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SUMMARY

In regression models the design variable has traditionally been assumed to be non-stochastic. In most real life situations,

however, the design variable is stochastic having a non-normal distribution as the response error. Modified maximum likelihood

method is utilized to estimate unknown parameters in such situations. The resulting estimators are shown to be efficient and

robust. A real life example is given.
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1. INTRODUCTION

In the regression model

y=n(x) +te (1.1)
the design variable X has traditionally been assumed
to be non-stochastic and the random error e as normal
N0, 0’2), 1(x) being a linear or non-linear function. In
most real life situations, however, X is stochastic and
both X and e have non-normal distributions
(Hutchinson and Lai 1990, Vaughan and Tiku 2000,
Sazak et al. 2006, Tiku et al. 2008). Two very general
methods of estimation are available: (a) least squares,
and (b) maximum likelihood. LSEs (least squares
estimators), however, are neither efficient (for non-
normal distributions) nor robust; see, for example,
Islam and Tiku (2004), Sazak et al. (2006), Tiku et al.
(2008, 2009) and Akkaya and Tiku (2008a). MLEs
(maximum likelihood estimators) are elusive in most
situations because the maximum likelihood equations
involve nonlinear functions and are, consequently, very
difficult to solve even iteratively. Moreover, iterative
solutions can be problematic for reasons of (i) slow
convergence, (ii) convergence to wrong values (e.g. to
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a local rather than the global maximum), and (iii) not
converging at all (Puthenpura and Sinha 1986,
Qumsiyeh (2007, pp. 8-14)). Therefore, we utilize the
method of modified maximum likelihood estimation.
The method was introduced and developed by Tiku
(1967, 1968, 1989) and Tiku and Suresh (1992). The
resulting MMLEs (modified maximum likelihood
estimators) are explicit fucntions of sample
observations and are, therefore, easy to compute. They
are enormously more efficient (for non-normal
distributions) than the LSEs, particularly for large 7.

Realize that non-normal distributions occur
frequently in practice (Pearson 1931, Spjétvoll and
Aastveit 1980, Elveback ef al. 1970). The method of
modified maximum likelihood estimation is carried out
in three steps: (i) the maximum likelihood equations are
expressed in terms of the order statistics of a sample,
(ii) the non-linear functions are replaced by linear
approximations so that the differences between the two
converge to zero as n becomes large, and (iii) the
resulting equations are solved. The solutions are called
MMLEs. Under some very general regularity
conditions, MMLEs are known to be asymptotically
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fully efficient (unbiased and having minimum
variances). A rigorous proof of this is given in
Bhattacharyya (1985) for censored samples and
Vaughan and Tiku (2000) for complete samples. For
small sample sizes, MMLEs are known to be essentially
as efficient as MLEs and the two are numerically very
close to one another; see Tiku and Vaughan (1997,
pp- 890-892), Schneider (1986, p. 104), Tiku et al.
(1986, pp. 106-107), Vaughan (2002, p. 228), Tiku and
Akkaya (2004, p.52) and Kantar and Senoglu (2008,
Examples 1-2). In this paper we specifically take 7(x)
to be a quadratic function while both X and e are
stochastic and, as usual, mutually independent. We
derive LSEs and MMLEs and show that the latter are
considerably more efficient (for non-normal
distributions) and robust to plausible deviations from
the assumed distributions and to mild data anomalies
(e.g. outliers). If the distributions of both X an e are
normal, LSEs and MMLEs are identical. This paper
should be read in conjunction with Vaughan and Tiku
(2000), Sazak et al. (2006) and Tiku ef al. (2008) who
assume 77(x) to be a linear function; see also Islam and
Tiku (2009). The purpose of this paper is to extend the
results to quadratic functions while both X and e are
stochastic. We show that non-normality of the design
variable has devastating effect on the efficiencies of
LSEs; assumption of a non-stochastic design obscures
this fact. Compared to LSEs, MMLEs are shown to be
considerably more efficient and robust although a little
more difficult to compute.

2. STOCHASTIC MODEL

As an extension of a linear stochastic regression
model (Vaughan and Tiku 2000, Sazak et al. 2006, Tiku
et al. 2008, Islam and Tiku 2009), consider the
quadratic stochastic model

— 2 .
;=6 O+ O,u"te (1<i<n),

u;=(x;— 1) o, (2.1
4, and o are the location and scale parameters in the
distribution of X, respectively. Assume that E(e) = 0 and
Me)= o2,
We will show that the model (2.1) is advantageous
because the MMLEs and the LSEs of 6?0, 0, 6, and o
are invariant to the location and scale of X. This

invariance is very important in many applications
(Dedieu and Ogorzalek 1997, Voss et al. 2004).

= 0'2, X and e being mutually independent.

Long-tailed symmetric distributions: A broad range
of long-tailed symmetric (LTS) distributions (kurtosis

p, ! 45 >3) is given by (k=2p — 3, p>2)

'(p)
JKO(@W/ 2T (p-1/ 2)L

(1+Z_2 -

f) = |

—o0 < z < o0

2.2)

E(Z) =0 and V(Z) = 1. The kurtosis of the distribution
is 3(p-3/2)/(p-5/2). For p = o, (2.2) reduces to normal

N(0,1). Note that the distribution of # = /(v/K)Z is
Student’s # with v =2p—1 degrees of freedom.

Assume that the distributions of (x, — x,)/0; and
e;/o are given by (2.2) with p equated to p, and p,,
respectively. It is easy to show that

E(Y) = g, + 6, and
NY) =0+ 0F +205 (p, — DIp, - 5/2)

2.3)

For the variances 0'12 = V(X) and o = V(e) to
exist, both p, and p, have to be greater than 3/2. For

the variance J(Y) to exist, however, p| has to be greater
than 5/2.

Comment: Sharp differences start appearing between
the results when the design variable X is non-stochastic
and when it is stochastic. In the former situation, for
example, the variance of Y is the same as that of e
(i.e., o’ ) which is considerably smaller than what it is
in the latter situation even if X is normal (p1 = o0); see
equation (2.3). Notice the very dominant role the
quadratic term in the model (2.1) plays. If &, was zero,
the variance of ¥ would be much smaller, equal to
o+ 912, and would not depend on the shape parameter
p; in the distribution of X. The variance of Y heavily
depends on p, if 6, # 0.

LSEs: The least squares estimators are obtained by
minimizing the error sums of squares

M (x —u)? and Y (x - 6,-60u —0,u2)?  (2.4)
i=1 i=1

They are

b= X,6; = \/zn:()ﬁ —Y)Zl(n—l) (bias-corrected)

i=1
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6 = (00)™1(0Y) and6 =3, (2.5)
where
n
= z‘i(yi 0, - 0,0, —6,u*)? [(n-3)
=
G = (5 -@)/5;
_ _ B - 2]
Y, 1q
Y 1 0, 65 2
Y = , 0= and 0=|6
2
~ ~2
L Yn | 1 G, G|

The variance V (f;) = 0'12 /n. It is not easy to work

out the variance of 6;; Cov(fy, 6;) = 0 follows from

the symmetry of the distribution (2.2). Asymptotically
(Roy and Tiku 1962),

2

V(6,) = La+lz) (2.6)
1 2n 274

where 4, = (1,1 u3) 3 and p,/ u5 is the kurtosis of

the distribution. For a normal distribution, 7@4 =0

MMLESs: Realizing that L = L i the likelihood

function L is

n 2\ P
1|8 U
L=LL, e [—) H 1+

0y

(z,=e/0) (2.7)

Bl

) liz 2

k,=2p, -3 and k, = 2p, — 3. The maximum likelihood
equations expressed in terms of the ordered (in
increasing order of magnitude) variates U and

- —0. - —0.u2 <i<
) (y[i] % Hlu[i] qu[i])/a (1<i<n)

=

are
alnL Plz
= 9, (Ugy)
oy oagt v
2p,
— 2(01+2492u[i]) 9,(z5) =0
19 K202
dinL _ n  2p
90, o ok 2“0) 9 (Ug))
p2 L 2 -
2( )+292u[i]) 9,(z;)) =0
01 Ky iz
dinL 2p2 4
= —=2%"9,(z;) =0
30, ko2l
olnL _ 2p, &
——4 =0 2.8
6 oo IZ 9,(z;) (2.8)
dinL 2p2 0 2
= —2 3 u 9,(Z;) =0
00, o 5 117270
olnL n

P2 3 20y 95(7) = 0
=——+—=) 7 Z.,) =
do o ok2 %

where

g () =uw/{l + (Vk, yu*} and g(2)=z/{1 + (1/k2)zz};
(y[l uy; ) are the concomltants of z ., i.e., the pair
(v» u;) associated with the i ordered Value z,; Obtained
by arranging z, (1 <7< n) in 1ncreasmg order of
magnitude.

The solutions of the equations (2.8) are the MLEs.
These equations, however, have no explicit solutions.
Solving so many equations by iteration is very difficult
indeed and there can be problems of convergence as
said earlier.

To work out MMLEs we linearize the functions
81(u) = 0+ By and gy(z) = o5, + Bz ;)
(1<i<n) (2.9)
For p, =p,, &, = @,;and .= f3,.. The values of
(o B, and (@, B,.) are given in Appendix 4 with p
equated to p, and p,, respectively. Incorporating (2.9)
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in (2.8) gives the modified maximum likelihood
equations. Their solutions are the following MMLEs:

iy = (1/”1)§ﬁ1ix(i) (ml:%ﬁjj)
o, = (Bl+1/812+4nC1)/2n

2 n
B, = —p12%- Xy = 44)
k i3

2p; ¢ -2

Cl = _Zﬂl, (X(i) —,Ltl) (2.10)
K i3

é =K+Do and

& = (B+vB?+4nC/2/n(n-2)

(bias-corrected) (2.11)
_ 2P, ~ ~2
B= k—Z%i{y[i] — Ko = Kyl — Ko}

2 i<l

2p2 1 ~ ~2 12
C= k—Zﬂz{yﬁ] = Ko = Kl = Kot}

2 i=1
B 7 [ ~ ~2
i 1 Oy Uy
N a2
A2 1 Uz Uz
Y= LW o=
.
RN 1 Oy Gy |
_KO DO
K=|K, |, D=|D, 2.12)
K2 D2

K= (WBW) ™ (WBY)
and D= (WBW) (W'l

Remark. The divisor 2\n(N—2) (replacing 2n) in the

expression for & minimizes the bias in & overall.

Remark. It is easy to verify that the LSEs and the
MMLEs above are invariant to location and scale of the
design, i.e., if x; are replaced by a + bx; (1 < i < n),
their values (hence, their variances and covariances) are
unchanged. This invariance is very important
particularly in engineering applications (Voss et al.
(2004), Akkaya and Tiku (2008a)).

Computations. Computation of the MMLEs 4 and &,
is straightforward. To compute the MMLE:s of §, 6,,

0, and o, we need the concomitants (y[i]’ O[i])’

U = (% -)lo, (1<i<n.
To identify them, we first use the LSEs and order

& =y _go_élﬁi —ézﬁiz (1 £ i< n) in increasing

order of magnitude. The pair (Y, Oi) associated with

é(i) are the concomitants (y[i], U[i])- Using these

concomitants, we compute the MMLEs. We now order
& =y,— 0,-6,0 —0,4* (1 <i<n) and identify the
new concomitants. We repeat the process one more
time. Thus, the MMLEs are computed in two iterations
besides computing the LSEs initially. Not more than
two iterations are needed for the estimates to stabilize
sufficiently. The reason is that only the relative
magnitudes (not necessarily the true values) of e,
(1 £i< n) are needed to identify the concomitants. See
also Islam and Tiku (2004) and Akkaya and Tiku
(2008a).

Variances and covariances. The asymptotic variances
and covariances of the MMLE:s are given by the inverse
of Fisher information matrix I because they are under
regularity conditions equivalent (asymptotically) to the
corresponding MLEs as said earlier. Realizing that

[ (1+%22)'de = JK TW2T(j -1/2)/1(j)

(2.13)
the non-zero elements of I"! in the present situation are
obtained.

The unconditional (all parameters unknown)
asymptotic variances of i, and &, are

1(p,-3/2) o?
vy = RS oL

P (P —1/2)
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1 2
and  V(6)) = % % (2.14)

Cov( i, 6;) = 0 by symmetry of (2.2). The conditional
(1, and o} known) asymptotic variances (and non-zero

covariances) of 6,,6,,6, and O are

3(p—3/2) (p,+1(p,—3/2) o2

V(0,) =
%) =3 (P-D)  py(pp-L2)
(2.15)
_ _ 2
V(él) = (pl 1) (p2+1)(p2 3/2) (o) (2.16)
(pl_z) pz(pz_llz)
V(6,) =-Cov(f,.6,)
_ (P, —=572) (p, +1(p, ~3/2) o2
 2p -l p(p,-1/2) n
2.17)
and
AN (p2+1) 0'2

the multiple (p, — 1)/(p; —2) in (2.16) is an adjustment
factor which improves the accuracy of the results,
P> 2.

Comment. For the conditional variance of 52 to be

positive as it should, p| has to be greater than 5/2, i.e.,
at least the first four moments of X should exist. This
leads us to define a “tight design™ in the context of a
quadratic stochastic regression model as follows.

Tight design. The design (x,, x,, . . ., x,) is called tight
if at least the first four moments of X exist.

Remark. For the Fisher information matrix to exist, it
is necessary that the design be tight, e.g., p; > 5/2 in
(2.2).

To verify the accuracy of (2.14)~(2.18), we carried
out extensive simulations. It must be said that
simulation techniques have become very reliable and
give accurate results. What we found is that (2.14) give
accurate values of the variances of & and &, for all
n, and (2.18) gives accurate values of the variance of

o for p;25(=1,2)and n 2 20. For example, we
have the values given in Table 1 calculated from the
asymptotic equations (2.14) and (2.18). Also given are
the corresponding simulated values based on [100,000/
n] (integer value) Monte Carlo runs. Simulated means
are not given because the bias in the estimators was
found to be negligibly small; o; and o were taken to
be equal to 1 without loss of generality.

Tiku and Suresh (1992) give the exact values of
the variances of ,[tl The corresponding simulated
values above are in agreement with their values. For

the family (2.2), Tiku and Suresh concluded that ,[tl is

essentially as efficient as BLUE (best linear unbiased
estimator) of x, and &, is more efficient than the

BLUE of o,. The estimators ,&1 and 6‘1 attain

minimum variance bounds very quickly as » increases
(Tiku and Suresh 1992, Senoglu and Tiku 2001).

Equations (2.15)-(2.17) give the asymptotic
conditional (£, and o} known) variances of éo* él and
0, . They are given in Table 2. Also given are the
corresponding simulated variances. The simulated

means are not given because the bias in all the
estimators turned out to be negligibly small.

Table 1. Unconditional (all parameters unknown)
variances  of i, ) and 6.

,&1 6'1 1o
Asymp. Simul. | Asymp . Simul. | Simul.
n p=pPy=3
20 0.040  0.041 0.040 0.046 0.054
50 0.016  0.017 0.016 0.020 0.027
P= Py
20 0.047  0.047 0.033 0.036 0.038
50 0.018 0.018 0.013 0.014 0.014
pi=py= 10
20 0.049  0.051 0.029 0.029 0.032
50 0.020  0.020 0.012 0.012 0.012

*Asymptotic variances of & are the same as those of 5'1
because p, = p,.
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Table 2. Conditional (4, and o, known) variances of the
MMLEs 0y, 0, and 6, 6,=0,6,=6,= 1 and o= 1.

b 6 0
Asymp.| Simul. Asymp.| Simul. | Asymp. | Simul.
n P,=5, py=3
50 | 0.021 | 0.025]| 0.021 | 0.021| 0.005 | 0.011
100 | 0.011 | 0.012| 0.010| 0.010| 0.002 | 0.004
P =Py
50 | 0.024 ] 0.029| 0.025| 0.025| 0.006 | 0.015
100 | 0.012 | 0.016| 0.012| 0.012| 0.003 | 0.012
P~ 7, p2:3
50 | 0.022 | 0.025]| 0.019 | 0.020 | 0.006 | 0.011
100 | 0.011 [ 0.011| 0.008 | 0.009| 0.003 | 0.004
Py~ py=10
50 | 0.028 | 0.030| 0.022 | 0.024 | 0.008 | 0.014
100 | 0.014 | 0.015( 0.011 | 0.011| 0.004 | 0.005

It is seen that (2.15) and (2.17) provide fairly
accurate approximations to the conditional variances of

éo and él, for py 2 5 and n 2 50. However, the

asymptotic equation (2.17) fails to do so for éz unless
py 27 and n 2 100. The reason for it is that the
conditional variance (2.17) involves the population

kurtosis g, /u3 of the distribution (2.2). The

corresponding simulated variance implicitly involves
the sample estimate of the population kurtosis. It is well
known that a very large sample size 7 is required for
the sample kurtosis to converge to the population
kurtosis (Pearson 1963, Tiku and Akkaya 2004, p.231)
and that too if at least the first eight population
moments exist and are finite (Kendall and Stuart 1968).

We recommend that the variances, of éz in particular,
be obtained by simulation.

Comment. For unknown location and scale parameters
in the distribution of X the derivation of the Fisher
infrmation matrix I also involves expected values of

certain nonlinear functions of G, =(x —4)/ 0, and is,

therefore, complicated. Alternatively, the sample
information matrix may be used; see Appendix C. See
also Islam and Tiku (2009, Section 5.3).

3. RELATIVE EFFICIENCIES OF THE LSEs

To evaluate the relative efficiencies of the LSEs

RE = 100 (variance of MMLE)/(variance of LSE)
3.1

Three situations need to be considered:

(a) The distribution of X is long-tailed symmetric and

that of e is normal N(x,, 0'12 ).

(b) The distribution of X is normal and that of e is
long-tailed symmetric.

(¢) The distributions of both X and e are long-tailed
symmetric.

There are, of course, many other situations, e.g.,
the distribution of X is short-tailed symmetric (kurtosis
less than 3) and that of e is long-tailed symmetric; see
the real life example in section 5 which justifies this
scenario. All the situations can not be covered in a
single paper. Further studies are inevitably needed.

Table 3 covers situation (a) Given are the
simulated values of the unconditional (all parameters
unknown) variances of the MMLESs. Also given are the
relative efficiencies of the corresponding LSEs, o and
o taken to be 1 without loss of generality. Simulated
means are not given because the bias in all the
estimators turned out to be negligibly small. Note that
for p =5, (2.2) is indistinguishable from Logistic when
scale adjusted to have the same variances; both the
distributions have kurtosis 4.2.

From the values of Table 3, it can be seen that
the MMLEs of Uy, 0y, 65, 6, and 6, are more efficient
than the corresponding LSEs; notice that the MLEs 6‘1

and éz are considerably more efficient than the

corresponding LSEs. The MMLE & is only marginally

more efficient than the LSE & because the distribution
of e is normal.

Table 4 covers situation (b) Given are the
simulated values (similar to those in Table 3). We give
values only for n = 50, for conciseness.

The effect of non-normality of the error e is now
particularly pronounced on the LSE of o. The LSEs of
4, and o) are as efficient as the corresponding MMLESs
because the distribution of X is normal.
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Table 3. Variances of the MMLESs and relative efficiencies
of the LSEs; X has LTS distribution (2.2) with
p = p; and e is normal N(0, 1).

Table 4. Variances* of the MMLESs and relative efficiencies

of the LSEs; X is Normal N(0, 1) and e has LTS
distribution (2.2) with p = p,; n =50

,ul|al|6?0|91|6?2|0'

n p; =28

20 | Var | 0.040 [ 0.049 | 0.122 | 0.327 | 0.306 [0.028
RE 80 72 89 81 67 95
50 |Var [0.016] 0.021 | 0.044 | 0.120 {0.118 |0.011
RE 80 71 90 87 65 98
100 | Var | 0.008 | 0.010 | 0.020 | 0.054 |0.050 [0.006

20 | Var | 0.040 [ 0.046| 0.122 [ 0.308 | 0.267 (0.028

50 |Var [0.016] 0.022 | 0.042 | 0.117 {0.132 |0.011

100 | Var | 0.008 | 0.010 | 0.021 | 0.065 | 0.054 {0.005

Hy | % | &% | & | 0, | o
Py~ 2

Var | 0.020 | 0.010 | 0.037 |[0.0104 | 0.049 [0.046

RE 100 98 70 91 88 34
Py=2.5

Var | 0.020 [ 0.010 | 0.043 ]0.0102 [ 0.051 |0.026

RE 100 98 85 93 93 66
P,=3.0

Var | 0.020 | 0.010 | 0.049 |0.0106 | 0.050 |0.021

RE 100 98 91 95 93 79
Py,=5.0

Var | 0.020 [ 0.010 | 0.051 |0.0106 [ 0.049 |0.015

RE 100 98 96 98 95 88

20 |Var | 0.046 | 0.036 | 0.131 [ 0.303 |0.196 [0.027
RE 95 95 97 97 98 95
50 |Var [0.019] 0.015| 0.047 | 0.115 {0.074 |0.011
RE 94 88 96 95 89 98
100 | Var | 0.009 | 0.007 | 0.022 | 0.052 | 0.033 {0.005

*When X has a normal distribution, ,[11=,L71 and

6, = Ja-1/n) 6.

Table 5. Variances of the MMLESs and relative efficiencies
of the LSEs, X and e both having LTS
distributions (2.2); n = 50.

RE 93 86 97 93 88 99

Table 5 covers situation (¢). For conciseness, we
give values only for n = 50. It is seen that the LSEs
are much less efficient than for situations (a) and (b).

We also considered the situation when the
distribution of X is skewed, Generalized Logistic with
shape parameter b (Tiku and Akkaya 2004, p. 31) and
the distribution of z = e/c'is (2.2) with shape parameter
p. For b =4, p =35 and n = 50, for example, the
relative efficiencies of the LSEs of Uy, oy, 90, 0, 92
and o are 80, 69, 88, 85, 67 and 87 per cent
respectively, the bias in the MMLEs and LSEs both
being negligible.

4. ROBUSTNESS

In practice, deviations from an assumed
distribution are very common. One can not, therefore,
feel comfortable with assuming a particular distribution

iy | o, | % | 6, | 6, | o
p= 2.8, p,=2
Var | 0.016 | 0.024 | 0.034 | 0.117 | 0.147 [0.049
RE 79 61 66 72 37 35
pi=2.8,py=5
Var | 0.016 | 0.021 | 0.043 | 0.118 | 0.110 [0.014
RE 80 71 88 86 67 90
Pi= 3, Py=2
Var | 0.017 | 0.024 | 0.033 | 0.116 | 0.100 [0.046
RE 83 76 67 82 70 38
P13, Py=5
Var | 0.017 | 0.020 | 0.045 | 0.126 | 0.100 [0.014
RE 84 77 92 90 77 88
Py= 5, py=2
Var | 0.020 | 0.014 | 0.037 | 0.109 | 0.066 [0.033
RE 94 92 74 89 90 46
P~ 5 pyS
Var | 0.019 | 0.013 [ 0.049 | 0.117 [ 0.064 [0.016
RE 94 89 93 96 90 90
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and believing it to be exactly correct. That brings the
robustness issue in focus. An estimator is called robust
if it is fully efficient (or nearly so) for an assumed
distribution and maintains high efficiency for plausible
alternatives or when a sample contains mild data
anomalies (e.g., outliers); see for example Tiku et al.
(1986, Preface), Tiku and Akkaya (2004, Preface),
Senoglu (2005) and Oral (2006). Plausible alternatives
are those situations which are difficult to distinguish
from an assumed distribution. Strong deviations or
strong data anomalies can easily be detected by graph
plotting techniques (Hamilton 1992, p. 16) or goodness-
of-fit tests (Surucu 2006, Tiku and Akkaya 2004,
Chapter 9) and remedial action taken. For example,
strong outliers in a sample can be separated from the
bulk of observations and studied on their own (Islam
and Tiku 2004, p. 2455, Akkaya and Tiku 2008a,
Example 2).

Assume, for illustration, that the distributions of
Xand e are (2.2) with p,= 3.5 and p, = 3, respectively.
A large number of alternatives were considered, but for
conciseness, we report the results only for the following
three outlier models:

(1) n-r number of x, come from (2.2) with p = p, =
3.5 (variance 0'12) and 7 ( we do not know which)
come from the same distribution with variance
967 r = [0.5+0.17] (integer value). “.1)

(2) n-r number of e, come from (2.2) with p=p, =3
(variance 0'2) and » ( we do not know which)

come from the same distribution with variance
90°. (4.2)

(3) In the two samples, n — r x; and e, come from
normal distributions N(0, 0'12) and N(0, 0'2) and

r come from N(O0, 90‘12) and N(O, 90'2),

respectively. 4.3)

The random numbers generated were divided by
appropriate constants to make their variances the same
as the assumed distributions. The variances and the
relative efficiencies are given in Table 6, bias in all the
estimators being negligible is not reported.

It is seen that data anomalies have devastating
effect on the LSEs. Clearly, the MMLEs are robust. The
results are the same for numerous other alternatives,
e.g., mixture and contamination models or when the

Table 6. Variances of the MMLESs and the relative
efficiencies of the LSEs for outlier models;
o, =0= 1, n=50.

iy o, % 6, 6, o
Model (4.1)

Var | 0.013 [ 0.025 [ 0.036 | 0.099 | 0.109 |0.022
RE 69 58 79 61 48 73
Model (4.2)

Var | 0.017 | 0.018 | 0.036 | 0.115 | 0.090 | 0.033
RE 88 82 72 87 80 50
Model (4.3)

Var | 0.014 | 0.025 | 0.031 | 0.115 | 0.114]0.027
RE 69 59 68 58 52 56

values of p, and p, are misspecified; see also Tiku
et al. (2008, Section 4.1) and Islam and Tiku (2009,
Section 5.4). The reason for the inherent robustness of
the MMLEs is given in Appendix A.

5. STS DISTRIBUTIONS FOR THE DESIGN
VARIABLE

In some real life situations, the distribution of
U= (X - u,) o, is short-tailed symmetric (STS).
Assume that the distribution of U is one in the family
(Akkaya and Tiku 2008b)

A 2
o= =l gutfPe 1 e <u<e (5)
h=2—dand d<2is a constant. Since
1 T Cie 24y = U@y (2)
27[—00

it is easy to evaluate the moments of U. Specifically,

22\ 1) @)
A=1/ — _—
{Zf)(jJ(Zh) 21(])!}

22\ 1) {2(j +D}!
=)= A — | 2T
S Jon(ZhJ 29+

o ae[2) 1Y {2+ 2}
st - a3 { L LI 6
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The values of the variance 1, and kurtosis u, / ,ug
of the distribution of U are given below:

d= —o0 -0.5 0.0 0.5 1.0 1.5

Variance 1 1.84 | 2.04 | 233 | 2.82 | 3.67
Kurtosis 3 256 | 244 226 | 2.03 | 1.71

It may be noted that no distribution can have
kurtosis less than 1 (Pearson and Tiku 1970).

The maximum likelihood equations d In L/du, =
0 and d In L/do, = 0 based on a random sample x,,
Xy, ooy X, AIC expressions in terms of the nonlinear
functions

gu) = u {1+ 20U}, u = (x,— ulo,  (54)

and have no explicit solutions. Solving them by
iteration is frought with difficulties. Proceeding along
the same lines as in Section 2, the MMLEs are
obtained:

= (1/m)2ﬁix(i) m=Y8)
i=1 =

and o, = (-B+vB?+4nC)/2n

where

(5.5)

B = (2INY ()~ fy) and € = 3B, (x) = )"
= =

the values of ¢, and 3, are given in Appendix B.

The LSEs of 4, and o, are respectively,

ﬂ1=7and 6‘1=Sl/\/,L72

The MMLEs are highly efficient. Specifically, ﬂl
is considerably more efficient than X (Akkaya and Tiku
2008b, Table 1).

(5.6)

The estimators ,&1 and 6‘1 are incorporated in
(2.11)-(2.12) and the MMLEs 6,,6,,6, and &
calculated. Similarly, ,L"tl and 6'1 are incorporated in
(2.5) and the LSEs éO’él’ 0~2 and & calculated.

Remark: Here, the design (xl, Xy eees xn) is ‘tight’
because all the moments of X exist and are finite.

Fisher information matrix: The elements of the Fisher
information matrix can be obtained exactly along the
same lines as in Section 2. The elements of I"! give
the unconditional or conditional variances (and
covariance) as in (2.14)-(2.18). In particular,

V(&) = o2/nD and V(6,) =07 /nD’ (5.7)

D=1-Q/m[A1 - a)l +2a+3d)]
and D =—1+3[(1 +2a+ 11a2)/(1 + 2a + 3d%)]
(a=1/2h)

The asymptotic equations (5.7) give accurate
values for large n; see also Akkaya and Tiku (2008b,
p.287). We recommend that the variances of the
MMLEs and LSEs be obtained by simulation, at any
rate for sample sizes less than n = 100.

To have an idea about the relative efficiencies, we
give in Table 7 the variances of the MMLEs and the
relative efficiencies of the LSEs. For illustration, the
distribution of U= (X — 4,)/ 0, is taken to be (5.1) with
d =1 and that of Z = e/ is taken to be (2.2) with
P = p, = 3.5. Simulated means are not given because
the bias in all the estimators was found to be negligible.

The MMLEs are jointly enormously more efficient
than the LSEs.

Remark: The MMLEs and 0, are robust to
plausible deviations from an assumed STS distribution
and to inliers in a sample. The reason for that is given
in Appendix B. Two inlier models are introduced in
Tiku et al. (2001, p. 1031) and Akkaya and Tiku
(2008b, p. 288). There is room for ideas to define and
model inliers in a sample.

Table 7. Variances of the MMLEs and the relative
efficiencies of the LSEs; X has STS distribution (5.1) with
d =1 and e has LTS distribution (2.2) with p = p,=3.5;
90=0, 91=6?2=1,0'1=a=1.

iy o &% 0, 6, o
0.242 | 0.453

n=20|Var [0.1094|0.0124 0.058 10.047

RE 79 92 83 81 93 90

50  |Var|0.0432]0.0045 | 0.081 | 0.182 | 0.021 {0.019

100 |Var|0.0216]0.0022| 0.041 | 0.089 | 0.010 {0.009
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Example. Williams (1959) has the following data on
Y (Janka hardness of Australian timber) and X (density
of the timber). The data is also reproduced in Hand
et al. (1994, p. 274). Since density is easier to measure,
it is desirable to find a model so that hardness can be
predicted from the density. The data is reproduced here
for ready reference; n = 36.

500
400
300 .

200

-1
..0” ~100
*

Density [Hardness | Density |Hardness | Density |Hardness
x v x y x v
24.7 484 39.4 1210 53.4 1880
24.8 427 39.9 989 56.0 1980
273 413 40.3 1160 56.5 1820
28.4 517 40.6 1010 57.3 2020
28.4 549 40.7 1100 57.6 1980
29.0 648 40.7 1130 59.2 2310
30.3 587 429 1270 59.8 1940
327 704 45.8 1180 66.0 3260
35.6 979 46.9 1400 67.4 2700
385 914 48.2 1760 68.8 2890
38.8 1070 51.5 1710 69.1 2740
39.3 1020 51.5 2010 69.1 3140

-200

-300

400

Fig. 1. Q-Q plot of the errors based on 36 observations.

400

300 -

200 -

Fig. 2. Q-Q plot of the errors based on 35 observations.

Since X and Y are subject to measurement errors,
both ought to be treated as random variables. We run
the data through EXCEL and plot the ordered estimated

residuals é(i) (using LSEs to calculate them) against
the quantiles L) of a standard normal distribution:

it(f e 2gy = 1 (1 <i<36)
Vor ? n+l1 -~
The plot (called Q-Q plot) is given in Fig. 1. It is
clear that one data point (66.0, 3260) is grossly
anomalous. Since such data have undue influence on
any statistical analysis, it is common practice to set
aside such data points; see for example, Akkaya and
Tiku (2008a, p. 414). We now run the remaining n =
35 data points through EXCEL to have Q-Q plots of
and €

X i) values, and plot of (y,, x;) (I < i< 35)

values. They are given in Figs. 2, 3 and 4.

It is clear that 77(x) in (1.1) can appropriately be
modeled by a quadratic, the distribution of X; can be

20

70 4 . .
60 4

50 A

10 A

-3 -2 -1 0 1 2 3

Fig. 3. Q-Q plot of density x, (1 <7< 35)

well represented by a member of the STS family (5.1),
and the distribution of e, can be well represented by a
member of the LTS family (2.2); see Hamilton (1992,
p- 16) for various aspects of Q-Q plots and how to
interpret them. The appropriateness of these
distributions can, of course, be verified by employing
goodness-of-fit tests (Tiku 1988, Siiriicii 2008) but we
do not pursue that here. Other such real life examples
are given in Hand ez al. (1994). See also Tiku and
Akkaya (2004, Chapter 11).
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3500

3000 -

2500 -

2000 -

1500

1000 -

500 -

0 10 20 30 40 50 60 70 80
X

Fig. 4. Q-Q plot of (x,, y) (1 < <35)

To calculate the MMLESs, we need values of d and
p = p, in (5.1) and (2.2), respectively. First, consider
determination of d for the distribution of X. This is done
by calculating £, and &, from (5.5) for several values
of d. The chosen value is that value of d which
maximizes (1/n)In I:X, where (ignoring 1/+/2z which
does not contain d)

R n n
@Wn)int, = InA+2 3 in{1+ @/ 2063 - = Y 62
Nz 2nig
U = (-i)lo, h=2-d
For the x; (1 << 35) observations above, we have
the following:

d= -0.5 0 0.5 1.0 1.5

(1/n)InL, [-3.968 | —3.961 | —3.954 | —3.958 |-4.032

The chosen value of d is, therefore, 0.5. The
corresponding estimates / and ) are the desired

MMLEs of x4, and o), respectively. They are now
incorporated in (2.2) to find the value of p = p, which
maximizes (l/n)lnl:y‘x = (1/n) In I:e; Oy 0> 6, and ©
are replaced by their MMLEs. Thus, we have the
following values:

P =Py~ 2.5 3 3.5 4 4.5 5

(1/n) InLy|-6.225 |-6.225(-6.223 |-6.224 | -6.226|-6.227

The chosen value is p = p,=3.5. The corresponding
estimates are the desired MMLEs. Given below are the
estimates and their parametric bootstrap standard errors:

Y o & 6, 6, o
MMLE | 4591 | 8.69 |1384.48|471.52(30.54 | 131.04
SE 2.0410.79 | 114.90| 46.65|10.31 | 20.76
LSE 45.15 | 8.72 [1347.50| 469.96 | 31.24 | 129.30
SE 2251 0.82 | 125.51| 49.01|11.00 | 22.03

The estimates are in league but the MMLEs have
smaller standard errors and, therefore, greater precision.
See also Tiku ef al. (2008, pp. 1734-1740).
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APPENDIX A
and B = U1+ WK ) (A.5)
Let (x}, x5, ..., x,) be a random sample of size 1 This operation does not alter the asymptotic

from the scaled Student’s 7 distribution (2.2), z, = (x, -
/o (1 £i<n). The maximum likelihod equations
dln L/dy =0 and dln L/d o= 0 are expressions in terms
of the intractable functions

9(z)=2z {1+ @UK)Z} (1<i<n)

and have, therefore, no explicit solutions. Modified
maximum likelihood equations are obtained by first
expressing the maximum likelihood equations in terms
of the order statistics of the sample. This is
accomplished simply by replacing z, by )= ( ,u)/
o. Then, g(z )) are replaced by linear approx1mat10ns

g(z(l)) =a + ﬁlz(l) (1<i<n) (A.2)
o; and S, are usually obtained from the first two terms
of a Taylor series expansion of g(z ;) about the
population quantiles Ly The values of l;are obtained
from

(A.1)

t.
(i) .
F( p) J. ( ) pdz = _I
JK T/ 2T (p-1/2) - n+1
(1<i<n) (A.3)
An IMSL subroutine in FORTRAN is available to

determine L from (A.3) . The coefficients o, and £,
are given by

o, = (2/k)t K1+ k)t(l)}
and ﬂl.={1—(1/k)t(2i)}/{1+(1/k)t(i)}2 (A4)

The linear approximations (A.2) are incorporated
in the maximum likelihood equations. The solutions of
the resulting equations are the MMLEs (modified
maximum likelihood estimators).

For & to be real and positive, /3, (1 <i<n) have
to be positive. These coefficients have umbrella
ordering, that is, they increase until the middle value
and then decrease in a symmetric fashion. Therefore,
if ;> 0 then all the f; are positive. For small p and
large n, however, 3, can be negative. To rectify this

situation if B, < 0, a; is replaced by Oti* and f is

replaced by ,Bi* (Islam and Tiku 2004, p.2451)

a = U k)t I {1+ @/ K)t

i’

properties of the MMLESs because (asymptotically)

HENE o + ﬂi*z(i) (1<i<n) (A.6)
Note that g(z(l.)) and ¢ and f, and ai* and ,Bi*,
are all bounded.

Remark: Because of the umbrella ordering of the ﬂl
(1 <i<n) coefficients, the extreme x -observations and
the extreme errors Q automatically receive small
weights in calculating the MMLEs. That depletes the
influence of long-tails and data anomalies, e.g., outliers.
As a result, MMLESs are robust to deviations from an
assumed long-tailed distribution and to outliers in a
sample.

APPENDIX B

For the MMLEs in (5.5), the coefficients are the
following; see also Tiku and Akkaya (2010) who
consider multifactor polynomial regression with
nonstochastic design variables.

Ford <0,

o= h)t(3i) K1+ 1/ 2h)t(2i)}2 and B, =1 - /)y,
(B.1)

7= {1- (U 2)t8 } {1+ (U 20}t 2

For d > 0, ¢; and ﬂl. are replaced by Oti* and J/i*,
respectively:

ai* ={@ h)t +(1- h/2)t( )} {1+ 1/ 2h)t( )}

and ,8.* = 1-(2/hyy, (B.2)

={(h/2)-/ 2h)t(|)} K1+ @/ 2h)t(l)}
It may be noted that the coefficients 3, and ﬁi* are

all positive, the former for d < 0. The values of L) in
(B.1) and (B.2) are obtained from the equation

£
0)
\/A_J' {1+—u} 27012, = F(l<l<n)

(B.3)
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A simple algorithm written by our colleague
Dr. M.Q. Islam to calculate L) from (B.3) is available
with the authors.

Remark: The coefficients ﬁl and ﬁi* in (B.1) and (B.2)

have inverted-umbrella ordering, i.e., they decrease
until the middle value and then increase in a symmetric
fashion. Thus, the middle xl.-observations receive small
weights. Thus, their influence is automatically depleted.
As a result, MMLEs are robust to inliers. See also Tiku
and Akkaya (2010).

APPENDIX C

The sample information matrix is —1 times the

second derivatives of InL evaluated at g, = ,&1,

0'1=5'1, 6 =éo, etc. Inverse of this matrix gives

asymptotic variances and covariances. They provide
accurate approximations to finite sample size variances
and covariances for p, + p, > 5 and n 2 50. For
example, we have the following values based on
[100,000/n] Monte Carlo runs. They are (1) values
calculated from the sample information matrix and
(2) values obtained by simulation, 0, and o taken to
be 1 without loss of generality.

Values of the variances; 01 =0, 01 = 92 =1.

n=501 /4 01 % 0 0,

QD

p1:3, sz

(1) | 0.017 | 0.018 | 0.034 | 0.118 | 0.093]0.032

2) 0.017 | 0.021 | 0.033 | 0.116 | 0.100]0.046
P1=5, P2=2
) 0.019 | 0.013 | 0.037 | 0.110 | 0.064]0.028

2) 0.020 | 0.014 | 0.037 | 0.109 | 0.066]0.033
p;=2.8, py=5

) 0.017 | 0.019 | 0.044 | 0.129 | 0.102]0.015

2) 0.016 | 0.021 | 0.043 | 0.118 | 0.110]0.014
p1:3, P2:5

(1) 10.017 | 0.018 |0.045 | 0.128 | 0.099 |0.015

(2) 10.017 | 0.020 |0.045 | 0.126 | 0.100 |0.014
P73, Py

(1) 10.019 | 0.013 |0.048 | 0.117 | 0.068 |0.015

(2) 10.019 | 0.013 |0.049 | 0.117 | 0.064 |0.016

See also Islam and Tiku (2009, Section 5.3) who
have similar results for a linear stochastic model. The
results also imply that MMLESs are highly efficient, at
any rate for large n.
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