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SUMMARY

Statistical agencies generally collect data from samples drawn from well defined finite populations and using complex
sampling procedures that may include stratification, clustering and multi-stage sampling and using unequal probabilities of
selection. Sample design weights, defined from the sampling procedures, are often adjusted to account for non-responding
units and to calibrate to known population totals of auxiliary variables. Once adjusted, these ‘final’ weights are included on
the survey datasets. There has been some discussion on the necessity of using these weights in the estimation of descriptive
statistics and to perform analysis of data from these surveys. In this paper, we discuss the role of weights in descriptive and

analytical inference.
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1. USE OF WEIGHTS FOR DESCRIPTIVE
STATISTICS

The development of sample survey theory
progressed more or less inductively. Strategies (design
and estimation) that appeared reasonable were
entertained and relative properties were carefully
studied by analytical and/or empirical methods, mainly
through comparisons of mean squared errors, and
sometimes also by comparing anticipated mean squared
errors or variances under plausible super-population
models. Unbiased estimation under a given design was
not insisted upon because it “often results in much
larger mean squared error than necessary” (Hansen
et al. 1983). Instead, design consistency was deemed
necessary for large samples in the sense that the
estimator approaches the population value as the
sample size increases.

For a given probability sampling design, Narain
(1951) and Horvitz and Thompson (1952) used the
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“design weights” d; = ﬂi_l (>0) to construct a design-
unbiased estimator

YNHT = 2 d;;
leS
of a population total ¥, where s denotes the sample and
77; is the inclusion probability for unit 7 in the population
(i =1, ..., N). More importantly, the design weights d;

ensure design consistency of YANHT in large samples.
Stratified random sampling based on size stratification
and near optimal sample allocation is commonly used
to handle highly skewed populations such as business
survey populations. As a result, the design weights d;
differ across strata and the design-based inferences

associated with \?NHT are asymptotically valid. On the

other hand, model-based methods that ignore the above
design weights could lead to erroneous inference in
large samples, even under minor model misspecification
that cannot be detected easily, as demonstrated by
Hansen et al. (1983).
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The Narain-Horvitz-Thompson (NHT) estimator is
highly efficient under the above stratified design. It is
also efficient when the probabilities 7; are proportional
to size measures x; that are closely related to the
variable of interest, y;. In fact, NHT proposed such
designs, called probability proportional to size (PPS)
designs. On the other hand, the NHT estimator with 7;
proportional to x; can be very inefficient in surveys with
multiple characteristics when a characteristic y is
unrelated or weakly related to the size measure x (such
as poultry count y and farm size x in a farm survey).
Rao (1966) proposed efficient alternative estimators for
such cases that ignore the NHT weights. Basu (1971)
constructed a “bad” design with z; unrelated to y; and
then demonstrated that the associated NHT estimator
leads to absurd estimates.

In practice, it is often desirable to use a common
weight for all variables y. Beaumont (2008) addressed
this issue and proposed the use of a “smoothed”
common weight that attempts to maintain efficiency
across specified variables. The smoothed NHT weights
are obtained by modeling the design weights d,, i € s,
using the observed values y;, i € s associated with a
selected set of characteristics y. Further research in this
direction would be useful.

In the field of social statistics, stratified multi-stage
sampling is commonly used. Hansen and Hurwitz
(1943) developed the basic theory of stratified two-
stage sampling with one primary sampling unit (PSU)
within each stratum drawn by PPS sampling and then
sub-sampled at a rate that ensures self-weighting (equal
overall probabilities of selection) within strata. This
approach provides approximately equal interviewer
work loads which is desirable in terms of field
operations. It also leads to significant variance
reduction by controlling the variability arising from
unequal PSU sizes without actually stratifying by size
and thus allowing stratification on other variables to
reduce the variance. Given the equal overall
probabilities of selection, and hence the equivalence of
the design weights d;, one can ignore the design for
point estimation but it cannot be ignored during
variance estimation. Variance estimation must take into

account the sample design and thus the weights at each
stage of sampling play an important role. For instance,
in the case of a self-weighting stratified multi-stage
design the overall probabilities of selection are defined
as a product of the probabilities of selection at the
different stages of the design. Although the overall
probabilities are equal, the selection probabilities at
each stage are almost certainly different. The selection
probabilities at the different stages are needed to
produce valid variance estimators.

2. WEIGHT ADJUSTMENTS

Design weights are commonly adjusted for many
different reasons such as compensating for unit
nonresponse or for calibrating to known totals of
auxiliary variables. In what follows, we assume that
nonresponse is not present and concentrate on weight
adjustments brought on by calibrating to known totals.
Calibration weights w;(s) that ensure consistency with
user-specified auxiliary totals X are obtained by
adjusting the design weights d; = ﬂi_l to satisfy the

benchmark constraints 2 wi(s)x; = X. Estimators

les
that use calibration weights are called calibration
estimators and they use a single set of weights {w,(s)}
for all the variables of interest, y. We note that the
model assisted Generalized Regression (GREG)
(Sarndal ef al. 1992) estimator is a calibration estimator,
but a calibration estimator may not be model-assisted
in the sense that it could be model-biased under a
working model unless the x-variables in the model
exactly match the variables corresponding to the user-
specified totals. For example, suppose the working
model suggested by the data is a quadratic in a scalar
variable x while the user-specified total is only its total
X. The resulting calibration estimator can perform
poorly even in fairly large samples unlike the model-
assisted GREG estimator based on the working
quadratic model that requires the population total of the
quadratic variables )gz in addition to X (Rao et al.
2003).

Unified approaches to calibration, based on
minimizing a suitable distance measure between
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calibration weights and design weights subject to
benchmark constraints, have attracted the attention of
users due to their ability to accommodate arbitrary
number of user-specified benchmark constraints, for
example, calibration to the marginal counts of several
post-stratification variables. For instance, a chi-squared
distance measure leads to a GREG estimator. However,
the resulting calibration weights may not satisfy desired
range restrictions, for example some weights may be
negative or too large especially when the number of
constraints is large and the variability of the design
weights is large. Huang and Fuller (1978) proposed a
scaled modified chi-squared distance measure and
obtained the calibration weights through an iterative
solution that satisfies the benchmark constraints at each
iteration. However, a solution that satisfies benchmark
constraints and range restrictions may not exist, so
sometimes there must be a trade off between satisfying
the benchmark constraints or allowing the range
restrictions to be relaxed. Alternative methods propose
to change the distance function (Deville and Sarndal
1992) or drop some of the benchmark constraints
(Bankier er al. 1992). Skinner and Nascimento Silva
(1997) considered alternative approaches to selecting
benchmark variables based on the minimization of the
estimator of the variance of the regression estimator.
Rao and Singh (1997, 2009) proposed a “ridge
shrinkage” iterative method that ensures convergence
for a specified number of iterations by using a built-in
tolerance specification to relax some benchmark
constraints while satisfying range restrictions; see also
Chen et al. (2002) and Beaumont and Bocci (2008) for
similar ridge calibration methods.

3. VARIANCE ESTIMATION

In survey sampling, variance estimation is typically
performed using either Taylor linearization or, more
recently, re-sampling methods. In both methods, the
design or adjusted weights play an important role.
Demnati and Rao (2004) derived Taylor linearization
variance estimators for a general class of calibration

estimators with weights w;(s) = diF(xiT/{) where

the LaGrange multiplier A is determined by solving

the calibration constraints. The choice F(a) =
1 + a leads to GREG weights w;(s) = d;gi(s), where

. -1
_ T T
gi(s) =1+ (X=Xy7) (ZKESdeka ) Xk

Taylor linearization variance estimators are obtained by
‘operating’ on the weights d; by taking derivatives of
the estimators with respect to these weights. Demnati-
Rao approach suffers from the same disadvantage as the
other linearization type variance estimators in that
analytical work is needed for each and every new
estimator. Re-sampling methods, on the other hand,
remove the human labor and replace it with computer
labor. They play a vital role in developing methods that
take account of survey design in the analysis of data.
All one needs is a data file containing the observed data,
the adjusted survey weights and the corresponding
adjusted weights for each pseudo-replicate generated by
the re-sampling method. Software packages that take
account of survey weights in the point estimation of
parameters of interest can then be used to calculate
correct estimators and standard errors. More details on
two commonly used re-sampling methods, the bootstrap
and the jackknife, will be discussed in the following
section.

4. ANALYSIS OF SURVEY DATA

Standard methods of data analysis are generally
based on the assumption of simple random sampling,
although some software packages do take account of
survey weights and provide correct point estimates.
However, application of standard methods to survey
data, ignoring the design effect due to clustering and
unequal probabilities of selection, can lead to erroneous
inferences even for large samples. In particular,
standard errors of parameter estimates and associated
confidence intervals can be seriously understated,
type | error rates of tests of hypotheses can be much
bigger than the nominal levels, and standard model
diagnostics, such as residual analysis to detect model
deviations, are also affected. Rapid progress has been
made over the past 20 years or so in developing suitable
methods. In particular, re-sampling methods have
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allowed users of survey data to perform complex
analyses themselves very easily using standard software
packages.

Re-sampling methods in the context of large-scale
surveys using stratified multi-stage designs have been
studied extensively. For inference purposes, sample
PSUs are treated as if drawn with replacement within
strata. This leads to over-estimation of variances but it
is small if the overall PSU sampling fraction is
negligible. Let @ be the survey-weighted estimator of
a “census” parameter of interest, 6., computed from the
final weights w;(s) = w; and let the corresponding
weights for each pseudo-replicate » generated by the
re-sampling method be denoted by Wl(r) . The estimator

based on the pseudo-replicate weights Wl(r) is denoted
as 0) for each r =1, ..., R.

In the above discussion, we let @ denote the
estimator of a “census” parameter, 8.. The census
parameter 6. is often motivated by an underlying super-
population model and the census is regarded as a
sample generated by the model, leading to census
estimating equations whose solution is &.. The census
estimating functions U4(6) are simply population totals
of functions u;(6) with zero expectation under the
assumed model, and the census estimating equations are

given by U.(6) = ZieAui (0)=0 (Godambe and

Thompson 1986) where Zi < o denotes summation over

all units in the finite population 4. Kish and Frankel
(1974) argued that the census parameter makes sense
even if the model is not correctly specified. For
example, in the case of linear regression, the census
regression coefficient could explain how much of the
relationship between the response variable and the
independent variables is accounted by a linear
regression model. Noting that the census estimating
functions are simply population totals, survey weighted

estimators of the census estimating functions, U 6 =

ZiES\NI U, (€) from the full sample and U (@) from

each pseudo-replicate, are obtained. By solving the

corresponding estimating equations U(®) =0 and
U(r)(ﬁ) = 0, we obtain the estimators 6 and
6" respectively.

A re-sampling variance estimator of 6 is of the
form

V@) = Y6 @0 - 80" -y

for specified coefficients ¢, determined by the re-
sampling method. Commonly used re-sampling
methods include (a) delete-a-cluster (delete-PSU)
jackknife and (b) the Rao and Wu (1988) bootstrap.
Jackknife pseudo-replicates are obtained by deleting
each sample cluster » = (%) in turn, leading to jackknife
design weights di(r) taking the value 0 if the sample
unit 7 is in the deleted cluster, d; ny, /(n;, — 1) if i is not
in the deleted cluster but in the same stratum /4, and
unchanged if 7 is in a different stratum. The jackknife
design weights are then adjusted for unit non-response
and calibration, leading to the final jackknife weights

Wl(r). The jackknife variance estimator is given as

above with ¢, = (n, — 1) / ny, for r = (4j). The delete-a-
cluster jackknife method has two possible
disadvantages: (1) When the total number of sampled

PSUs, n = Zhnh , is very large, R is also very large

because R = n. (2) It is not known if the delete-a-cluster
jackknife variance estimator is design-consistent in the
case of non-smooth estimators 8, for example the
survey-weighted estimator of the median. For simple
random sampling, the jackknife is known to be
inconsistent for the median or other quantiles.

The Rao-Wu bootstrap is valid for arbitrary ny,
(= 2) and it can also handle non-smooth 6. Each
bootstrap replicate is constructed by drawing a simple
random sample of PSUs of size n; — 1 from the ny,
sample clusters, independently across the strata. The

bootstrap design weights are given by
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di(r) = [nh/(nh-1] mr(]?)di if i is in stratum 4 and

replicate r, where r’rﬂ) is the number of times sampled

PSU (ki) is selected, > M) = n;, — 1. The weights

di(r) are then adjusted for unit non-response and
calibration to get the final bootstrap weights and the
estimator 8¢ . Typically, R = 500 bootstrap replicates
are used in the bootstrap variance estimator. Several
surveys at Statistics Canada have adopted the bootstrap
method for variance estimation because of the
flexibility in the choice of R and wider applicability.

Note that the resampling variance estimators are
designed to estimate the variance of 6 as an estimator
of the census parameters 6, but not of the model
parameters €. Under certain conditions, the difference
can be ignored but in general we have a two-phase
sampling situation, where the census is the first phase
sample from the super-population and the sample is a
probability sample from the census population. For the
census parameter 6. Taylor linearization methods
provide asymptotically valid variance estimators for
general sampling designs, unlike re-sampling methods,
but they require a separate formula for each estimator
6. Binder (1983), Rao et al. (2002) and Demnati and
Rao (2004) have provided unified linearization variance
formulae for estimators defined as solutions to
estimating equations. Demnati and Rao (2010) extended
the Demnati-Rao approach to obtain linearization
variance estimators for model parameters, 6.

Pfeffermann (1993) discussed the role of design
weights in the analysis of survey data. If the population
model holds for the sample (i.e., if there is no sample
selection bias), then model-based unweighted
estimators will be more efficient than the weighted
estimators and lead to valid inferences, especially for
data with smaller sample sizes and larger variation in
the weights. However, for typical data from large-scale
surveys, the survey design is informative and the
population model may not hold for the sample. As a
result, the model-based estimators can be seriously

biased and inferences can be erroneous. Pfeffermann
and his colleagues initiated a new approach to inference
under informative sampling; see Pfeffermann and
Sverchkov (2003) for recent developments. This
approach seems to provide more efficient inferences
compared to the survey weighted approach, and it
certainly deserves the attention of users of survey data.
However, much work remains to be done, especially in
handling data based on multi-stage sampling. Excellent
accounts of methods for analysis of complex survey
data are given in Skinner et al. (1989), Chambers and
Skinner (2003) and Lehtonen and Pahkinen (2004).

5. SURVEY WEIGHTS IN MULTI-LEVEL
MODELS

If some coefficients in a regression model are
assumed to vary randomly over the clusters, we arrive
at models with random effects. A typical model of this
kind is a two-level model where individuals are nested
within clusters and the scientific interest is to study the
regression relationships at different levels
simultaneously including the cross-level interactions
(Snijders and Bosker, 1999, page 9). In multilevel
modeling the parameters of interest include, in addition
to fixed-effects, the variance components which define
the distribution of random effects.

In the case of two-level models there is a need to
use survey weights at both levels since the sample
design may be informative at any level (Pfeffermann
et al. 1998). Thus the use of weights at only one level,
typically at the level of ultimate unit, is not sufficient
to compensate for possible biasing of sample design.
This implies a basic condition for multi-level modeling
of survey data: to have survey weights available at each
level.

Survey datasets are commonly produced for
single-level analyses, thus having survey weights only
at one level. Generally, a multi-level modeling of such
data would not be possible. In some cases, however,
weights at one of the levels can be assumed to be equal
to 1, and together with available weights, they would
provide sufficient weighting information. A good
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example of such analysis is a simple growth curve
analysis where repeated measurements nested within an
individual have weight of one (Skinner and Holmes
2003). Alternatively, one can approximate unavailable
weights using available information on sample designs
at different levels, the cluster membership of ultimate
sampling units, and the available weights (Kovacevic
and Rai 2003).

Several methods are available for estimation of
parameters of multi-level models from survey data:
Probability Weighted Iterative Generalized Least
Squares (Pfeffermann et al. 1998), and different flavors
of Pseudo Maximum Likelihood Method (Kovacevic
and Rai 2003, Asparouhov 2004, Grilli and Pratesi
2004, Rabe-Hesketh and Skrondal 2006). All of these
methods provide approximately unbiased estimators of
the parameters when the sample sizes are ‘large’ for all
nested levels for which weighting is applied. This
means that in the two level case, when weighting is
applied at both levels, we need large number of clusters
as well as large within-cluster samples.
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