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SUMMARY

Biased data frequently arise in applications concerning wild life and human populations as indicated in the comprehensive
article by Patil and Rao (1978). Such data follow densities that are proportional to the original population density. Here we
provide a non-parametric estimator of the density that is based on the smoothing of the Cox’s (1969) estimator using Poisson
weights. The new method that is appropriate for nonnegative data is contrasted with some estimators in literature based on
nonparametric kernel smoothing. Based on simulation studies, it is shown that the new estimator fares better in terms of the
Mean Integrated Squared Error (MISE) compared to kernel based estimators. The asymptotic consistency and normality of the
new estimator is also established under standard regularity conditions.
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1. INTRODUCTION

When an observation following a stochastic model
is recorded, its distribution may not be the same as the
original distribution, unless every observation is given
equal chance of being recorded. In many applications
the recorded observation may be assumed to have the
probability density function g(x), that is of the form

g() = utw(x) fix), x € R (L.1)
where f{(x) is the original density, w(x) is a non-negative
known function called the weighting function,

Ly = VEL1/w(X)) (1.2)
with X ~ g(-). Patil and Rao (1978) cite several
examples including those generated by PPS (probability
proportional to size) sampling scheme (that is common
in sample surveys), damage models and sub-sampling
[see also Rao (1965), Patil and Ord (1975), Patil and
Rao (1977) and Rao (1977)]. Such models are
appropriate in many applied fields including agriculture,
ecology and forestry. As one could easily expect, not
incorporating the knowledge of the weighting function
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in any inference procedure dealing with such data may
seriously invalidate the underlying study. Ricker (1969)
highlights such concerns of bias on estimates of growth,
mortality, production, and yield in the context of
fisheries study that are equally valid in other contexts.

Our aim in this article is to study the problem of
estimation of the original density f{x) given a set of n
nonnegative, independent and identically distributed
(i.i.d.) observations Xj, ..., X;, having a length-biased
continuous probability density function (pdf) g(x), x €
R* = [0, o). Here we assume for the rest of the paper
that w(x) = x, in which case the density g(x) is known
as the length-biased density and 4, becomes the
harmonic mean of X ~ g(x), i.e. ,u_l = Eg(1/X). The
treatment in this paper can be easily modified to
incorporate the general weight function. Further, it is
tacitly assumed that (0 <)u < e. Note that

U EfX) = ! f:xzf(x)dx (1.3)

or equivalently, ,u2 < Ef (Yz) where Y has the pdf f.
Thus, assuming that Y has a finite 2" moment insures
that g < oo (even finite first moment of ¥ does so).
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In a length-biased sampling scheme, though the
observable r.v.s are X; with pdf g(-), the primary focus
of statistical conclusions is on the characteristics of the
pdf f(), and in this context estimation of f(x), x € R*
itself is often of central importance. A crude way of
estimating f(-) [see Bhattacharyya et al. 1988] is to
estimate g(-), possibly by a kernel-method, and u
separately and thereby consider a plugged-in estimator
of f(:). As such, we let

x—Xi

A -1
~ — k
£ )= R 20 ( i

],xeR+ (1.4)

where in analogy with (1.2),

i, = (j: x—ldGn(x))_lz r/ (Z::lxi—lJ

and k() is a suitable kernel function. The presence of
xin (1.4) may generally induce heavier bias near
x 4 0, especially when £0) =0 (Jones 1991). Motivated
by the seminal work of Cox (1969), Jones (1991)
advocated an alternative estimator

- n —X.
f.(0) = &, (n‘lzﬁk[xh 'D,xeR+(1.6)

(1.5)

i=1"n""i n

and observed that the mean integrated squared error
(MISE) of fn(x) in (1.6), at least for large sample
sizes, is smaller than that of fn(x) in (1.4). Wu and
Mao (1996) showed that under the minimax criterion,
asymptotically, the MSE of fn (-) is smaller than that

Offn ()

If the kernel function k() is symmetric around
zero, as is the usual case, while the support of f{-) is
R = [0, «0), for x near zero (viz., 0 < x < h,, h,, > 0
as n — o), there will be large bias in these estimates
[see Fig. 1]. This phenomenon is also observed in
conventional kernel estimates of a density function near
a finite end point of the support, but the presence of
Xi_1 in (1.6) [or (1.4)] makes it even more pronounced
in the length-biased case. As such, alternate smoothing
procedures have been advocated for the conventional
case, and in the present study, some of these will be
used in the length-biased case.

For non-negative r.v.s, smoothed estimation of
probability density and other functionals has been

advocated by a number of workers. In this context,
Chaubey and Sen (1996) incorporated a celebrated
smoothing lemma, known as the Hille's Lemma (see
Lemma 2.1) and exhibited its utility and comparative
performance. This approach uses the weights generated
by a Poisson distribution in smoothing the empirical
distribution function in the traditional i.i.d. setting.
Since, the Poisson distribution is defined for non-
negative values, the new approach offers a prime
advantage in removing the boundary bias at the lower
end point of the distribution (here x = 0), that is inherent
in the kernel method as seen in Fig. 1. The present study
extends this line of attack to the length-biased sampling
scheme.
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Fig. 1. Probability Density function of ;(22 and Jones kernel
estimator. Solid line represents true density and
dashed line represents the estimated density.

Along with some preliminary notions, the
proposed smooth estimator of f{-) is formulated in
Section 2. Asymptotic properties are studied in Section
3. Section 4 is devoted to numerical simulation studies
and a real example. The concluding Section 5 deals
with some useful discussion. The proofs are relegated
to an Appendix.

2. PRELIMINARY NOTIONS AND A NEW
SMOOTH DENSITY ESTIMATOR

Cox (1969) proposed the following version of the
empirical distribution function for estimating F(-) in the
length-biased setup:

Ei”:lxil{xi <%
Fy(x) = 7 @D

n
zi:lz
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It can be shown to be the nonparametric maximum
likelihood estimator of F(x) in this context. Obviously,
this estimator has jump discontinuities and therefore is
not amenable to provide an estimator of the
corresponding pdf in case F(-) is assumed to be
absolutely continuous. It is therefore desirable to have
a continuous version, that can at least be differentiable.
For this purpose we incorporate the Hille’s Lemma (see
Feller (1966), pp. 219) as given below:

Lemma 2.1. If u(x) is a bounded, continuous function
on R, then, as 4 T o,

e N ukl A Tk — u(x)
k>0

uniformly in any finite interval J contained in R".

It can be readily seen that substitution of F,,(:) in
place of u(-) provides a continuous version of the Cox’s
estimator,

F () = Y pixA)F(kiAy)
k>0

2.2)

k
u
where py(u) = €Y and 4, is such that, as n — oo,

Ay —> 0.

The above estimator has all the properties of a
distribution function as can be readily demonstrated.
Hence taking its derivative provides a valid estimator
of the underlying pdf f{.) given by

- k+1 k
.09 =42 pk<Mn>[Fn[7J— Fn(ﬂ—ﬂ (2.3)
k=0 n n

The role of Poisson weights here is very similar
to the kernel method of density estimation method and
A,, controls the smoothness of the estimator. Since, the
weights are concentrated around the value of x, the local
properties of the function to be smoothed are somewhat
preserved. In the following section we study the
asymptotic properties of this estimator. We see that the
error of the smooth estimator with respect to the raw
estimator converges very fast to zero as n — oo. For
simplicity of notation, we will use the notation E and
V for the expectation and variance respectively with
respect to the density g, unless there is any ambiguity.

3. ASYMPTOTIC PROPERTIES OF THE
ESTIMATORS

3.1 Asymptotic Properties of Ifn(x)

First note that by the Kolmogorov Strong Law of
Large of Numbers (see Loeve (1977) pp. 251), it is easy
to show that, as n — oo, F}(x) as, F(x). Since F,(x)
is nondecreasing, we have

sup |F (X) — F(x)| 255 0

xe R
By (3.1), following the proof of Theorem 3.1 of
Chaubey and Sen (1996), we can obtain the uniform
strong convergence of Ifn(x) .

(3.1)

Theorem 3.1. Let 0 < E(X ') < o, and F(x) be
continuous (a.e.), 4, — o, then, as n — oo,

[Ea(-FOO) = SpLIF,(-FOD 225 0
xe R

(3.2)
Remark 3.1: In theorem 3.1 of Chaubey and Sen
(1996), additional condition on A,,, namely that nﬁlﬂ,,,
— 0 is assumed that is not required for the above
theorem to hold. It may be noted that the estimator in
Chaubey and Sen (1996) uses truncated Poisson
weights, where such a condition may be necessary.

Next, we discuss the weak convergence of the
estimator in (2.2). Following along the lines of the proof
of Theorem 3.2 in Chaubey and Sen (1996) using

Lemma 6.1 (in the Appendix) with b, =
1 1+6

n 2 (log n)7 [see also the treatment in Sen (1984)],
we establish the following theorem.

Theorem 3.2. If E(X ) < oo, 4, — oo, and "' 4, — 0,
f(x) is absolutely continuous with bounded derivative
f7(x), then for some 0> 0, as n —> oo,

IFn (9= F (0] = 00 (log m)*¥) as. vx e R

(3.3)
Using Delta-Method, it is easy to show the weak
convergence of raw estimator (2.1). That is

In () - Fo)) 25 MO, 82(x))
9) _ Xl Xl
where &(x) = 4] fo S0 dt = 2F(x) fo ) de +

/7F2(x)] and u = oomdt. Since we have
0 t
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Fi(¥)— F(x) = F (%) = Fy(x) + Fy(x) + F(x), by
Theorem 3.2, we immediately obtain the weak
convergence of smooth estimator (2.2). In this regard,
we have the following theorem.

Theorem 3.3. If E(X %) < oo, A, — oo, and n ' 4, — 0,
flx) is absolutely continuous with bounded derivative
f’(x), then, as n — oo,

Jn(F, () - F(x)) —Z— N(0,6%(x)) (3.4)

where

) = ul f;‘% fdi - 2F(x) j;(%f (t)dt + ZF 2 ()]

Theorems 3.1 and 3.3 show that the smooth
estimator preserves the convergence properties of the
raw estimator under suitable choice of the smoothing
parameter.

3.2 Asymptotic Properties of fn(x)

The strong convergence of the smooth density
estimator given in (2.3) follows along the same lines
as in the conventional case.

Theorem 3.4. If E(Y %) < oo, £(x) is bounded and 4, =
O(n®%) for some 0 < < 1, then, as n — oo,

H f (-0 220 (3.5)

We obtain the weak convergence of fn , under the
assumption that f’(x) satisfies a Lipschitz order o
condition, i.e. for some o > 0, there exits a finite
positive K, such that
/()= () <K|s—t|% forevery , s e R"  (3.6)

Theorem 3.5. If E(X_z) < oo, A, = O(n2/5) (non-
stochastic) and (3.6) holds, then, for a compact set
Cc R,

(2L () - fo) - glzf’(x)), xeq; 25 g

where G denotes the Gaussian process with covariance
function yfé‘xs where j/)% = %(2%3 y 12 fx)0, O =
0 for x # s and 1 forx =s and = lim (n_/5/1ﬁ/2).
N—oo

The proofs of the above theorems are relegated to
the Appendix.

Remark 3.2: If 4, = cn” and (3.6) holds, then, by the
proofs of Theorem 3.4 and 3.5, we have

Bias*( f,(x)) = ¢ *(#'(x)2)’n " (3.7)
and
~ Y7, C D—:I.
V(fen =3 /ﬁf(x)nZ (3.8)

then we have

h
MSE(F, () = eyt B | C gnz
2\ 27x

(3.9)
Remark 3.3: When 4,, = en® , the bias and variance
of the Poisson weights estimator (2.3) go to zero at the
rate O(n4/ 5), which is the same as that in the case of
the classical kernel estimator, however it requires the
existence of higher order derivatives.

4. NUMERICAL AND SIMULATION STUDIES

In this section, we will compare the mean
integrated squared error (MISE) of the three different
density estimators by simulation, where the MISE for
the estimator f;, (x) is given by

MISE = E [ (£,x) — fx)) dx

Note that I(ﬁq - f(x))zdx is known as the integrated

squared error (ISE) of the estimator fn (x). We discuss
below the method of selecting the smoothing
parameters required in computing each of the
estimators.

4.1 Choice of Smoothing Parameters

Choice of Smoothing Parameter A, : For Poisson
estimator, we minimize the following biased cross-
validation function to obtain the optimal choice of 4,,

BCV (A,) = zgzj:(fr;(x)/Z)de

2
u
+./A MCE 4.1

n (877;n n ( )

where MCE,, = lzi”_lxi‘” 2, which is a Monte-Carlo
n&i=
f(x)

qu3/2

substitute 1 with its estimator [ as given in (1.5) for

estimator of J.O dx. Since g is unknown, we
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computation. The alternative unbiased cross validation
criterion is found to be too variable, and therefore is
not suitable for large scale automated computation. In
general, for the large samples, the two criteria yield
similar results.

Choice of the Bandwidth for the Kernel Estimator:
For Jones and Bhattacharyya et al. estimators, we
minimize the following unbiased cross-validation
function to obtain the optimal choice of parameter 4,

UCV (h,) = j: f2(x)dx

A

n
23 f (X by DYZ; (42)
i=1

where fn_l (, hy; 22) denotes the estimator built on

data set 2 which consists of original data set Zexcept

X.
for X; and Z; = ZX—'
J# 7

For the subsequent numerical studies we have used
the R-package for statistical analysis and its subroutine
optimise for minimization of the cross-validation
criteria [see lhaka and Gentleman (1996)]. For other
numerical details the reader may refer to Chaubey and
Sen (2009).

4.2 Simulation for x% Distribution

We simulate length biased sample from a )(22
distribution with sample sizes 30, 50, 100, 200, 300,
500, and 1000. We illustrate the three density es-
timators from such a sample of size 200 in Fig. 2, that
shows that Poisson weights estimator can be very
accurate at the boundary x = 0.

Using the smoothing parameters as described
above we compute the ISE of each estimator for a
simulated sample. These values are averaged over 1000
replications producing an approximate value of MISE.
The results are plotted in Fig. 3) that shows the Poisson
weights estimator to have lower MISE than the other
two estimators.

0.5 r:
i

8 10 12 14

Fig. 2. Plots of Density Function and Estimators, Sample Size =
200, Solid Line = True (exponential) Density, Dash Dot
Dash = Bhattacharyya er al. estimator (4, = 0.5), Short
Dash = Poisson Estimator (4,, = 1.6), Long Dash = Jones
Estimator (4, = 0.7)
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Fig. 3. Plots of MISE for length-biased ;(22 density.
4.3 Simulation for Some Standard Distributions

We also follow the procedure described above for
the following standard distributions.

(i) Chi-square Distribution

Ax) = ! X271 exp(—x/2)I{x > 0}

2?12 (a12)
(i1) Lognormal Distribution

1
2

fx) = exp {~(log x — ©)*/2} I {x > 0}

f

(iii) Weibull Distribution

fx) = ox ™! exp(—x%) I {x > 0}
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(iv) Mixtures of Two Exponential Distribution

fx) = [1'ci exp(—x/6))
01

+ (1 - E)Hiexp(—x/éb] I {x >0}
2

The methods of generating corresponding length
biased data are given by, respectively,

(i) X~ p(a+2);
(ii') X=e" where Y~ N(1 + u, 1);

(m3X=ﬁmemY~n1+l,m
o

(iv) X = z¥; + (1 — n)Y5, where Y| ~ T'(2, 6))
and 1, ~T'(2, 6).

Resulting values of MISE are plotted in Fig. 4-7,
respectively.

MISE for Chi-square Distribution
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Fig. 4. Plots of MISE for z2

MISE for Lognormal Distribution
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Fig. 6. Plots of MISE for Weibull distribution with o= 2

MISE for Mixtures of Two Exponential Distributions
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Fig. 7. Plots of MISE for mixtures of two exponential
distributions with 7=0.4, =2 and &, = 1

4.4 A REAL DATA EXAMPLE

In this section, we apply the three density
estimators to real length biased data constituting widths
of 46 shrubs given in Muttlak and McDonald (1990).
The smoothing parameters A,, required for the Poisson
weights estimator and 4, required for kernel based
estimators are obtained by minimizing the cross-
validation functions given in (4.1) and (4.2). The values
of these smoothing parameters along with cross-
validation criteria values are summarized in Table 1. In
Fig. 8, we plot these estimators along with the
probability histogram. The smoothed density resembles
closely to a Weibull density that has been used earlier
for fitting these data (see Chaubey and Yang (2007)).

Table 1. Parameter and UCV

T T T T
0 200 400 600 800 1000
Sample Size

Fig. 5. Plots of MISE for Lognormal distribution with z =0

Poisson Jones Bhattacharyya
Smoothing Ay hy, hy,
Parameter 6.186 0.2459 0.2222
ucv —0.6727 —0.6536 -0.6519
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. —— Poisson
0.0 --- Jones
S Bhattacharyya

Fig. 8. Plots of histogram and estimators

From Table 1, we can see that the unbiased cross-
validation function of Poisson weights estimator has the
smallest value among the three estimators. Fig. 8 shows
that all the three estimators have no quantitative
difference in the region which is far from the origin.
However, the three estimators perform much differently
near the origin. Bhattacharyya et al. estimator tends to
infinity very fast near X' = 0, where as Jones estimator
has positive value at x = 0 and the Poisson weights
estimator gives value zero at the origin. This feature is
apparent in some parametric models fitted to the above
data (see Chaubey and Yang (2007)). Furthermore, for
the integral of different estimators as obtained by
numerical methods over the range (0, o), only the
integral of Poisson weights estimator is 1 (see Table 2).

Table 2. Integral and absolute error

Method Integral Absolute Error
Poisson 1.000 <73%x107°
Jones 0.9560 <51x%x 107
Bhattacharyya 1.394 <7.0x 107
et al.

5. DISCUSSION AND CONCLUSIONS

Based on the above simulation studies, we might
draw the following conclusions.

1. When the value of variable is close to zero,
Bhattacharyya et al. estimator diverges very fast.

. . 1
It seems that this estimator has an order O(—)
X

and its graph looks like a vertical line near the
lower boundary. As a result this estimator pro-

duces the largest MISE among the three estima-
tors, even with larger sample sizes.

2. In some cases, the MISE of Bhattacharyya et al.
estimator is mainly determined by the huge bias
near the boundary. Therefore, even with increased
sample size, its MISE may be hard to improve.
However, the MISE’s of both the Jones and
Poisson weights estimators decrease with increas-
ing sample size.

3. When f{0) # 0, Poisson weights estimator usually
produces much smaller MISE than Jones
estimator. Our computation shows that the two
estimators are both very accurate at the points that
are away from boundary. So we believe that the
decrease of Poisson weights estimator’s MISE is
due to the fact that it reduces the bias at the
boundary.

4. When f(0) = 0, Poisson weights and Jones
estimator usually have similar MISE. Technically,
in our examples, when sample size is small,
Poisson weights estimator performs better than
Jones estimator. When sample size is large, two
estimators have almost the same MISE. This is
likely due to the fact that the MISE’s of both the
estimators have the same asymptotic order
o5,

6. APPENDIX: PROOFS OF THEOREMS 3.4
AND 3.5

First, we will introduce an important lemma, which
plays a critical role in the proof of strong consistency

of f.(¥).
Lemma 6.1. If E(X2) < < and £'(¢) is bounded, then

sup sup {|Fu(t + B) — Fu(0) = F(t + ) + F(0)|}
te R*1BI<b,
1 1

= 0(b2n 2 (log n)'*) a.s.,
where @ (> 0) is arbitrary.

In order to prove Lemma 6.1, we need the
following two lemmas. For convenience, we denote

Xt B) = %1 (min(t, ¢ + B) < X; < max(t, £ + )}
i

| Ft+B-Fo| (=1, ..n (6.1
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Lemma 6.2. If E(X_z) < oo, then, for any # > 0 and
1+ >0,

1 1+9)
—le(z B =0(n3 (logn) 2 )as. (6.2)

Proof of Lemma 6.2: In order to prove the lemma, we
need the Kolmogorov’s Proposition 4 in M. Loéve (pp.
250), that is stated below.

If the integrable r.v.’s X}, are independent, then

2
o X S -ES
Y~ <o, by T oo, entails ——1 225 0
b b,
where S, = Zin:lX,- and 02)(,- means the variance of
Xi;.

Under the assumption E(X 2) < oo, for any ¢t > 0
and ¢ + > 0, we have

5 o%x,(t, B)
n:1(n1/2(|0g n)(1+ 9)/2)2
oo E(X;z)
< ngl(nllz(log n)(1+(9)/2)2

By the above proposition, we have

Yxth)

Further
1 (1+0) Zn )ﬂ(tvﬂ)
_le(t pAH=n 2(|Og n 2 llzj-—(l_'_e)
nE(Iog n 2
(6.4)

hence, by (6.3) and (6.4), we obtain the desired result.

Lemma 6.3. If E(X %) < < and f'(¢) is bounded, then
there exits d > 0 such that, for any 1 > 0, 0 < br: 1<

O™ (0 < y< 1), = b, < B< b, D=1n""

1+6

(log n)" ", we have

n
U Y xit, By|>2dD} < O(m™) (6.5)

i=1
The order O(n_4) does not depend on 7 and

Proof of Lemma 6.3: First we should verify several
facts. For any 0> 2, we have

p
ENY x (AP < plogn)' ~ %72 (6.6)
i=1

since

EIZMt A = p’El= Z&(t B

i=1

and, by Lemma 6.2

18 _
B2 = 0 (log p)"?) as.
i=1

Also,

2
E(ai(t, B = E(%l {min(, 1 + ) < X;

1
< max (2, t+,b')})—|F(f+,B)—F(f)|2

| O - Fo P

=0( B1) (6.7)

The conclusion of the last step follows because

E(X{?) <o and that f'(x) is bounded. Since, | f(x)/x |

=1f(n| <M, (ne(0,x)and M is finite), the first

term of (6.7) has an order O(|]). And since f(x) is, the
second term of (6.7) has an order O(ﬁz).

Thus, using (6.7) and the independence of x,(, /)
(i=1, ..., n), we can also establish (2.7) in Lemma 2.1
of Babu and Singh (1978), that is

E(E2) < Opby) (6.8)
Substituting (2.4) in Lemma 2.1 of Babu and Singh
(1978) with (6.6), taking &= 60/y and p = [n"*], and
following the proof of Lemma 2.1 of Babu and Singh
(1978), we can obtain the result.

Remark: The second term exp(—8D2n_1 b, 1) in (2.1)
of Babu and Singh (1978) disappears in our inequality,
because under our choice of D, this term is of much
smaller than O(n_4).

Proof of Lemma 6.1: Let

H,(t, p)=F,(t+ p)— F,(t)— F(t + p) + F(®
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Since F,(t + ) — F,(f) can be expanded as

14 u
Fyt+ ) -Fyt)= =Y {1 <X; <1+ f}
Nis %

1 n
{F(t+ B) - F) (ﬁzxﬁ ~ 1)
i=1

1 u
+O([F@ + B) - F1)] (EZY -1)) a.s.
i=1

(6.9)
we have
| H(t, B)| < Jui(t, B) + a2, B) + OUpa(t, B)) a.s.
(6.10)
where
1 n
Jnl(taﬁ)z _ (t1ﬁ)‘ (611)
=]
and
18 u
Tt = |[Ft+A) =FO]) ~X~--1{  (6.12)
i=1""

For (6.11), first we consider that ¢ is fixed. Using
Lemma 6.3, following the proof of Lemma 1 of
Bahadur (1966), we can claim that

11
s (e Pl = Ob2n 2(log )% as

1 1

Furthermore, since O(bnE n 2 (log n)HQ)

does not

depend on ¢ and f'(¢) is bounded, using the same
technique as in Sen and Ghosh (1971), we can extend
the result for 7 to the whole real line, that is

1 1

sup sup {11 (1. A} = O(b2n 2(log )™ as.
te R*|BI<b,

(6.13)

Using =0 and f#— + e in Lemma 6.2, we have

(—zﬁ—l) =0m 1/2(log n)(Hg)/z) a.s.

(6.14)
| 1x

Since f(7) is bounded (because E( X, 2) < o) as well,

we have

sup sup | F(t + B) - F(t) | = Oby)
te R* |Bl<b,

For (6.12), by (6.14) and (6.15), we have

(6.15)

1
sup sup {(n(t. B} = O(b.n 2 (log m) %) as.
te R* | BI<h,
(6.16)

By (6.10), (6.13) and (6.16), we can establish the
Lemma 6.1.

After the preparatory material, we can prove
Theorem 3.4.

Proof of Theorem 3.4. By the proof of Theorem 4.1
of Chaubey and Sen (1996), we just need to show that,
when ¢ belongs to some finite interval [0, C], we have
(3.5), since we can deliberately choose C such that
when 7 belongs to interval (C, + o), f~n (t) and f{¢) can
both be made suffciently small.

We can write

k+1)

f (0 = 24 Y, P (AIF(

k>0

)F( )]

+ Y p)IF, (k”) F (—

k>0

_F (ﬂ')

= Tn(x) + Tp(x) (6.17)
Using Lemma 6.1 by taking b,, = 1/4,,, we have

F(%)]}

sup{lF( ) <§) R (

k+ k
LR P YR
k=0 /In /1n
11
=0(4,2n 2(log n)""% as. (6.18)

By (6.18) and the fact that 2 pr(x4,) =1, we have
k>0

SUp {| T,0) [} = O(AY 20 " (log n)'*%) as. (6.19)
xe Rt
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which tends to 0 almost surely as » — oo provided that
An=O0m*)0 < a < 1).

At the same time, according to the proof of
Theorem 4.1 of Chaubey and Sen (1996), under the
assumption of boundedness of /’(x), we have

sup  {|T(x) —Ax) |} — 0 a.s.
te[0,C]

(6.20)

By (6.19) and (6.20), we obtain the theorem. The
proof is complete.

Proof of Theorem 3.5: By (3.6), we have

00 =)+ 5= £+ o) + OCAE)

n
6.21)

Using Taylor’s expansion which is similar to (6.9),
we can write

- Igp gk okt
Tp(x) = ﬂngopk(xln){(niéxi I{}Ln <X, < i
k+1 k
—[F(Tn) - F(Z)D}

K+ Ko, 1 u
i 3 i) (FED - FENEY £ -1
2 KE A A nl_zlx

k>0 n i=1""
18 u
+0(= ) —-1)
“z‘lxi
18 u
= T3(x) — Tpu(x) + O(= Y, = -1) as. (6.22)
N> X

For the leading term 7,,5(x), following the proof
of Theorem 4.2 of Chaubey and Sen (1996), we can
show that

MT0) = & @) 2 fo) (2m) - (6.23)
and, for s Z ¢, as n — oo,

cmmeMFO@ (6.24)

. _ 1 n M .

Moreover, since Ty4(x) = O(ﬁzi zlyi -1 =

0(n_1/2(log n)(l - ‘9)/2), the order of T,,5(x) is determined
by that of 7,,3(x).

From (6.21), we can see that the asymptotic
normality of 7),,(x) leads to the asymptotic normality
of fn(x). By (6.21), (6.22), (6.23) and (6.24),
following the proof of Theorems 4.1 and 4.2 of
Chaubey and Sen (1996), we can complete the proof
of the theorem.
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