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SUMMARY

We propose a new estimation method for finite mixture models. Important in this estimation process is the determination
of the number of mixture components. Traditional methods either perform sequential hypothesis testing, or perform model
selection based on some criteria such as AIC, BIC, and Kullback-Leibler (KL) distance. We treat the component densities as
predictors and generate pseudo-response based on the CDF/PDF of a saturated mixture model. To get a sparse component
representation, we use a variation of the LASSO — a L1-constraint optimization that produces many zero components weights.
We then iterate between LASSO and EM steps to update the estimates of the component density parameters and component
weights. Our approach is very general and can be extended naturally to handle finite multivariate mixtures and mixtures with
non-normal components. A series of simulations illustrate the competitiveness of our approach. We then apply the methodology
to a problem of classifying ovarian cancer patients based on protein mass spectroscopy data profiles.
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1. INTRODUCTION

Finite mixture densities are mainly used in
modelling heterogeneous data, where observations
come from different populations but we do not know
the exact source of each observation. Let X denote a
random variable to be measured, and let fx|6; ) denote
the density function for the jth population, and 7;
denote the corresponding probability that X comes from
this population. The finite mixture model has the
following form

k
A0y = Y £ (x10)) ()

=1

with 6, € 0, ¥' | = 1. 7 2 0. To avoid

unidentifiability, we assume the location parameters are
in a strictly increasing order. For an observed random
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sample xi, ..
function is

.,Xx, from equation 1, the loglikelihood

n k
l,(x|z,0) = ¥ log[ Y log 7; fx{ )] )
i=1  j=1
Finite mixture models have a large number of
applications in statistical modelling. For example,
Smith (1961) introduced the mixture model for genetic
linkage heterogeneity based on the recombination
fraction € and the proportion of linked families. Other
applications include fisheries (Macdonald et al. 1979),
genetics (Ott 1999), physics (Tanner 1962), psychology
(Broadben 1966), medicine (Clark ef al. 1968), botany
(Gordon and Prentice 1977), disease mapping
(Schlattmann and Bohning 1993), and meta-analysis
(Bohning 1999).

The component number estimation in finite
mixture modelling is not a trivial question when the
component number is unknown. It has long been
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recognized that this problem is unidentifiable under the
null hypothesis of homogeneity. The common
likelihood ratio test (LRT) fails in the case of the finite
mixture models since the LRT statistic goes to infinity
with probability 1 (Hartigan 1985). Many new methods
have been proposed to choose an appropriate
component number, including the modified likelihood
ratio test (MLRT) (Chen et al. 2001), D-test (Charnigo
and Sun 2004), Kullback-Leibler (KL) distance (Sahu
and Cheng 2002) and Bayes factor (Ishwaran et al.
2001). However, most methods are complex in
computation and often lose the clear interpretation of
LRT. Besides, many methods are designed to deal with
simple cases such as a 2-component mixture versus the
homogenous distribution, and as a result, they are not
easily extended to more complicated situations.

We propose a new approach from a different point
of view. With the constructed pseudo-response from a
saturated model, we transform the mixture density
estimation problem to a variable selection problem in
linear regression. The weight vector of the mixture
density is treated as the regression parameters
conditional on the constructed response and design
matrix, and calculated using a variant of the LASSO
approach with special constraint that all regression
parameters are non-negative and the summation is 1.
EM algorithm is used to optimize the parameters of the
component densities, and the whole process is repeated
until the convergence of the final estimate. From our
experience, the algorithm’s converging speed is at the
same order with EM.

The paper is organized as follows. Section 2
introduces our proposed method. Section 3 shows some
theoretical results. Extensive simulation results are
provided in Section 4. In Section 5, we apply our
approach to a proteomic mass spectroscopy ovarian
cancer data analysis. Section 6 includes a brief
summary and some discussions.

2. PROPOSED METHOD

Suppose there is a random sample of »
observations, xj,...,x,, from a finite mixture

Kk
distribution 2 7; fix|6). The component number &,
j=1
component weights sz, and the distribution parameters
0@ are all unknown. We use Y to denote the mixture
density. The true density values at the sample points are

k
V= 2 7 fix|6), i =1,...,n. Suppose we have fitted a
saturzjjlteld mixture model f with component number m
for the data, m > k, and use Y to denote the density of
the sample points estimated with f . The choice of the
saturated model will be discussed in Section 2.1. Then
we can approximate the relationship between ¥ and Y .

Let &; denote the difference between the estimate
¥, and the true value y;

Kk
yi =yité&E= Z@f(xilgj)—i_gi»i:la”'»n (3)
j=1
However, since we do not know the true value of
k, we use m to approximate it as the start, and expect
that there are m — k components with weight 0.

m
Y Tl + Y 00X fx|O) + &

=1 j=k+1

Il
DM~

—
Il

Il
NgE!

7 f(xi|6) + & with Zl{ﬂjzo} =m—k
J

i=1,..,n @)
If we make an assumption for the error term & that
E(¢e) =0, Var(e) = Z for some well defined positive
definite matrix, we can treat x as the regression
parameters conditional on the response Y and the
design matrix X with the (i, /)th entry f(x;6; ). In other
words, if we assume that the component density
parameters 6, are known temporarily, we can re-express
Equation 4 as

1

—
Il

m
Vo= Y mXyte&i=1....n )
=1

where the design matrix X is constructed using f(x;/6),
and m — k of the regression parameters 7; should have
true value 0.

Note that the estimated density could be seen as
the summation of the true density, some pseudo
component densities with weight zero, and an error
term. Thus we can estimate mixture weights as
regression parameters due to the linear structure of the
mixture model.

We can use either the cumulative distribution
function (CDF) or the probability density function
(PDF) to relate Y to Y . There are subtle differences
between these two functions though. The correlation
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between predictors (f(x|6)) is larger under the CDF
case, while the design matrix is nearly orthogonal under
the PDF case. The correlation between the columns of
the design matrix affects the imposition of sparsity on
the mixing weights. The estimates using PDF are
usually larger than those using CDF, which will be
shown in the simulation examples.

In our approximation, we know that in Equation
4, some true 7; values should be exactly zero. The
ordinary least square (OLS) estimator of the mixing
weights under the regression-type relation derived in
Equation 5 does not help here because it gives m
non-zero regression parameters. To impose sparsity, we
will use a variant of Tibshirani’s least absolute
shrinkage and selection operator (LASSO) (Tibshirani
1996).

For a linear model Y = Xz + & LASSO estimator
minimizes the residual sum of squares (RSS) subject

to the constraint 2 || <t for some 7> 0.
i

n P
~LASSO _ ; o 2
7 = argmin ) (¥, - Z)ﬁjﬂ'j)
7 =1 =1
subject to 2 |m| <t
j
which is equivalent to

n P p
AHASO = argmin{ Y (¥ - 2)31.7:])2+12|7zj |
z i=1 j=1 j=1

with 4> 0. Because of the special geometry of LASSO

constraint 2 | 77| < 1 (the rotated diamond), the
]

LASSO solution can produce exact 0 coefficients for
some predictors. As a result, the LASSO does
coefficient shrinkage and predictor selection
simultaneously and continuously. It retains the good
features of both subset selection and shrinkage
re-gression while minimizing their shortcomings.

However, an additional special requirement is
needed for the mixture problem as indicated in Equation

5. The mixing weights must also satisfy 2 7 =1 and
i

7; 20, since z represents the weights of the component
distributions in a finite mixture model. We will use a
variant of the LASSO called the positive LASSO
approach proposed by Efron ef al. (2004), and find the
solution with exact summation 1. For efficient
computation, we will make use of the least angle
regression (LARS) representation of the positive
LASSO as in Efron et al’s paper. The detailed algorithm
will be described in Section 2.3.

2.1 Saturated Model Choice

To construct a saturated model, we need to use a
component number m large enough. Lindsay (1983)
proved that the upper bound of k& is the number of
distinct points in the sample. For many scientific
questions, we can have a stricter upper bound d for the
estimate of £ (Ishwaran et al. 2001), and the model with
component number larger than d is a saturated model,
i.e., m > d will suffice the requirement for a saturated
model. While our inference is robust to the choice of
the saturated model, we suggest using the most
saturated model satisfying the constraint. For the normal
mixture model with unconstrained means and variances,
the log-likelihood function is unbounded for any
number of entertained components (Eguchi and
Yoshioka 2001). Thus we typically need to impose
some structural constraints to the model to eliminate the
unboundedness problem, one common option is the

equal variance constraint that 0'12 =..= O'E = o with

the largest possible component number m =n — 1.

2.2 Connections with other Methods

The idea of using penalized optimization for
mixture models has been suggested by other
statisticians. In this section, we want to show the
relationship between our approach and these methods.

The modified likelihood ratio test suggested by
Chen et al. (2001) has been popular because it is
distribution-free and asymptotically locally most
powerful. It adds a penalty term on the mixture weights
to the likelihood function, and solves the optimization
of the penalized likelihood

n k
(z 6) = arg rgax{logZ f(x 12.0)+C Y log(z,)}
7,0 i=1 j=1

(6)
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The LASSO solves the following constrained
optimization problem

73

n p p
AP = argmin{ Y (v, - X, x;7)%+ A Y, |7}
i=1 j=1 j=1
(7N
which is equivalent to Equation 6. As we all know, in

the regression setting, the ordinary least square estimate
is equivalent to the maximum likelihood estimate.

i=1

N n P
B = arc:aﬁrnin{z(yi - Y %6)%
j=1

arg[znax {log fAYIXB)} ®)

Chen et al. (2001) also discussed the Bayesian
view of their method, the penalty term is considered as
the prior distribution of z. This is also the same with
the Bayesian explanation of LASSO, which has a
double exponential prior distribution.

The general idea of generating the
pseudo-response for non-regression situations and
employing linear regression modelling is also suggested
by other researchers. Zou et al. (2006) introduced a new
method called sparse principal component analysis
(SPCA). They contrived the ordinary principal
component analysis (PCA) as the response and used the
LASSO (elastic net) to produce the modified principal
components with sparse loadings.

2.3 Lassoing Mixture Algorithm

Suppose we want to fit a finite normal mixture
distribution to the data with n samples. The fitting
algorithm is described in Algorithm 1.

We start with the most saturated model, where the
number of components m is » — 1. The contrived
response is the cumulative density or probability density
of the fitted m-component normal mixture at the data
points. We use the ordered data as the initial
corresponding location parameters, and the sample
variance divided by m as the initial common variance
parameter. The entries of the design matrix X will just
be the CDF/PDF of each component distribution at the
data points. For example, X;; will be the CDF/PDF for

Algorithm 1. Lassoing Mixture

Fit a m component saturated mixture model f and

let § = f (x).

With initial values QO, construct the design
matrixXi(J? = N(x |0?)

Repeat

~ . n ~ m 2 .

Z = argmin Zizl(yi—Ejzlxijﬂj) with the
V4

constraint Zfrj =land 7; 2 0.

Delete the redundant components with weight
zero.

Update the component parameters using EM with
fixed weights.

r+1 _ r+1
Xi "= N0 16;7)
until the convergence of the parameters.

A final full EM fit is suggested to optimize the
location and scale parameters.

the jth component distribution N(x|6) at the i" data
point.

Using the ordered data as the initial values for the
corresponding location parameters of an m-component
normal mixture is a reasonable choice, which implies
each data point is from its own component distribution.
However, the initial value of the common variance can
not be easily determined. In practice, we find that the
large initial value tends to produce the solutions too
sparse, while the initial value too small gives a model
with redundant components. Our choice of the sample
variance divided by m is a heuristic attempt based on
our experience. Besides, we find that our model
selection result is very robust for the choice of the
saturated model, a mixture model with the component
number large enough can be used as the saturated
model.

We use two simulated data sets from the
simulation design 2 presented later in the paper to show
the parameter traces of our algorithm. Each data
consists of 100 observations from a 2-component
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Fig. 1. (a) is the histogram plot of the simulated data set 1 with
the kernel density curve. (b) is the histogram plot of the
simulated data set 2 with the kernel density curve.
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normal mixture with homogeneous unit variance, equal
weight, and location parameter 4 = (0, 3). Fig. 1
shows the histogram plots with kernel density curves
of these two data. Fig. 2 and Fig. 3 are the parameter
trace plots. Both analysis start with a 99-component
normal mixture with the ordered data as the initial mean

vector and O yata / /100 as the initial common standard

deviation. Because the component number drops
sharply from 99 to a small number at the first iteration,
we only plot the trace from the second step until
convergence.

From the trace plots, we see that the parameter z
and u jump randomly at the beginning. With the
degeneration of the component number &, other
parameter estimates converge to the stationary values
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Fig. 2. Trace plot of the simulated data set 1. (a) is the trace of the component number k. (b) is the trace of the common standard
deviation o - (c) is the trace of the weight vector z - (d) is the trace of the mean vector .
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Fig. 3. Trace plot of the simulated data set 2. (a) is the trace of the component number k. (b) is the trace of the common standard
deviation o (c) is the trace of the weight vector 7z (d) is the trace of the mean vector 4.

gradually. The final model selected has 2 components.
It is interesting that components with larger weights
at early iterations do not necessarily survive in the end.

3. UNDERSTANDING THE ESTIMATOR

Firstly we constrain the problem to the situation
where the mixture component number £ is known. The
common approach is fitting the model with EM to get
the maximum likelihood estimates (MLE) of the other
parameters which maximize function 2. We want to
show that we can also get MLE by the following
Algorithm 2, which iteratively uses the OLS estimator
and EM with the fixed weights.

The following Lemma 1, Lemma 2, and
Theorem 1 show that the likelihood is increased at each
step of the Algorithm 2. Thus, the final estimates are
MLE.

Lemma 1. Suppose in the finite mixture model
estimation, the number of components & is known and
7 is the EM estimate for the weight vector z, then

Er)=r

Lemma 2. Suppose in the finite mixture model
estimation, the number of components £ is known, the
component parameters @ are known, and the weight
vector 7z is unknown. Construct the design matrix X and
response vector Y as in Algorithms 1 and 2, and
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Algorithm 2. OLS + EM

Fit a saturated mixture model f and let v, =
f (x;). With initial values 49 construct the design

N(x |019).

matrix Xi j =

Repeat
7= argmnzI (% EJ L X7

Update the component parameters using EM with
the fixed weights.

Xr+1 _ N()ﬂ |9r+1)

until the convergence of the parameters.

estimate 7 with #9° = arg min (Y = X7)? . Then for

the class of the unbiased estimates of z, 7_%°|S has the

largest loglikelihood. 7_%()'5 = argmax /,(x|z, O).

T

Theorem 1. Suppose in the finite mixture model
estimation, the component number k is known. With
some initial parameter values, the estimates by
Algorithm 2 are

(£,0) = argmax ,(x|z, 6)
7.0

When the mixture component number £ is
unknown, a general extension of Algorithm 2 is
Algorithm 1, in which we replace the OLS estimator
with the positive LASSO and start from the £ = m
model, which is the largest possible saturated model.
Setting k£ = m allows the lassoing mixture approach to
be cast as a penalized MLE (PMLE) with penalty
imposed on the mixture weights by the L-1 parameter
constraints of the (positive) LASSO. Due to the sparsity
property of the LASSO, redundant mixture component
weights may be estimated to be 0. Thus the lassoing
mixtures approach can be used in the general case when
the mixture component number is unknown.

Next, we will show that the LASSOed mixture
estimate from Algorithm 1 is indeed consistent.
Additionally, consistency of the estimate of the number
of components k& can be obtained by making use of the
new adaptive LASSO algorithm of Zou (2005). Note
that the general strategy of using a saturated model as
a starting point to fit the mixture model has also been
suggested in sorts as far back as Laird (1978), although
not in a regularized fashion as what is presented here.

The following Theorem 2 shows the consistency
of the final lassoed mixture estimate.

Theorem 2. Let f denote the true mixture density and
f denote our estimate, then f—f —p> 0.

Remarks. Clearly order selection of the finite mixtures
can be cast as a variable selection problem. However,
the variable selection with LASSO is not always
consistent. Meinshausen and Biihlmann (2006) and
Ishwaran and Rao (2005) showed the confiict between
prediction and variable selection, the optimal A for
prediction gives inconsistent variable selection results.
Meinshausen and Biithlmann (2006) derived some
sufficient conditions for the consistency of LASSO
variable selection, which are not satisfied always. To
obtain the general variable selection consistency, Zou
(2005) proposed an adaptive LASSO approach. Under
the model of Equation 5, he defined data-dependent
weights w;, j = 1,...,n to different coefficients. The
adaptive LASSO estimate is

n P
T_[Ada—LASSO — argmn{Z(yi - 2 Xijﬁj )2
T =1 j=1

p
+ﬂj§:jle |7, 1}

Then if @ = 1/|#% |, where 7> 0, the estimate

72 A4a-LASSO i1l be consistent and have the optimal

estimation rate.

Ishwaran and Rao (2005) also suggested that we
could use a hard thresholding procedure for the LASSO
estimates where the thresholding parameter must be a
function of the sample size to achieve the consistency
of LASSO variable selection.
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4. SIMULATION STUDIES

To illustrate how our method performs, we make
use of the simulation design from Ishwaran et al.
(2001). They developed a weighted Bayes factor
method for estimating the finite mixture models by
implemented an generalized weighted Chinese
restaurant (GWCR) Monte Carlo algorithm, and did the
performance comparison on the simulated data sets with
the AIC and BIC approaches. There are 10 different
simulations in which data are independently drawn
from a finite location normal mixture with unit
variance. All experiments except Experiment 1 have
uniform weights for the components. In Experiment 1,
= (1/3, 2/3). Experiments 1-3 have two components
and 4= (0, 3), (0, 3), (0, 1.8) respectively. Experiments
4-6 have four components and g = (0,3, 6, 9), (0, 1.5,
3, 4.5), (0, 1.5, 3, 6) respectively. Experiments 7-10
have seven components and z = (0, 3, 6,9, 12, 15, 18),
0, 1.5,3,4.5,6,75,9), (0, 1.5, 3, 4.5, 6,9.5, 12.5),
(0, 1.5, 3, 4.5, 9, 10.5, 12) respectively. Experiments
1-6 have sample size n = 100, while Experiments 7-10
have sample size n = 400. Each simulation is repeated
500 times. We fix the same random seed for all
experiments to avoid the random fiuctuation due to
changing random seeds. Fig. 4 shows the true mixture
densities in each simulation. For Experiments 3, 5, 6,
8-10, the mode number is less than the component
number because of the close distance between
components. We apply our lassoing mixture method to
each setting and compare the selection performance to
the results published in Ishwaran ef al. (2001).

Tables 1-3 present the results of our method using
CDEF/PDF and the results from the AIC, BIC, GWCR
algorithms (Ishwaran ef al. 2001). In Experiments 1-2,
Lassoing recognizes the 2-component mixture, though
not as consistent as AIC, BIC and GWCR. In
Experiment 3, Lassoing discovers the true 2
components, while the other methods tend to recognize
1 component. In Experiment 4, AIC and Lassoing PDF
are the winner, and Lassoing CDF method uncover the
true model about 20% of the time. In Experiments 5-6,
Lassoing methods tend to have higher frequencies of
finding the correct number of components as compared

Table 1. Results of Simulations 1-3: Samples size is 100
and all distributions has two components. Entries
in the last five columns are the percentage of times
out of the 500 samples for which the component
number estimate equals a candidate dimension
value k. Percentages highlighted by boxes indicate
highest value and thus represent the best model

for a specific procedure.

Exp|# modes| k£ | AIC | BIC |GWCR | Lassoing
CDF | PDF
1 2 1 0.018 [0.150| 0.018 |0.050 | 0.074
2 10.896]|(0.838]| [0.920] [[0.584]|[0.432]
3 10.062 [0.012] 0.058 |0.186 | 0.220
4 10.024 [0.000| 0.004 |0.068 | 0.136
510.000 | 0.000| 0.000 |0.046 | 0.062
>6/0.000 | 0.000| 0.000 |0.066 | 0.076
2 2 1]0.022 [0.212| 0.030 |0.022 | 0.016
2 [0.900]([0.780]| [0.916] |[0.510]|[0.386]
3 10.050 [0.006| 0.054 |0.232| 0.238
4 10.028 [0.002| 0.000 |0.132|0.172
510.000 |0.000| 0.000 |0.026 | 0.084
> 6(0.000 | 0.000| 0.000 |0.078 | 0.104
3 1 1 {0.702](0.968|[ [0.868] | 0.106 | 0.194
2 10.264 [0.030| 0.130 0.416
3 10.024 [0.002| 0.002 |0.186 | 0.184
4 10.000 [ 0.000| 0.000 |0.044 | 0.096
510.000 |0.000| 0.000 |0.016 | 0.048
> 6/0.000 |0.000| 0.000 |0.076 | 0.062

with other methods. In Experiments 7-10, Lassoing
methods are better than BIC.

A proportion of Lassoing results have large
estimates for the component number k. One possible
reason is that we start from the largest possible model
m=n— 1. Lassoing PDF tends to have larger estimates
than that of Lassoing CDF, one of the possible reasons
is the different correlations between the columns of the
design matrices of them, which is mentioned in
Section 2.
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Table 2. Results of Simulations 4-6: Samples size is 100
and all distributions has four components. Format
and methods used are similar to that described in
Table 1.

Exp|# modes| k£ | AIC | BIC |GWCR | Lassoing
CDF | PDF

4 4 1 10.000 | 0.110| 0.000 |0.014 | 0.034
0.178 ||0.596]| 0.102 {|0.348|| 0.080
0.110 | 0.110 0.198 | 0.090
0.182] 0.306 |0.194 |]0.268
0.038 | 0.002| 0.038 |0.078 | 0.182

wm s W

0.000 | 0.000| 0.000 |0.050 | 0.108

Q9

[\

0.000 | 0.000| 0.000 |0.118| 0.238
5 1 1 10.244 |0.748]| 0.144 |0.028 | 0.060

0.556/|0.246 | [0.818] ([0.494]([0.312]

0.14210.004| 0.032 |0.230 | 0.274

2
3
4 10.044 {0.002| 0.006 |0.122 | 0.142
510.014 | 0.000| 0.000 |0.040 | 0.086
6 10.000 [ 0.000| 0.000 |0.018 | 0.060
=7/0.000 | 0.000| 0.000 |0.068 | 0.066

6 2 110.016 {0.188| 0.000 |0.022 | 0.060

0.474]/[0.698][ [0.612] |[0.476]| 0.216

0.392 |10.106| 0.368 | 0.208 |]0.280

2

3

4 10.102 {0.008| 0.020 | 0.106 | 0.184
510.014 | 0.000| 0.000 |0.054 | 0.120
6

0.000 | 0.000| 0.000 |0.036 | 0.062
=7/0.002 | 0.000| 0.000 |0.098 | 0.078

5. ANALYSIS OF PROTEOMIC MASS
SPECTROSCOPY DATA FOR OVARIAN
CANCER CLASSIFICATION

Microarray technology is widely used because it
can provide the expression of thousands of genes of the
samples at the same time. However, it is argued that
proteins are closer to actual biologic functions of cells
than mRNAs or DNAs, protein biomarkers of a disease
should offer more information about disease than the
genetic biomarkers (Wu ef al. 2003). Protein mass

Table 3.

Results of Simulations 7-10: Samples size is 400

and all distributions has seven components.
Format and methods used are similar to that
described in Table 1.
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spectrometry is the new technique to analyze protein
expression. It produces the mass/charge ratio (m/z)
spectra of the interested proteins with high definition,
as is shown in Fig. 5. The x axis of the spectra is the
protein mass divided by the number of charges
introduced by ionization, and the y axis is the protein
intensity of the corresponding x value. This analysis can
be conducted on thousands of proteins over a large
number of samples simultaneously and can be used to
detect the quantitative or qualitative changes between
samples. An important application in the early cancer
detection is to classify and predict cancer on the basis
of protein spectra.

The ovarian cancer data set was produced by the
Keck Laboratory at Yale University. It consists of
MALDI-MS spectra of 47 patients and 42 normal
persons. Each spectra includes 91360 measurements
spaced 0.019 dalton (Da) apart, where dalton is the
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atomic mass unit. It has been analyzed by Wu et al.
(2003) and Tibshirani et al. (2004).

Firstly, since each spectrum consists of intensity
measurements at the ordered grid points, it is natural
to use a density curve to smooth the data and construct
the classifier. Finite normal mixture distribution is a
convenient and robust option for the spectra density
fitting. Because of the wide span of the measurements
(800 Da-3500 Da), it is inappropriate to use only one
density curve to fit the data. We split the data into M
pieces in order with the width L Da for each piece, and
construct the classifier for each piece. Let G,,(x) denote
the classifier for the mth piece, m=1,2,...,M, C €
(=1, 1) denote the patient and control classes, the
predictions from all of the classifiers are then combined
through a majority vote to produce the final prediction,

M
G(x) = sign( Y, Gp(x)) ©

m=1
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Fig. 5. Protein mass spectrometry sample plots. The top two spectra are from the cancer samples and the bottom two spectra are from the

control samples.
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For each piece, we fit finite normal mixture
densities to both patient data and control data. An
observation will be assigned to the class with less
distance.

1, i (Y= Fo IO(x))2
< V= Finc(0)? (10)

1 otherwise

Gp(x) =

Here Y, is the normalized intensity (density)
vector of the mth piece, Ifrn (X) and Ifrn o(X) are the

predicted densities for the m h piece with the mixture
models for the patients and controls correspondingly.

To fit the finite normal mixture models, we use the
data points in the window of piece width £m/2 Da. The
original intensities are normalized to make them a good
approximation of the densities at the m/z values. In
other words, me(x)dx = ZYm(xl')(x,url —x;)=1. The
common standard deviation of the component densities
is fixed as 0.2 through some preliminary studies to
make the mixture component number in the interval
1 —10. The mixture component number and the location
parameters of the component densities are selected by
our lassoing approach. Due to the optimization
complexity, we will not update our estimates by
iteration. Instead, we use a sequence of fine grided
location candidates to reduce the potential bias. We
construct the candidate component densities with
ordered location parameter spanned from the beginning
to the end of the corresponding piece with the spaced
interval 0.01, so the precision of the location parameter
estimates is 0.01.

We use 5-fold cross validation to choose the piece
width L, the result is summarized in Table 4. It seems
that window width 5 Da has the best performance with
cross validation error rate 26/89. Further possible
improvement in the prediction accuracy can be achieved
by biomarker selection and background noise detection.

Table 4. Results for 5-fold cross validation with
window width 2-6 Da

Width (Da) 2131 4 5 6
Cross Validation Errors/89 | 35 |31 |35 |26 |31

The peak probability contrasts (PPC) approach was
proposed by Tibshirani et al. (2004). It extracts the
common set of peaks from individual spectra, and apply
the nearest shrunken centroid classifier to the set of
extracted features. They used the same ovarian cancer
data as the example, and showed that the tenfold
cross-validated misclassification rate is 23/89-30/89
with different options in the algorithm. These results
are comparable with that of our method.

Instead of using the extracted peak measurements,
we use all information to construct the classification
model. The reason is that a biomarker that has large
relative intensity measurement does not always act
differently in patients and controls, it may have large
measurements in all spectra hence not a useful feature
for classification. Our method uses mixture models, so
it could provide pattern features that differentiate
patients from controls. The common peaks extracted by
the PPC method represent a discrete re-expression of
the pattern features we find, which does not contain the
discriminative information in other parts of the spectra.
Interestingly, if we plot the mixture component
locations versus the corresponding probabilities as in
Fig. 6, we have a plot similar to the peak centroid plot
in Tibshirani et al.’s paper. Each component of the
mixture model represents a “peak”, which does not have
one-to-one correspondence with the real peaks in
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Fig. 6. Mixture component locations vs. probability plot.
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spectra. Usually there are more components (“peaks”)
than the number of peaks extracted by Tibshirani’s PPC
method, since we need to use a few mixture
components to capture the peak feature. We see that the
patient model and control model share some
components (peaks) though with different weights, and
there are some components (peaks) distinguish these
two groups.

6. DISCUSSION

In this paper we propose a new method to do
mixture model estimation, especially for the situation
when the number of components in unknown. By
generating pseudo-response and candidate design
matrix, we treat the mixture model estimation problem
as a variable selection problem in linear regression. We
show that our lassoing method is competitive with other
methods such as GWCR, AIC, and BIC. Our method
has a computation efficiency advantage since we do not
do sequential model construction but instead soft
thresholding using a variant of the LARS algorithm to
select an appropriate model, which has the same
computation order as the OLS estimation.

Multivariate mixture models are usually difficult
for other methods to handle because of the model
complexity and the heavy computation load when
calculating the supremum of a multivariate density or
drawing posterior samples from a multivariate
parameter space. As we noted, only few paper such as
Stephens (2000) included multivariate data application
examples. Our approach can be extended easily to
multivariate cases since the linear relationship of
density is the same as that in univariate mixture models.
The only additional computation is the EM algorithm
for multivariate density.
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APPENDIX

Proof of Lemma 1.

Suppose we want to maximize the mixture
. . n K .
likelihood ,1:[1[ z‘lﬁ j f(x 160 j )], where & is known. The

complete likelihood is as follows:
n k P
L=[1X tzmfxdgn™
i=1j=1

where Z;; is the indicator variable whether the ith
observation comes from the jth component. The weight

n S

RS

. ~ i=1"1

estimates are ”_s+1 = —J, an
n

5s+1  _
j d Z;™ =

7% (%16,)

k s
ijlﬂjf()ﬁwj)
of EM.

where s is the iteration number

Zyjs - - . » Zyj are i.i.d, so we have

=E@))
E(#;) = 2 1n ‘
= E(Zi=1,))
7 Ef (1))

> E (g0

S
j=17]
The estimate of & is unbiased.

Proof of Lemma 2.

Let y1, y2,...,y, denote the density estimates of
a saturated model at the observations. Suppose there are
another two density estimates of X7z; and X7, for
which we use U= {u;, i=1,...,n} and V= {v;, i =
1,...,n}todenote, U= X and V = Xm.

We want to show that if

Zin:l(yi — )’ < Zin:l i v’

then l_Ln=1ui > Hin=1 V;

We need to restrict the choice of & in the class of
unbiasedness. In other words, Ex; = Em, which is a
reasonable assumption based Lemma 1. It’s equivalent

to show that if zin:l(yi - u,~)2 < zin:l(yi - vl')z, then

2 in=1 Inu; > 2 inzlln v;. Using the Weak Law of Large

Number, we change the problem to that if E(Y — U)2 <
E(Y - V)%, then ElnU> ElnV.

E(Y-UP?<EY- VY
— EU*—2EYEU<EV?*-2EYEV

Because that Ezy = Em, EU = EV, we get
EU*<EV.

Using Taylor expansion /nx = (x — 1) — % (x- 1)2

+ O(x3) and only keep the first two terms, £ In U —

ElnV=EQU-2V+ % V- % U?) > 0. Because

~ol . ~ol

7% = argmin (Y — Xx)°, 7% gives the largest
V4

likelihood for all unbiased 7 .

Proof of Theorem 1.

Let Y denote the pseudo-response from a saturated
mixture model. When we use Algorithm 2, at the step

of OLS, for fixed X, X 7_?0|S, is closer to Y than any other

X7 , the likelihood is increased according to Lemma
2. At the step of Fixed-weight-EM, the likelihood is also
increasing. So that our final estimates are MLE.

Proof of Theorem 2.

Suppose our algorithm stops at m steps. Let f
denote the random variable corresponding to the
saturated distribution, fi,...,f, denote the
corresponding random variables with corresponding
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mixture distribution at the mth step, and f denote the
random variable of the final fitted mixture distribution.
f1,---» fn have different parameter sizes and f is
derived from f,, by EM. We assume that all random

variables are uniformly bounded. Then f— ¢ B ois

equivalent to E(f — c)2 B 0. We will discuss three
situations: m = 1, m = o,(n) and m < n.
If m =1 then
EC(f—f)? =E(f -1+ ;- f)?
=E(f-fy+Eh- T
+2E(f —f)(fi—- )

From the consistency of LASSO and EM, we have

fi— f Boand - N B0. So the crossover term

will be zero and E(f — f‘)z_p> 0, f - fF8o.

Because f is consistent, f - f LY 0, our estimate f
will also be consistent.

If m # 1 but m = 0,(n), we will have a finite sum
of 0,(1), which will still be 0,,(1). Our estimate will still
be consistent.

If m =< n, we could not show the consistency of
our estimate. The simulation study shows that our
algorithm converges very fast. We might not worry
about this situation.
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