysis
theme, we assume a prior distribution for 6, and a prior
distribution for ¢. A beta distribution with hyper-
parameters (& 7) is a common prior choice for g. The
joint distribution of all the variables will be

px, 6 b, q) = p(x]6, b) p(b) p(6) p(q)
n n
- [T 0% 90 o @-a) ™
i=1 i=1

xp(@x ¢ (1 - ¢! 3)

Using x"~1 to denote the observations with b, =1, the
conditional posterior distribution of & is

PO, )= p(O] ") < p(x"~" | ) p(6)
The conditional posterior distribution of ¢ is

Yh+x-1 n-Xb+7-1

p(q |x, 6, b) < ¢ (1-9)

which is still a Beta distribution. The conditional
posterior distribution of b, is

b 1-b b 1-b

pb; | x, 6 q)e= f(x;0)"g(x) "q'@-q)
which is a Bernoulli distribution with parameter

f(%;0)a

f(x:0)a+(@1-9)9(x)
we don’t want to assume any functional structure, we
need to approximate it non-parametrically. Note that the
range of g(x) should be close to that of fx; ). We have

tried several ways of approximation including a) a
kernel density of x, b») a discrete function

. Since g(x) is unknown and

n ~
%%I(X=Xi) f(x:;0), and c) a delta density Prob(x =

median { f(x ;é) }) = 1. All three methods perform

similarly for the simulated and real data sets. For the
kernel density, we need to justify the options for the
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kernel functional and the smoothing bandwidth. Option
b) is a special form of a) and Option c) is a degenerate
version of b). We use Option ¢) from the computing
speed consideration. The marginal posterior distribution
b|x does not have simple analytical form, and we will
use the Gibbs sampler to make inference. Below is the
general robust estimation algorithm.

Algorithm 1 Bayesian Robust Estimation

Fit the classical model x ~ f{x; 6), and calculate the
predicted densities { f()ﬁ 10)} .

g(x) = median { f (x;0)} .

Initially, all b, = 1.

Repeat
Draw @ from p(6| x, b).
Draw ¢ from p(q | x, 6, b).
Draw b from p(b| x, 6, q) .
Monitor the convergence

until The entire distribution is converged

We make inference about @based on the posterior
samples of €. Since the estimates are based mostly on
“good” observations, the inference should be more
precise and robust than that of the OLS approach. In
the next section, we will show that in linear regression,
our estimates have lower mean square error (MSE) than
that of OLS in some data analyses. A summary statistic
based on the conditional posterior distribution of b,
indicates how often the i observation is chosen by the
model. The observations with less frequency are
possible outliers whose roles in estimation are down-
weighted.

The function used to estimate the parameter of the
__fa
> frq+(1-0q)+g”’
is an increasing function of f. Observations that have
larger likelihood £ i.e., fitting the model better, are more
likely to be selected by the model. If we do not have
prior knowledge of the outlier proportion, it is
reasonable to assume that the probability of an
observation to be outlier is apriori around 0.05 and with
high probability to be less than 0.5 (Verdinelli and
Wasserman 1991). We suggest the hyper-parameters x
=3.4, 7=0.1789, and in a later example, we will show

conditional posterior distribution of b

that these values are very robust to situations where
there exist large percentages of outliers. The
convergence of the Gibbs sampler is monitored by using
the multiple sequence method (Gelman and Rubin,
1992). We used 5 parallel Markov chains for our
analysis.

3 APPLICATIONS OF THE BAYESIAN
ROBUST ESTIMATION APPROACH

In this section, we apply our method to three
different problem types: linear regression, logistic
regression, and multivariate estimation. The analysis of
the simulated data sets and some real data sets show
that our approach performs better than other methods.

3.1 Linear Regression

For the linear regression model ¥ = X3 + £where
B is a p-vector regression parameter, the common
contamination models for outliers assume a normal
mixture distributions for the errors: either the normal
variance-inflation model (Box and Tiao 1968; Hoeting
et al. 1996), e~ (1 — ) * N0, &) + o * N0, k¥>07)
or the normal mean-shift model (Guttman 1973;
Abrahan and Box 1978), £~ (1 — &) * N(O, 02) + o *
N(A, 0’2). We use two simulated data sets and two real
data sets to compare the performance of our approach
with these two models. Least Median of Squares
Regression (LMS) proposed by Rousseeuw (1984) is
a widely used robust regression approach. We also fit
the data using Splus function “Imsreg”, and list the
results for the comparison.

Simulation 1: 8 observations from the model
Y=3+2X + N0, 1) and 2 observations from the model
Y = 342X +N(0, 3) are combined together, and listed
in Table 1. These observations are selected so that it
can be seen clearly from Fig. 1 that observation 3 and
8 are distinct from others. However, OLS could not
“see” the scene and gives biased estimates.

We use the common non-informative prior
distribution A8, 0*) ~ & . For the mean-shift model,
we use the prior distribution N(0, 1) for A as described
by Verdinelli and Wasserman (1991). The constant & in
the variance inflation model is set as 7 which is
suggested by Hoeting ef al. (1996). The regression
estimates and standard errors are summarized in Table
2. Similar to the LMS estimates, our estimates are very
close to the true parameter values and the standard
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Table 1. The simulated data

X 1.077 2.032 3.018

4.074 5.053

6.054 7.092 8.044 9.038 10.053

Y 5.066 7.812 16.237 9.883

13.595

16.630 17.275 12.414 20.216 23.356

0.8

=0
0.6

Posterior prokability b
0.4

g_ﬁT 29 TT

X Observations

Fig. 1. The simulated data. a) The scatter plot. The solid line has
the true intercept and slope. The dashed line is the OLS
estimate, and the dotted line is the BRE estimate. b) The
conditional posterior probability plot of the indicator
variables.

Table 2. Analysis results for the simulated data

Method Estimate

BRE B = (2.837,2.029)
sd(B) = (1.212, 0.807)

OLS B = (559, 1.558)

sd(B) = (2.252, 0.360)

B =(3.237,1.977)
sd(B) = (0.714, 0.114)

OLS w/o outlier

B =(5.629, 1.555)
sd(B) = (2.294, 0.367)

B = (3.484, 1.944)
sd(B) = (0.939, 0.145)

Mean-Shift

Variance-Inflation

LMS B =(3.288, 1.938)

errors are also smaller. The estimates from the ordinary
least square (OLS) and mean-shift model are clearly
biased. The variance-inflation model works well
because the outliers do follow an inflated-variance
distribution. From the plot of p(b, = Olx, 6 ¢q) in

Fig. 1 b), we can clearly identify that observation 3 and
8 have little weight in estimation.

Stack Loss Data: The first real data set we analyze is
the stack loss data (Brownlee 1965), which consists of
measurements from a plant for 21 days. The response
is the percent of unconverted ammonia that escapes
from the plant, which is called stack loss. The predictors
include air flow temperature, and acid concentration.
This data set has been studied by many statisticians
including Daniel and Wood (1980), Atkinson (1985),
and Hoeting et al. (1996). The common conclusion
is that observations 1, 3, 4, and 21 are outliers. In
Fig. 2, we plot p(b, = 0|x, € q) for each observation.
These 4 suspicious observations with less weights in
modeling are certainly visible. The regression parameter
estimates are summarized in Table 3. Our estimates are
very close to the OLS estimates without the 4 outliers.

Stars Data: The stars data consists of the effective
surface temperature and the light intensity of 47 stars
from the star cluster CYG-OB1. The research question
of interest is to examine whether there is an appropriate
linear relationship between log intensity and log
temperature. The data are available in Rousseeuw and
Leroy (1987). There are clearly four observations

Q
=

=0
0.8

Posterior probability b
0.4
|

ARSARAR, TT?TMT

T \ T
5 10 15 20

0.0

Observations

Fig. 2. The conditional posterior probability plot of the indicator
variables for the stack loss data
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Table 3. Analysis results for the stack loss data

Table 4. Analysis results for the stars data

LMS B =(-39.25,0.75, 0.5,
—6.607 10 ')

(11, 20, 30, 34) separated from others in the scatter plot
of Fig. 3, which correspond with giant stars. Justel and
Pena (1996) could not identify any outliers using the
variance-inflation model and they ascribed the failure
to the masking between outliers. Whereas, our
conditional posterior plot of 4 in Fig. 3 clearly indicates
that these 4 observations are suspicious. As indicated
in Table 4, LMS and our approach can detect the correct
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T T T 1 1 \
36 40 44 0 10 30
log temperature Observation

Fig. 3. The stars data. a) The scatter plot. The solid line is the OLS
estimate and the dashed line is the BRE estimate. b) The
conditional posterior probability plot of the indicator
variables.

Method Estimate Method Estimate
BRE B = (=37.091, 0.825, 0.536, —0.081) BRE B =(9.0863.181)
sd(B) = (6.619, 0.118, 0.244, 0.086) S‘j’(ﬁ) = (3.088, 0.695)
OLS B = (-39.920, 0.716, 1.295, —0.152) OLS B =(6794,-0413)
R sd(B) = (1.237, 0.286)
sd(B)=(11.896,0.135, 0.368, 0.156) =
= OLS w/o outlier B = (—4.057, 2.047)
OLS w/o outlier ﬂ = (—37653, 0.798, 0.577, —0067) Sd(ﬂA) = (1844 0420)
sd(B) = (4.732, 0.067, 0.166, 0.062) _ ’
= Mean-Shift B = (6.721, -0.397)
Mean-Shift B = (-39.108, 0.718, 1.298, —0.165) >
. sd(B) = (1.264, 0.293)
d(B)=(11.847,0.132,0.373, 0.156 ) ) >
SA('B) ( ) Variance Inflation B =1(6.801,-0.414)
Variance-Inflation | 8 = (-36.809, 0.815, 0.522, —0.074) sd(B) = (1.201, 0.278)
sd(B) = (4.876, 0.082, 0.210, 0.069) A
~ LMS B = (-12.628, 3.971)

direction of the fitted line using the estimate from OLS
without outliers as the reference, and other methods fail
to do that.

Rousseeuw Data: Another simulated data set we use
was generated by Rousseeuw (1984). It consists of fifty
2-dimensional observations. Thirty of them are from
model ¥ = 2 + X + & where X’s are from a uniform
distribution and £~ N(0, 0.04). Another twenty are from
a bivariate normal distribution N((7, 2), 0.51). Because
40% of the data are generated from a different process,
which can be seen clearly in Fig. 4, there are heavy
masking and swamping effects. It has been used by
many researchers as a hard example for robust
estimation and outlier detection methods including
Justel and Pena (1996, 2001). The variance-inflation
model could not identify the outliers due to the masking
effect (Justel and Pena, 1996).

This data set is a good example to check the
robustness of our hyper-parameter values (k= 3.4, 7=
0.1789). We randomly select m observations from the
20 outliers, combine them with the 30 good
observations, and apply our method to this new
constructed data set. For each m, the whole process is
repeated 20 times. When m < 17, less than 36% of the
data are from a different process, our method down-
weights outliers correctly each time, and our estimates
are very close to the true parameters in the design
(Table 5). When m = 18, 19, our method converges to
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Fig. 4. The Rousseeuw data with 18 outliers. a) The scatter plot.
The solid line is the OLS estimate with the full data, and
the dashed line is the BRE estimate. b) The conditional
posterior probability plot of the indicator variables

Table 5. Analysis results for the Rousseeuw data with
18 outliers

Method Estimate

BRE B =(1.909, 1.044)
sd(B) = (0.157, 0.066)

OLS B =835 0.380)
sd(B) = (0.274, 0.059)

OLS w/o outlier i = (1880, 1.046)
sd(B) = (0.125, 0.054)

LMS B =(1.980, 1.040)

the true model 18 out of 20 times. When m = 20, we
succeed 10 times. Even though our assumption for the
hyper-parameters is that only a small proportion of data
are outliers, the values we suggested work well for a
wide range of the outlier percentages in this example.

In Table 5, we list the results of our method, OLS
and LMS. Ours is very close to that of LMS. The results
of the mean-shift model and variance-inflation model
are missed since they fail to identify the outliers and
get the fitted lines on the wrong direction.

3.1.1 Some Theoretical Results: MSE Comparison

Below we will prove that our estimate of S has less
mean square error (MSE) than that of the ordinary least
square approach under certain conditions.

Theorem 1 shows that when the random errors
follow a normal variance-inflation distribution, the
MSE of our estimate is less than that of OLS, which is
clear from the analysis results in Section 3.1.

Theorem 1. Suppose £~ (1 — @) * N(0, 67) + & * N(0,
kzoz), where « is a fixed value. In each MCMC step
of our algorithm, we use part of the data to estimate
the interested parameters, and suppose the proportion
of outliers in this subset is &’. Because that o could
be different for each MCMC step, we assume that o’is

a random variable. Let 'Bbre denote our estimate,

Ba.: £ denote the estimate with o’ fixed at a value &

and let B denote the OLS estimate, then there exists a

value & such that MSE(f3,,,) = MSE(S,_ £)- Letr

denote the trace of (XT X)_l and #r, denote the trace of
T (b

(X(b_l) X(b_l))_1 when o’ is fixed at &, then

try —tr

tr

MSE(4,,,) < MSE(8) if “T_f >
b

Theorem 2 shows that when the random errors
follow a normal mean-shift distribution, the MSE of our
estimate is less than that of OLS, which also can be
seen from the analysis results in Section 3.1.

Theorem 2. Suppose £~ (1 — @)*N0, )+ o*N(A, &),
where « is a fixed value. In each MCMC step of our
algorithm, we use part of the data to estimate the
interested parameters, and suppose the proportion of
outliers in this subset is &’. Because that &’ could be
different for each MCMC step, we assume that ¢ is a
random variable. Let 'Bbr e denote our estimate, Ba g
denote the estimate with o’ fixed at a value & and let

/3’ denote the OLS estimate, then there exists a value

& such that MSE( 8, )= MSE(S,_ ¢)- Let r denote

the trace of (XT X)_1 and r, denote the trace of
T (b
(XOD O When o is fixed at & then

MSE(f,.) < MSE(B) if

a(l-a)-E1-¢) -t
all-a) try




Guan Xing et al. / Journal of the Indian Society of Agricultural Statistics 64(2) 2010 243-253 249

Theorem 3 shows that when the random errors
follow a normal mean-shift distribution, the estimate of
the normal mean-shift model has larger MSE than that
of OLS, even it correctly specifies the distribution of
the outliers.

Theorem 3. Suppose £~ (1 — @) * N(0, 0%) + a * N(A,
0’2), and ,B _« Is the estimate using the normal mean-
M-S g

shift model, then the MSE( 3, _¢) > MSE( S%-5).

3.2 Generalized Linear Regression

Another example data we use are from Brown
(1980), which consists of the measurements of 53
prostatic cancer patients. Each patient has six
measurements taken: age, acid level, X-ray result, tumor
size, tumor grade, and nodal involvement. The research
question is to explore the relationship between the
binary response of nodal involvement and the other
variables. This data set has been analyzed by Collett
(1991) and Albert and Chib (1995). Albert and Chib
considered the model with four covariates log(acid), X-
ray, size, and grade. With a Bayesian residual analysis,
they claimed that observations 9, 26, 35, 37 are outliers.

Using a logistic regression model, the likelihood
function is

e'f

SiRge)

o |x B0 =TI

)% (
i=1 1+e)ﬁﬁ

- )
146"

“)

We assume a non-informative prior P(f)= const,

and fit Algorithm 1 use the same beta prior for b, as
other examples. As shown in Fig. 5, observations 37,

9, 26, 35 appear to be different from the others. The

estimates are summarized in Table 6. Again, our

parameter estimates of interest are closer to those

calculated without suspicious observations.

3.3 Mulitvariate Estimation

This example is a two dimensional density
estimation problem described in Barnett and Lewis
(1994, p. 289). It consists of the yields of grass on two
totally untreated plots at Rothamsted Experimental
Station for the 50 years from 1941 to 1990. The purpose
is to estimate the average yield and tests the discordance

=0

el ket e e

I I I I I I
0 10 20 30 40 50

Posterior probability b
0.00 002 004 008 008 010 0.12 014

Observations

Fig. 5. The conditional posterior probability plot of the indicator
variables for the prostatic data

Table 6. Analysis results for the prostatic data

Method Estimate
BRE B = (~1.382, 2.694, 2.182,
1.662, 0.844)
sd(B) = (0.856, 1.321, 0.992,
0.928, 0.854)
GLM B = (-1.306, 2.512, 2.011,
1.544, 0.851)
sd(B)=(0.727, 1.173, 0.821,
0.780, 0.775)
GLM wio outlier | B =(-3.263, 4.730, 4.593,
3.604, 1.827)
sd(B) = (1365, 1.996, 1.784,
1.570, 1.151)

of several suspicious observations. Following the
assumption of Barnett and Lewis (1994) and Varbanov
(1998), we assume that observations x have a
multivariate normal distribution X|g, X ~ M(u, X). The
commonly proposed non-informative prior distribution
p(, Z) o< |Z|_(d+1)/ 2 and the same beta prior as other
examples are used. Using Algorithm 1, the first two
observations with the lowest frequencies being selected
by the model are case 25 for year 1965 and 31 for year
1971. The result coincides with the results of Barnett
and Lewis (1994) and Varbanov (1998). The estimates
are summarized in Table 7. Compared with the
estimates using all data, our estimates are much closer
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Table 7. Analysis results for the barnett and lewis data

Method BRE

MLE MLE w/o outlier

A =(1.1340, 1.3347)

. (01350 0.1253 A
0.1253 0.1648

Estimates

{4 = (1.1740, 1.4492)

0.1877 0.1996 5 0.1390 0.1277
0.1996 0.3392 B

[ = (1.1344, 1.3765)

0.1277 0.2158

to those calculated without suspicious observations.
Following Theorem 4 shows that our estimate has less
MSE than the estimate with all data when the data
follow a contaminated distribution.

Theorem 4. Suppose X ~ (1 — @) * My, o’i') + o
N, 0’22), where « is a fixed value. In each MCMC
step of our algorithm, we use part of the data to estimate
the interested parameters, and suppose the proportion
of outliers in this subset is «’. Because that o could
be different for each MCMC step, we assume that ’is

a random variable. Let /&br o denote our estimate for the

location parameter, . £ denote the estimate with ¢’

fixed at & and let & denote the estimate with all data,
then there exists a value & such that MSE( ) =

MSE(f,,._ ). MSE( ) < MSE(f2) if £ <

4. DISCUSSIONS

We invent an indicator variable for each
observation and devise a method to down-weight “bad”
observations in the estimation. The conditional
posterior distributions of the indicator variables are used
to locate possible outliers. It can be easily applied to
many statistical models with an explicit likelihood
function. While our method is similar to the variance
inflation model and mean-shift model, there are
important differences. We do not assume a special
distribution for the error term and we do not use the
possible outliers for modeling.

The underlying assumption is that only few
observations are outliers, and we choose the hyper-
parameters based on this assumption. With the
Rousseeuw data analysis, we show that the suggested
hyper-parameters are quite robust. The conditional
posterior plot of the indicator variables could be used
as an index for the relative importance measure of the
observations and potential outlier identification.

However, we emphasize that there is no critical criteria
for outliers and the investigation of suspicious
observations should be conducted carefully.

Our method can also be applied to other
generalized linear models such as the partial likelihood
function in survivor data analysis. We are also exploring
ways of combining our approach with some variable
selection methods to do variable selection and outlier
detection simultaneously. Some candidate methods are
SSVS (George and McCulloch 1993) and the spike and
slab model (Ishwaran and Rao 2005).
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APPENDIX
Proof of Theorem 1

We will use the first mean value theorem for

integration:

If £ :]a, b] —> R is a continuous function and
g:[a, b] — R an integrable positive function, then there
exists a number ¢ in [a, b] such that

[2 19909 = (&) g

a

For the normal variance-inflation model, the mean
square error for the ordinary least square (OLS)
estimate of Bis E(B- ' (B - =1[(1 - &)o” +
ok* ] tr (X' X) ). If fler’) is the MSE function when
there are o’ proportion of outliers, g(”) is the density
function of &, [a, b] is the domain of ¢, then the MSE

b
of our estimate would be J.a f(a)g(a)da' .

Based on the mean value theorem for integration,
there exists & € [a, b] such that MSE( ) equals to

[(1-&)o? + k2o 2tr (X P xPhy Y.

MSE(B) - MSE(B,,) = (o — Ory(k* — 1)o”
+ 0 (1+ ok* — 1)) (tr — 1r,)

2 _
_ [a—§_1+0€(;< -1, tr] « ok — l)oltrb
a  ok?-1)

So that MSE( 8 ) > MSE( ,,,) when

a-& 1+a(k?-1), tr —tr
o a(k®-1) tr,

The first term on the right of the equation is close

to 1 when & is large. Hence, MSE(,B) > MSE( 'Bbre)

_E tr—tr
o §> b

(o4 tr,

when

& < o because we choose observations based on the
likelihood and observations with large errors have less
chance to be selected. We could make the difference

between (X! X)) and #( (X(bzl)T X(bzl))_l) small
by using a large prior probability parameter of b.

Proof of Theorem 2

For the normal mean-shift model, the mean square
error for the ordinary least square estimate of B is
EB - B (B -p=10+ ol - o] tr (X X)),
As we did in the proof of Theorem 1, we can prove that
there exists & such that the mean square error for our

estimate fiyg is [0+ A2EA-Oltr (X° X",

MSE(B) - MSE(B, ) = [ (1 — @) - &1 - &)] tr, 22
— [0+ A (1 - &) (1r) — 1r)

al-a)-£(1-¢)
all-a)

=1

B o? + 2%a(1l- ) LU
A2a(l-a) tr,

r 5
1* a(l-a)Atr,
So that MSE( ) > MSE(3,,,,) when

all-a)-E@1-§) S o? + A%a(l-a) -t
) P2al-a)

The first term on the right of the equation is close
to 1 when A is large. Hence, MSE(,B) > MSE( [?bre)

al-0)-6A-¢) try —tr
a(l-ca) tr,

when

Proof of Theorem 3

For the normal mean-shift model, the mean square
error for the ordinary least square estimate is
EB-p (B -P=[c+all-a) 1or (XX
which is var(&)* tr((XTX)_l). Mean-shift model corrects
y,; with yi* =y,— A, when the i™ observation is assumed
as an outlier. Suppose that the mean-shift model claims
y proportion of the data are outliers, we have a | —
proportion of errors that still have the mean-shift
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mixture distribution and a ¥ proportion of errors that
have the mixture distribution (1 — @) N (-4, 0'2)+
a*N(0, o).

Combining them together, the error term has a
3-component mixture distribution.

Ers~ U —a—y+2ap N (0, 02)
+a(l— )N )+ (1 - ) yN-A, &)
E(g, o= a(l = pA-(1 - a) yA=(a— p)4, and

E(g,%,I g)=U-a-y+ 205;/)02

+oa(l-pP+D)+(1-a) i+
So that we can get

Var(ey, s) = E(€)~[E(@)) = &+ (a1 - o)+ p(1-p) A2,

which is larger than Var(g). Hence, MSE( BM _g) >
MSE( By 5) -

Proof of Theorem 4

X~(1-a)N(u,, o)+ o * N(i,. 03), s0 we have
X ~ (1 - o) N(u;, o1/n) + 0 * N(iy, 03/n). MSE(Q)
= MSE(X) = (EX - up)? + Var(X) =
(1- 0{)0’12/11 + o 0'3 In+ ofu, —,112)2. Let 4, . denote
our estimate, as we did in the proof of Theorem 1 and
2, we can show that there exists £ such that MSE( ﬁbr o)
= (1= Oayin + & ayin + &y - py)° - MSE(f1) —
MSE( fye) = (0 = &) [0y/n — o/n +(ut; = 1)’
0'2220'12 is the general assumption of the robust

models.
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