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SUMMARY

This paper presents an approach to the problem of multivariate directed inference, a generahzatlon of one-side testing, in
the setting of vector and matrix valued elliptically contoured (MEC) random variables. The T statistic, a modification of
Hotelling’s T2 is introduced. It gives a sens1t1ve test of positivity in one or more components of a location vector, which is
nonparametric over the MEC family. The T statistic uses the positive part of the sample mean vector or of the difference
between a sample mean vector and a reference vector. Other hypotheses, including order restrictions, may be tested by suitably
transforming the data. The test is derived from the Generalized Likelihood Ratio Test and by the union-intersection principle.
Principal properties and the null and power distributions are given.
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1. INTRODUCTION

The generalization of univariate statistical
techniques to multivariate settings sometimes proceeds
by analogy in a straightforward way. However, this has
not been the case for the extension of univariate one-
sided tests to the multivariate setting. The difficulty
may be appreciated when one considers how many
different meanings the term “one-sided” could have in
p-dimensional space. This setting provides many
opportunities for subtle differences in hypotheses to
distinctly change the testing problem.

The authors recommend the term directed
inference for the various extensions that can be made.
As has been pointed out by Robertson, Wright and
Dykstra (1988), these types of tests can be covered by
the mantle of order restricted inference. The principal
focus of this paper is the detection of positivity in one
or more location components or a positive shift in
location of one population with respect to another (or
to a fixed standard) in at least one location component.
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This is important in many applications, including
comparison of treatments to a control, combination of
test statistics and detecting elevated levels of
contaminants in the environment, particularly when
they also occur naturally. More generally, these are
orthant and order restricted hypotheses. In these cases,
the null and alternative hypotheses can be described as
sets of directions in the parameter space relative to
some reference point. This underscores the
appropriateness of the term directed inference.

Much previous work on directed multivariate
inference, by Kudo (1963), Perlman (1969), Tang et al.
(1989) and Fraser et al. (1991) has focused on
applications to clinical trials and combinations of test
statistics. They have explored hypotheses which are
somewhat different than those which appear in this

paper.
Another major difficulty with the study of directed

inference is that it involves truncated random vectors,
and the distributions of truncated random vectors are
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extremely complicated. The authors have found a
reasonably nice solution to the directed inference
problem which is nonparametric over a large class of
distributions and asymptotically nonparametric in a
wide variety of situations.

2. BACKGROUND

2.1 Matrix Variate Elliptically Contoured
Distributions

Let X = (X..... X ) be a p X n random matrix
with characteristic function of the form

yy(T) = etr((T'M) ¥ (tr(T'ZT)) (1)
where T is a p X n matrix. Then X has a matrix variate

elliptically contoured distribution with parameters M,
z® I and W, written as

X~Epn MZ®I,Y)
Consequently, ’
EX)=
and
Var(X') = 2¥"(0) Z® I,
where Z is a p X p covariance matrix, ® is the
Kronecker product and I is the n X n identity matrix.

This defines a very large class of distributions that
includes the matrix variate normal distribution and the
matrix variate t-distributions-see Fang and Zhang
(1990), Gupta and Varga (1993). We denote this class
by F. The family F is a generalization of the class of
normally distributed random matrices and inherits many
of its nice properties, particularly with respect to
invariance properties and LR based tests.

The distribution of Hotelling’s 7? statistic and of
other scale-equivariant statistics has been shown to be
invariant over the subset of 7 with mean 0, by Fang
and Zhang (1990) and Gupta and Varga (1993).

2.2 Decomposition of Hotelling’s T
Let
_ —1 —1
=n!' Y X =n'X1 2)

and
1
S= — 12‘“ 0 -X) (X, - XY
= XDD’ X’ = XDX’ (3)

whereD—I —11 1

n n

and ln is the n-dimensional

vector of ones. Note that D is symmetric and
idempotent.

Let
72 = nX’ S =n"'1 X (XDX) X1,

Then 72 has the T

noncentrality parameter 52

on-1 distribution with
W= . Write

)_(=)_(+—)_(_,where ()_(+)i =>?i vO,

and ()_(_)i = Xi AOQ fori=1,..,p
Then we have
72 = nX’'SIX
_ v v veol/y Y
= n(X+—X_) S (X+—X_)
_ Ay’ o1y Y’ o1y v’ o1y
= nX, S X, +nX_S X_-2nX\S “X_
_ 12,72 ol %
= T2+T? 2<x+,x_>[8/n]_1

where {a, b)) is the inner product with respect to the
matrix C. This has the form of the law of cosines in
the random manifold generated by empirical
Mabhalanobis distance. It is also a decomposition of the
total sum of squares.

3. DIRECTED INFERENCE USING Tf_
3.1 Hypotheses

Let © = R”, 0, = RP and ©, = 00, = RARP,

where A denotes the closure of the set 4. Let E(X) =

. Then H,, has 4, < 0 Viand H, has x> 0 for at least
one i. H; is an orthant hypothesis, since it has 1 in the
closure of the negative orthant. Orthants are the
generalization of the familiar quadrants of R” to
p-dimensional space. Note that H, and H, partition R”.
We want to detect when at least one component of the
mean vector is positive, and we do not care whether
any of them are negative. Other authors have used
directed hypothesis that do not partition IR, such as H’O:
p=0versus H; : n >0, n=0.

3.2 Technique

The basic idea behind the 77 2 test is to start with a
very good test, Hotelling’s 7 (see Anderson (1984))

and to modify it so that negative components of X do
not inflate the value of the test statistic; that is, so that

it is invariant under coordinate projection of X onto



John H. Carson et al. / Journal of the Indian Society of Agricultural Statistics 64(2) 2010 219-228 221

the positive orthant. The acceptance region of the
o-level test is defined by the inequality

Ir=nX,8"'X, <CnpR o) 4)
where R is the population correlation matrix.

3.3 Derivation as a Generalized Likelihood
Ratio Test

The derivation of the T f test as a Generalized
Likelihood Ratio (GLR) Test is similar to the derivation
of Hotelling’s 7> as a GLR test.

Theorem 1. The 7' f test is equivalent to the GLR test
of H, versus H,.

Proof. See Appendix A.

3.4 Some Results on Truncated Spherical and
Elliptic Random Vectors

Let N denote the set of positive integers.

Lemma 1. Let S, denote the surface of the
k-dimensional unit sphere, for some k € N. Let B(S))
denote the Borel c-algebra of subsets of S,. Let B €

B (S,), and let U(Bk) be the random vector which has

the uniform distribution on B. Then U(Bk)lug() =1,V
Be B(S)and V ke N.
Proof. The proof is omitted because it is elementary.

Lemma 2. Using the notation of the previous lemma,

let Yg = RU(k) where R has a distribution on (0, ),
and B € B(S, ) Let U*) have the unlform distribution

on S, and let R=R'. Then Yg Yg = 2 X' :

d ’
Proof. Y'Y =(RUNY(RUL) = RRUO'UK) = g2 by
the previous lemma. Similarly,
X'X = (R’U(k))(R’Lﬂk)) (R) 2ykryk) = (R')

Then R = R = R2
any k.

(R ) Note that this holds for

Lemma 3. Using the notation of the previous lemmas,

d d d
v=RUM, v, =R ng)d and X, = RUM =1, ..

where Be B(S)). LetR = R = R, i=1,...n where R

has a distribution on (0, «). Let A=D'D be a k X k
d
symmetric matrix. Then Y AY =Y ;AYy.

d
Proof. By the previous lemma, Y gYg =X X

Then

/ d § , d
(DYg) (BYg) = (DY) (DY) = Y'gAYy = YAY
as required.

3.5 Stochastic Representation

Let O ¥ denote the union of all of the (E

with K positive coordinates. The following theorem

) orthants

presents a stochastic representation of the T+2 statistic

as a discrete mixture of Hotelling’s 7? statistics.

Theorem 2. The T+2 statistic has a stochastic

representation as a T? statistic on a K-dimensional
space, where K is a discrete random variable with
distribution

Pr(K = k) = Pr(O))
Proof. We have

2 _ o I
TS = nX,S X, (3)
= n[BXI'SBX] =nX;S;'X,
where
B= diag(bl, ...,bp), and
b= {X;>0Q,i=1,...p (6)

Here I(4) is the indicator of the set 4, X j is the
K-dimensional subvector consisting of the positive
components of the vector X, and Sél is the K X K
submatrix formed by deleting the rows and columns of
s! corresponding to the nonpositive elements of X .

There is a 1-1 correspondence between each
observed value of the matrix B and the orthant into
which the associated observation of X falls. Let this
orthant be denoted OP. Clearly, B is a random matrix,
K = tr(B), and, therefore, K is a random variable.

Note that B is symmetric and idempotent. It is the
matrix of the orthogonal projection of X onto the
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K-dimensional subspace spanned by the positive
coordinates of X . The probability that K of the

coordinates of X are positive equals the probability

measure of the union of the (|F<) ) orthants which have

K positive axes. If we observe X and calculate X , then
B is fixed, and K = tr(B) is fixed, at say K = k. Then

T+2 calculated from this sample is calculated as a 7
statistic on a k-dimensional space.

Lemma 4. Let X have a distribution in the family F,
as defined by equation (1) with M = 0. Then for fixed
Z the distributions of the random matrix B and the
random variable K = tr(B), as defined in the proof of
Theorem 2, are invariant over the family F. This
distribution is a function only of the common
correlation matrix, @, of the rows of X.

Proof. In this case, the distribution of K, Pr(K = k)
Pr(O)), is a function of the central orthant probabilities.

This is so because E(X ) = 0. Since the limits of
integration in evaluating these probabilities are either
from 0 to o or from oo to 0, central orthant probabilities
are independent of the coordinate scaling.

Now X has a vector variate elliptically contoured
distribution with location 0 and dispersion matrix

. 1
proportional to —2.
n

To show that the distribution of K is invariant over

JF, consider the stochastic representation of X,

_d 1 1/2
X = Riz[ v
n
where the rank of Z is p, R is a continuous positive
random variable, and U has the uniform distribution on
the surface of the unit sphere in R” (see Fang and Zhang

(1990) for a detailed development). Since X has a
density, Pr(X =0)=0.

Then, since Pr[U € ©®] =27, (V¥ B), since R > 0
(wpl), and since Pr[ X € OB] is independent of the
scaling of the components of X, we conclude that for
any random matrix X, with distribution in  and having
M = 0, the orthant probabilities for the associated
random variable )_(, are a function only of the common
correlation matrix, ®, of the rows of X. Hence, the
distribution of B is a function of ® alone.

Now, K = tr(B) . Then, the distribution of K is a
function only of the central orthant probabilities, which
in turn depend only on the correlation matrix ® and are
invariant over F.

3.6 Null Distribution of T?
Theorem 3. The null distribution of T+2 for the family
F under the point null hypothesis, Hg : u=0,is given
by
p
Pr(T2<t) = POy + Y Pr(O) Pr(Tén_lst)
< t20 (7)

where T2

o.n-1 represents a random variable with the

2 e e
prn_1 distribution.

Proof. The proof is given in Appendix A.
After estimating the mixing weights by simulation
or numerical integration, the null distribution of T+2

may be computed by using a mixture of 7? distributions.
Optionally, unconditional simulation may be used. For
analysis with real data, the bootstrap may be preferred.

3.7 Union-Intersection Construction

Theorem 4. The T+2 test can be constructed by using
Roy’s union-intersection principle.

Proof. The hypotheses can be written as

— p .
Hy =1 12 Hop Ho; 1 <0
— p .
Hy=Ui M Hyy 4> 0
Note that H; can be written as
_ p
H = Uk=1U{iL___ik} Hl’{il,...ik} ®)
with
Hl’{il,...ik} Py >0, 1y >0 9)
where {i|, ... i, } ranges over all subsets of the integers

1 to p of size k. Likewise, H, can be expressed as
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In order to reject H, we must reject, for some

value of k, any of the hypotheses H,, (i} But this
L k

is equivalent to testing the hypothesis corresponding to
the positive components of X, since inclusion of
simultaneous testing of means corresponding to the
negative components of X would reduce the probability
of rejection.

From equation (4), we see that T+2 is the squared

Mabhalanobis distance from 0, which corresponds to the
point null hypothesis pu = 0, to )_(+. Clearly, the
likelihood of the point null is strictly decreasing as
this sample distance increases. Correspondingly, we
reject the null hypothesis for large values of the test
statistic. This demonstrates the union-intersection
construction.

4. PRINCIPAL PROPERTIES OF Tf TEST
4.1 Consistency and Admissibility

Theorem 5. The T+2 test is both consistent and
admissible.

Proof. Nandi (1965) has shown that unionintersection
tests are consistent if the component tests are and that
they are admissible if the component tests are. The
component tests in the union-intersection construction
which we have demonstrated are 7° tests for K> 1 and
r-tests for K = 1. In the space R”, where the null
hypothesis is identified with the origin, the only tests
of location which may exist are one-sided. The

component tests, from which the T+2 test is constructed

by union-intersection, are both consistent and

admissible. Hence, tests based on the T+2 statistic are

both consistent and admissible.

4.2 Unbiasedness

Theorem 6. T+2 based tests are unbiased.

Proof. The distribution of T+2 has an atom at zero

because the mapping X +— X maps the negative
orthant onto the origin. The mass assigned to this atom

will be of the order of 27”. By elliptic symmetry, the
probability measure of the negative orthant equals that
of the positive orthant. Therefore, for p > 1 both of them
will be strictly less than 0.5. Then the distribution of
T+2 is continuous at the boundary of any reasonable

critical region.
4.3 Acceptance Region

Theorem 7. The acceptance region of T+2 based tests
is a bounded, closed and convex set in the relative
topology induced by the mapping from X — X _.
Proof. For a fixed constant C > 0, the set

{fueR” : vAlu<C, A >0 fixed!

is the intersection of a p-dimensional ellipsoid, say B,
centered at 0, and the positive orthant R

Then
ueRl: vSluscy
—{ueR :wSu<C} R
=BNR,

Note that this set includes cases in which
components of u , are zero, which correspond to K <
p- They lie on the boundary of the region. Note also
that the origin, which is the only atom, does not lie on
the boundary between the acceptance and rejection

regions. This boundary is the set (dB) N ]R}:, which does
not include the origin.

Then
Pr((dB) N Rﬁ) =0

The acceptance region B N R is the intersection
of two closed, convex sets and is, therefore, closed and
convex. Since B is bounded, the acceptance region is
bounded also.

4.4 Symmetry of T f and T_2 Statistics

Theorem 8. T+2 and T E are identically distributed under
the point null hypothesis p = 0.

Proof. With u =0, X is elliptically symmetric about

0. Elliptical symmetry about the origin implies

symmetry about the origin in each coordinate. Hence,
d

X = —X . Then we have,
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R L U P
T+ nX+, S X+ =n(—X)+S (—X)+
=nX'SIX =T? (12)
4.5 Noncentral Distribution of 7° f_

Let X have the distribution given in equation (1).
Let X and S be calculated from X as in equations (2)
and (3). Let EX = p with at least one component of [
positive.

Theorem 9. The non-null distribution of T+2 is a

discrete mixture of a random variable degenerate at 0
and 2” — 1 random variables, each of which is

.. n
distributed as

K times a GF k,n—k(6]23’ f) random

variable, where GF k’n_k(ﬁé, f) is a generalized non-
central F distribution with degrees of freedom & and
n-k and noncentrality 2 B is the random matrix of
equation (6), and f is the function in the definition,
equation (1), of the class of elliptically contoured matrix
distributions.

Proof. See Appendix.

See Fang and Zhang (1990, section 2.9.3) for
definition and properties of the generalized noncentral
F-distribution. This distribution is not invariant over F.
This creates obvious difficulties for the evaluation of
power. The situation is further complicated by the fact
that the mixing weights in this case are functions of
both mean and covariance as well as the form of the
density function, since the symmetry of the central
orthant probabilities is destroyed. For these two
reasons, the non-null distribution of T+2 is best
approximated by simulation.

5. CONCLUSION

An important approach to directed inference for
multivariate data, the T+2 statistic, has been presented.
The null distributions, robustness and power of
procedures based on the T+2 statistic (and other
important properties) have been studied. Much remains
to be done in the way of studying the properties of these
procedures and how they may be applied to more
complex problems of directed inference.
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APPENDIX A: PROOFS
Proof of Theorem 1

For the problem under consideration, the
likelihood function is

n
L, 2) =c(n,p) [Y]2 fr(X = M) 7 (X = M)

=c(n.p) [X]2f [2 (X; —m)Z7HX; - u)]

i=1
=cn.p) |2/ DX -XY=HX-X)
i=1

+ n(X —u)'Z_l(X—u))} (A.1)
= c(n, p) \2 \Ef [tr A
+n(X-p) Tt (X-p) |

where A= En)(xi - )_()(Xi - X)
i=1

Since f is decreasing, the unrestricted likelihood
is maximized by

fig = X
By a theorem of Fang and Zhang (1990), we have

n
o =2 .00 _zl(xi - X)(X, = X)’
1=

= A HA
where 4 (n, f) is a constant depending on » and f
only. Note that 4__ (7, f) need not be specified, since
it divides out in the likelihood ratio.

The likelihood function is maximized over the
restricted parameter space (where L < 0) by

n, =min (0, X) =X . Then )_(—ﬁw = )_(Jr

The concentrated likelihood function on the
restricted parameter space is

n
L@k, Z) =c(n.p) [Y|2 f (tr):_l A

+ (X, T (X-,) )

= c(n, p) |2|2 f (‘[rZ_1 A+ )_(:rZ_l)_(Jr )
(A2)

n
= cn.p) Y2 f (trZ_l A+ XX, ))

n R
= c(n, p) ‘Z‘Zf(trz_l A )

As above, we have X = ﬂ,max(n, HA ., and we

have (see Fang and Zhang 1990 Lemma 5.2.1)

n
L(ig. Zo) =cn.p)| A, (n./) A2
X fp/A . (1, f)), and

n

LG, E,) =cmp)| A (mHA"

X [Pl A, (15 1))
Hence
. - 1
_ L, Z) (1Al and
L(ig. Z,) | |A"]
2
an = IAL_ 1AL
AT IA+X X
|A| 1

- 13 v - v’ o1y
A+ ATX X 1+ X STX /(n-1)
Clearly then, A is a strictly decreasing function of

T+2. Therefore based on the likelihood principle, we

reject H, for large values of T+2, which coincides with

the procedure outlined in Section 3.2.

Proof of Theorem 3

In this proof the notation E,(¢, A, f) f is used to
denote the distribution of a k-dimensional random
vector which has a density on R¥ of the form

CRAX -8 A E = X)),
From equation (4), we note that, conditional on K

=k, T+2 is a squared generalized distance in a
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k-dimensional subspace. We will show that it is, in fact,
squared empirical Mahalanobis distance with the
expected probability distribution.

Consider an arbitrary permutation and partitioning
of X into k and p-k dimensional subvectors X = =

()_((1), )_((2))', with corresponding permutation and

partitioning for S and Z. Under Hj, X" ~ E (0,
n'x, /). The random variable

Vay = le) ~[n7'sy,] [”_1522]_1222)
= Xy — S, Spp X x (A3)
has an £, (0, n )2112, f ) distribution, where
211.2 - Z 2122251221 (AD)

This is, of course, exactly analogous to the normal
case. The proof of this may be found in Fang and Zhang
(1990), Section 2.6.4. V(l) is the orthogonal projection

(in the generalized metric defined by Z*) of X* onto

the k-dimensional subspace spanned by )_(zl) .

Let Py be a random p X p permutation matrix
which permutes X so that it may be partitioned into
positive and non-positive subvectors. Clearly, Py is a
function of the random matrix B defined by equation
(6). In this new coordinate system

—% —

_ X X
X =PgX= _*(1) = _*B and
X(2) X(2)
. S* *
s =pysp, | S}Z
S21 S22
where X p is as defined in the proof of Theorem 2.
Furthermore,
x =

—% * -1 *
B~ X "Moo~ S12S22( ) “(2)a))

= Xy =SuS% (X @-X{y))

12722
—*

= X (A.5)

with B as defined in equation (6). Then X is the
predlcted value of X'® based on the restrlcted MLE

“a)' It is also a restricted generalized least squares
linear predictor of )_(B

Now, let us consider a representation of a vector
variate elliptically contoured distribution centered at the
origin as a discrete mixture of orthant truncated
densities with elliptic contours. The contours for the
mixture weighted densities match those on adjacent
orthants since the parent distribution is continuous.
Orthogonal projections map ellipsoids into ellipsoids.
Since the orthogonal projection from a specific orthant

with, say k, positive axes, )_(|—>)_(B, is onto a

k-dimensional linear set, albeit truncated, the induced
density also has elliptic contours on the lower
dimensional set. The obvious exceptions are the
negative orthant, which maps into the origin, and the
positive orthant, which remains invariant. Note also that
each orthant with £ (<p) positive axes is mapped onto
a distinct A-dimensional boundary set of Rf. From the
previous arguments, we conclude that the truncated
density on each of these boundary sets has elliptic

. . . *
contours determined in each case by n " 2, , and /',

which are determined by the specific projection and the
parent density, respectively.

Now we have

2 v’ o1y v o-l/ipy
T2 = nX/ X, =n(BX) S(BX)

nX’B(P4P5)S (P, Pg)BX

(orthogonality of permutation matrices)

v ’ —1~ v
= X'BP, (P,S'P,)P,BX

n(PyBX) ((PL) 'S ™'PL) (PyBX)

(since B is diagonal and P’ = Pgl)

—x*/ r—1T* TF 1T
X, (PySPL) X =nX [ S7IX,  (A6)

’

it



John H. Carson et al. / Journal of the Indian Society of Agricultural Statistics 64(2) 2010 219-228

| 227

(G

= n)_(éSél)_(B (see equation (6)).

By a theorem from Anderson (1984, Theorem
A.3.3), we see that

_1 _ *_ _ * * *_1 ok _1
SB T P12 T (311 - 5125221321) (A7)
Let K=k> 0 and DD’ = 211.2

all k entries positive, under the point null hypothesis

. Since )_(B has

Hg:u=0,
2w ¢ o)
n XB=RDUC

where C = Sk N Rﬁ . Also

n-1
Sy, = (-7 ¥ 2,7

i=1

d
where Z; = RDUi(k) and Ui(k) ~ UGSy fori=1,...,

n — 1. In this representation the variables R*, Rl’ s
R Ug(), Uik) s Ug]k_)l are all independent.
From equation (A.7) above

= 1o
anSB XB

_ [n1/2>—(8]’ *I.lz[nllz)—(B]
-1

d . o1 n-1 ,
= (Roug) {n—_l % ROUIROY) ]

x (Rpul®)

’ n-1 -1

x D(R'UY)

, n-1 -1
= (Ruf) D’D"llﬁz(Rui‘”xaui(k))']
i=1

x DD (RUd)

’ n-1 -1
- (R 5 RuRUY|

x (Rul)
By Lemma 1, this has the same distribution as it

would if Ugo were replaced with U(k), uniform on S,.

By the invariance properties shown in Lemma 6,
together with Fang and Zhang (1990) Theorems 5.1.1(a)
and 5.2.1, this is just the central distribution of
Hotelling’s 7% with parameters k and n — 1, which is
invariant over the ECD class.

Then conditioning on K and for 7 > 0,

p
Pr(T2 <0)=Pr(K=0)+ Y Pr(K=k) Pr(T2 _, <1)
k=1

P
=Pr(Op) + X, PHOYPHT, 4 <1)
k=1

Proof of Theorem 9

Since X is in this case no longer centered at 0,
the associated orthant probabilities are noncentral and
are no longer independent of the infinite dimensional

parameter /. Let them be denoted as Pr(OE’ s t)» where

the matrix B indicates the orthant. The noncentrality for
orthant probabilities is not simply a function of the
standard noncentrality & = u’Z_l .

Another complication is that for each of the
2P 1] distinct nonzero values that the projection matrix
B takes, X, has noncentrality

S5 = [BuyZ '[Bu]

= np3g g (A.8)
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Depending on the orthant in which the alternative

lies, §§ can take on from 1 to 2” — 1 distinct nonzero

values. If p_ is zero except for the jth coordinate, then

§§ equals 0 if B does not select the jth coordinate and

pjz-/O'l”12 otherwise. For alternatives in the positive

orthant, 5§ can take on 27 distinct values, one of which

1S zero.

Fang and Zhang (sections 2.9.3 and 5.2.4) show
that the noncentral distribution of Hotelling’s T? for
members of the ECD family which have a density
depends on the form of the density function /. They
define the generalized noncentral F-distribution and

times a T2

show that in the noncentral case,

statistic has a generalized noncentral F-distribution with
parameters k, n — k and f and noncentrality 5. In this

case, it has a density which is given by Fang and Zhang
(1990), Theorem 2.9.5

op(N=D12 kK (K (k-2)/2
t
F(k/2)F((n—k)/2)n—kLn—k )

x |1+ Lt _nlz_[”.[oosink_z(e) y" 2
n-k 070
2 1/2 2
X f" =2 (kt/((n — 1)f))"“ y cos 8+ 6°)dOdy
for #> 0. We will denote this density as g(¢ |52, f)- Then

the noncentral distribution of T+2 may be written as

PH(TZ <t 2. f)= Pr(ol?’zyf)

tk
+ ZPr(OEZ’f)J.O”'kg(uléé, f)du
B

(A.9)

where the summation is taken over all nonzero values
of the matrix B, £ = trB, and 0" is the negative orthant.
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