Available online at www.isas.org.in/jisas
JOURNAL OF THE INDIAN SOCIETY OF
AGRICULTURAL STATISTICS 64(1) 2010 33-44

Information Based Agglomerative Segmentation in Metric Spaces

Francesca Chiaromonte'” and James Taylor2
! Department of Statistics and Center for Comparative Genomics and Bioinformatics,
The Pennsylvania State University, University Park, PA 16802
2Department of Biology, and Department of Mathematics and Computer Science,
Emory University, Atlanta, GA 30322

SUMMARY

In this article, we introduce an approach to agglomerate points in a metric space into spatially contiguous groups which
preserve both distance and frequency structure of the data. This is achieved using a traditional distance criterion to define
candidate mergers, and then selecting among these candidates as to maximize the mutual information between pre- and post-
merger partitions. Our information based agglomerative segmentation is particularly effective when grouping data that does
not present spatially separated clusters, and can therefore be employed for reducing data complexity in a number of scientific
applications. We illustrate the procedure using a simulated data structure and an application to the analysis of multi-species

genomic alignment data.

Keywords : Agglomerative clustering, Mutual information and entropy, Data complexity reduction, Genomics.

1. INTRODUCTION

Many contemporary data analysis problems
require the unsupervised grouping of large collections
of elements that can be viewed as points in a metric
space. This is a means to reduce data complexity while
preserving critical information and, roughly speaking,
can be thought of as a clustering exercise. However,
because of their underlying logic, traditional clustering
methods often provide poor solutions. Examples where
grouping is needed for data reduction can be found in
many scientific areas; to motivate the novel
methodology proposed in this article, and create a
practical context for it, we briefly introduce here two
such examples from the field of genomics.

First, consider the problem of grouping yeast
genes based on their transcription levels across a cell-
cycle related time course, as reported in a pioneering
microarray study by Spellman et al. (1998). Groups of
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genes displaying similar transcription patterns can be
interpreted as being co-regulated or functionally related
during the cell cycle. Preprocessing of the microarray
data included:

(i) elimination of the terminal part of the time course,
and imputation of missing values

(i1) standardization of transcription profiles

(iii) selection of genes whose profiles displayed
distinct periodic behavior.

This led to 679 points (genes) mapped in a 12-
dimensional Euclidean space (12-point time course
covering approximately two cell cycles) which, in a
way that is characteristic of many if not most
microarray experiments, show little if any evidence for
a natural partitioning. Fig. 1A shows a 2D view of the
data obtained through a projection on the first principal
components plane. While the points are unevenly
distributed, and some concentration regions appear, the
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Fig. 1. A shows a 2D projection of yeast genes mapped into points
in a 12-dimensional space, each coordinate representing
transcription at a time point along the cell-cycle (data from
Spellman et al. 1998). The projection plane is spanned by
the first and second principal components, and the spherical
shape is due to the normalization applied to transcription
profiles. The points are unevenly distributed, and some
concentration regions appear, but the data does not present
isolated clusters. B shows a 2D projection of 7-way DNA
alignment columns mapped into points in a 5-dimensional
simplex, each coordinate representing the probability of an
ancestral nucleotide (4, C, G or T) plus an artificial state
corresponding to a gap (data from Taylor et al. 2006). The
projection plane is the one maximizing separation among
the 5 vertices of the simplex, and shades of gray represent
frequencies of points after a preliminary clustering. Again
we can observe concentration regions but no isolated
clusters. In both examples, agglomerative clustering based
on distance alone fails to capture the structure of the data.

data does not present spatially isolated clusters. A “low”
cut of the dendrogram produced by a traditional
agglomerative clustering algorithm (see for instance
Hartigan 1975) would identify the concentration regions
as clusters, but also locate an undue number of very
small clusters (possibly singletons) in the less populated

regions. On the other hand, a “high” cut of the
dendrogram, providing a more substantial data
reduction, would create a partition with poor fidelity
to the structure of the data.

As a second example, consider the problem of
grouping columns in nuclear DNA alignments of seven
mammalian species (human, chimpanzee, macaque,
mouse, rat, dog, and cow) based on their likely
evolutionary history, as reported in a study of functional
genomic loci by Taylor et al. (2006). A partition of the
columns in groups capturing roughly equivalent
evolutionary histories can be used as a reduced
“alphabet” to encode aligned genomic regions —
facilitating the identification of functional loci (more
details will be given in Section 4).

A generic column has seven entries (the number
of species aligned), each comprising one of the four
nucleotides (4, C, G or T) or a gap (these are introduced
when creating the alignments with specialized software;
e.g. Blanchette er al. 2004). Thus, accounting for the
fact that no alignment column can be entirely composed
by gaps, there are a total of (57-1) = 78,124 columns
to be grouped. Preprocessing of the alignment data
included:

(i) a special handling of missing alignment entries,
which in practice resulted into a much larger
number of columns to be grouped (approximately
275,000 for 7 species)

(i1) associating each such column to a probability
distribution for the corresponding base in an
ancestral genome (this was done using an
established phylogeny for the seven species, an
HKY substitution model — see Hasegawa et al.
1985, and Felsenstein’s algorithm — see Durbin
et al. 1998, and Mayrose et al. 2004)

(iii)) merging columns that occurred seldom or never
in observed alignments with columns associated
with very similar ancestral distributions, having
a sizeable number of observed occurrences.

This led to 923 points (alignment columns)
mapped in a 5-dimensional simplex (5 states; the 4
nucleotides and an artificial state introduced to
accommodate gaps). Also here, no obvious partitioning
structure exists. Fig. 1B shows a 2D projection of the
data, and again we can observe concentration regions
but no spatially isolated clusters. As in the yeast
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cell-cycle gene transcription example (Fig. 1A), clusters
obtained from a traditional agglomerative algorithm
would provide an unsatisfactory representation of the
data.

For both these examples, the situation can be only
marginally improved by selecting different linkage
functions, or using different clustering approaches
based on distance alone (e.g. algorithms in the k-means
family, or clustering through mixture models; see,
among others, Hartigan 1975, McLachlan and Peel
2000, and Fraley and Raftery 2002).

In full generality, we consider the problem of
partitioning » distinct points x = {x;, i=1 ... n} in a
feature space X endowed with a distance d(o,0).
Associated with these points is an # x n distance matrix

D(x) = {d(x;; xp), i, ' = 1 ... n}
and a vector of n frequencies

fx)={flxp),i=1..n}

In some settings each distinct point may appear
only once, i.e. carry a frequency f(x;) = 1/n — this is the
case in the yeast genes example. In other settings
though, each distinct point may appear a different
number of times, and thus carry a specific frequency,
say fix)) = n; / (£;—=1._, n;7) — this is the case in the
alignment columns example, because columns have
already undergone some merging during data
preprocessing.

Lety = {y;,j = 1...m} indicate a partition of the
points, or equivalently of the integers {1...n}, in m
classes, and j[i] index the class to which x; belongs.
Given a linkage function, we can associate with the
partition a new m x m matrix of distances between
classes

D) = {di1vjs vy JoJ = 1 . mj
Also, we can associate to the partition a new vector of
m class frequencies

JO) = o= X faj=1...m}
=]
Our aim is to identify a partition that captures as closely
as possible both the distance and the frequency structure
of the original data, in a way that will be made rigorous
in the following.

We prefer to avoid the term clustering when
referring to our approach, and talk instead of grouping,

or segmentation. With this we try to convey the fact
that, while we seek groups covering contiguous regions
in the feature space (distance structure), our
methodology does not rely on the existence of spatially
separated clusters in the data.

Section 2 summarizes the theoretical underpinning
of the information based agglomerative segmentation
method we propose. Section 3 illustrates our method
and its performance in comparison to traditional
clustering approaches, using simulated data. In Section
4 we apply our method to the alignment columns
example, as one step in the protocol used to compute
so-called Regulatory Potential scores. Section 5
contains some concluding remarks.

2. INFORMATION BASED AGGLOMERATIVE
SEGMENTATION

In traditional agglomerative clustering, at any
given iteration A, a new partition y[hﬂ] is obtained
merging the two classes in the current partition y[h] that
correspond to the minimal off-diagonal entry of the
distance matrix D(y[h]). Ruling out for simplicity the
case in which there is more than one minimal entry, at
each iteration distance determines only one candidate
merger, which is implemented regardless of whether the
resulting f(y[hﬂ]) resembles j(y[h]) in any meaningful
way.

Alternatively, we could consider all mergers as
candidates regardless of distance, and select the one that
maximizes the mutual information between y[hH] and
y[h]. Since the two partitions are nested, we can easily
derive a joint density as

1 (M) = (") if li] =]
of (") =0 if ] |
so the mutual information is given by

I(y[h+1],y[h])

=z f (y[jh+1] ' yl[h]) |Og
K
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which coincides with the entropy of y[hﬂ].

The merger of maximal entropy, which we can
again assume to be unique for simplicity, is the one that
allows j(y[hﬂ]) to retain the most information about
f(y[h]). However, it may agglomerate classes that are not
contiguous in space.

The core idea behind our approach is that, in many
situations of practical interest, exploiting both the
distance and the frequency structure of the data may
lead to more satisfactory partitions. Thus, our aim is
to create an agglomerative algorithm that operates
somewhere in between the two extremes described
above. Intuitively, the algorithm should approximate in
a generic metric space the way a student in a beginner
statistics course is taught to draw a histogram to
summarize a univariate data set. She partitions the range
of the data in m contiguous segments, each containing
approximately the same number of points, and draws
boxes on them with hights that guarantee approximately
equal areas — such a histogram indeed corresponds to
the partition of maximal entropy, and spatial contiguity
of the classes is straightforward to implement on the
real line.

Pursuing this logic, we relax the requirement on
distance in a way that lets us consider several candidate
mergers, say a set cll of pairs (7, i’) that guarantee
neighborship, i.e. proximity in the feature space, but are
not restricted to the minimal off-diagonal entry of
D(y[h]). Among these candidates, we select the merger
(pair) that results in the largest mutual information
between y[hﬂ] and y[h], i.e. in the largest entropy
H(y[hﬂ]). After updating the distance matrix and
frequency vector to D(y[hﬂ]) and ﬂy[hﬂ]), we proceed
to the next iteration, et cetera. From now on, we will
omit the iteration index /4 for notational simplicity.

Let m be the current number of classes, and
N(i, k) the set of k nearest neighbors of class i
(excluding i itself), as obtained from D(y). We define
the set of candidate mergers C(4, ) as:

Clk, t)={(i, ) : / € N(i, k) and i € N(7', )}

Thus, the set contains all pairs (i, i") such that
D; y(y) is among the k smallest off-diagonal entries of
row i, and the 7 smallest off-diagonal entries of column
i’. This definition involves two integer parameters, k£ and
t, to be selected in {0, 1... (m — 1)}. These determine
the size of the candidate merger set, and thus the
relative role of distance and entropy in the algorithm
(see below). We chose, by convention, to restrict
attention to k£ <; this induces no loss of generality (and
we could equivalently consider # < k) because the
symmetry of D(y) implies that C(k, 1) = C(¢, k).

If we set by convention C(0,0) to contain only the
pair corresponding to the minimal off-diagonal entry of
D(y), taking k£ = t = 0 corresponds to traditional
agglomerative clustering, since we maximize entropy
on just this one minimum distance merger. C(1, 1)
comprises all pairs whose entries are off-diagonal
minima by row and column simultaneously (i is the
closest neighbor of i’, and vice versa). At the opposite
end of the spectrum C(m — 1, m — 1) contains all
m(m — 1)/2 pairs. So taking k = ¢ = m — 1 we maximize
entropy on all possible mergers, with distance playing
no role.

It is easy to see that C(0, 0) is contained in
C(k, 1) for any k and ¢, and thus that all candidate sets
are non-empty. It is also immediate from the definition
that

Ck, tyc C(K, 1), VK’'ZK,t'>t

If we take k£ = ¢, the candidate set C(k, k) is symmetric,
in the sense that if (i, i) belongs to the set so does
(i, 7). This results in a symmetric agglomeration.
Traditional agglomerative clustering based on distance
alone, i.e. C(0, 0), agglomeration that considers only
mutually closest neighbors, i.e. C(1, 1), and
agglomeration based on entropy alone, i.e.
C(m —1, m — 1), are all instances. For symmetric
agglomerations, as k increases from 0 to m — 1, the role
of entropy increases and that of distance decreases. In
fact, the containment C(k, k)  C(k’, k'), k' > k means
that the candidate sets become larger, corresponding to
a decreasing strength of the distance constraint.



Francesca Chiaromonte et al./ Journal of the Indian Society of Agricultural Statistics 64(1) 2010 33-44 | 37

An alternative way to decrease the role of distance
is to break symmetry, exploiting the containment
C(k, k) < C(k, 1), t 2 k. For a given k, C(k, 1) lets us
consider for merger, among the k-neighbors of each i
=1 ... m, any class for which 7 is a #-neighbor — so
neighborship can be less than mutual. This defines an
asymmetric agglomeration. The weakest distance
constrain in such an agglomeration is obtained setting
t =m—1; C(k, m — 1) contains all k-neighbors of each
i=1...m, regardless of whether neighborship is mutual
to any degree. Relatedly, asymmetry has an interesting
geometric interpretation; suppose the current partition
comprises a number of high frequency classes very
close to one another, together with some isolated points
or low frequency classes at the periphery of the former.
If we require mutual neighborship, the set of candidate
mergers will likely contain only pairs of high frequency
classes. Any such merger will result in a poor entropy
value, but those are the only mergers under
consideration. On the other hand, if we allow
neighborship not to be mutual, mergers between low
frequency classes and high frequency classes closest to
them are likely to make it into the candidate set, and
thus to be selected, as they result in better entropy
values. Asymmetric agglomerations may therefore help
achieve satisfactory segmentations by attributing points
in low density areas to classes in nearby high density
areas, while preventing the merger of classes in high
density areas to one another.

Another interesting interpretation of asymmetry is
that, in a way, it allows us to weaken the distance
constraint more effectively, regardless of the specific
structure of the data. Indicating by #(c) the number of
elements is a set, we have that

HCk, k) + #Clk, m— 1)) =km k=1 ..m— 1

This equality can be easily proved as follows: scanning
the rows of D(y) and taking the k£ smallest off-diagonal
entries for each row produces km pairs that, as a set,
form C(k, m — 1). However, some of these pairs will
be duplicates, i.e. pairs arising from two rows instead
of one. To obtain #(C(k, m — 1)) we need to subtract
the number of such duplicates from km. Suppose (i, i)
arises from both the i-th and the /’-th row. Then i must
belong to N(i, k) and i must belong to
N(7, k), i.e. (i, i’) must belong to C(k, k). Conversely,
suppose (i, i) belongs to C(k, k). Then by definition
i’ belongs to N(i, k) and i belongs to N(7, k), so that
(i, I’) arises from both the i-th and the ’-th row. In other

words, the set of duplicates and the symmetric set
C(k, k) coincide. It follows that #(C(k, m — 1)) = km —
#(C(k, k)).

An immediate corollary of this, and the fact that
#(C(k, k)) <#(C(k, m — 1)) because C(k, k) is contained
in C(k, m — 1), is that

# (Clk, k) < %m SHCh,m-1), k=1 ..m—1

So, regardless of the structure of a specific data set, km/
2 is an upper bound for the size of the symmetric
candidate merger set, and a lower bound for the size
of the asymmetric one. It follows that, as we increase
k, the asymmetric sequence C(k, m—1) grows faster than
the symmetric sequence C(k, k).

3. SIMULATED DATA

In this section, we introduce a simulated
2-dimensional data structure that allows us to illustrate
the working of the proposed agglomeration, and to
compare it with other clustering approaches. The data
is produced drawing 20 points x; = (x; 1, x; 2) at random
from each of six bivariate spherical Gaussians (n =
180), whose locations and variances are selected as to
provide the structure shown in Fig. 2A. A sparse
background is given by a Gaussian located at 11 = (60,
60) with standard deviation oy = 30, three Gaussians
with standard deviation o» = 03 = 03 = 6 are located
in the lower left 1, = (20, 20), lower right 13 = (20,
100) and upper right 4 = (100, 100) corners of the data
range, and two Gaussians with standard deviation
05 = 0g = 3 are located very close to one another with
centers 5 = (30, 100) and i = (10, 100) in the upper
left corner. Indicating with ¢, (o) a bivariate Gaussian

density with mean vector 4 and covariance 0"/, we can
model this data with the density
o) = Y 7, (X, 7 1 j=1..6
iPu o 0 7=

j=1..6 1

and an ideal reduction for it would comprise six groups
of approximately equal point content; one for the sparse
background, and five for the concentration areas.

We use this data to investigate the performance of
information based agglomerative segmentations
(symmetric and asymmetric), and compare them to the
extreme cases — i.e. traditional agglomerative clustering
based on distance alone, £ = ¢ = 0, and agglomeration
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based solely on entropy, k = t = max, where max
indicates the number of classes minus 1, m — 1, to be
used at each iteration. We include in the comparison
also a k-means algorithm, which in principle should
work effectively when partitioning data generated from
spherical Gaussian mixtures. Whenever needed (i.e. in
all agglomerations with £ < max), distances among
classes are defined by centroid linkage.

Here, we evaluate the performance of a generic
partition y in, say, m classes (produced by any clustering
algorithm) using an approach that relies on the known
mixture structure of the simulated data. Namely, we
measure the dissimilarity between the mixture density
introduced above and the empirical mixture density
associated with the partition; that is:

o ()= Y fy)ex ¢
I

j=1..m

where f(y;) is the frequency of class j in the partition,
and the center and spread for each class are computed
using the points in the class as

1
X = 3 f(x)x
IRTCAI At

2__1 v 0d2(x %
s; AR (%)d=(%,%;)

Note that for our simulated data all of the drawn
points are distinct, i.e. Ax;) = 1/n for each i = 1...n.

Concentrating on the available points, we compute
dissimilarity as:

D(x
Ap) =T ®(x)log &)((y‘

i=1..n y )

and report results in Table 1. Clearly, for our simulated
data structure, agglomerative segmentations that
leverage both distance and entropy work better than
those employing only distance, or only entropy. Also,
while k-means does better than the latter, it does far
worse than the former.

Interestingly, there appears to be an “optimal”
combination of the two criteria; entropy improves
performance up to a point, but when it becomes too
dominant relative to distance (here, when k exceeds 2,
and/or the asymmetry is maximized — recall both larger
k and higher degree of asymmetry lead to a stronger
role of entropy) performance deteriorates.

Table 1.
é Distance
G k=t=0 1.838049¢-01
L Distance and Symmetric Asymmetric
IC\)/I Entropy t=k t=k+1 t=k+2 t = max
E =1 1.186953e-01 1.091739¢-01 1.057796e-01 1.178201e-01
R k=2 1.098222¢-01 8.338563e-02 8.637635e-02 1.178201e-01
? k=3 1.046846¢-01 1.034067¢-01 1.238444e-01 1.306283e-01
1 Entropy
0| k== max 2.270318e-01
k-means clusters 1.794120e-01

A performance comparison for: information based symmetric (¢ = k) and asymmetric (t =k + 1, t = k + 2 and t = max,
where max is the number of classes minus 1 at each iteration) agglomerative segmentations at £ = 1, 2 and 3 (decreasing
strength of the distance constraint); traditional agglomerative clustering based on distance alone (k = ¢ = 0); agglomeration
based on entropy alone (k = ¢t = max), and k-means clustering. The values reported are dissimilarities A (evaluated
cumulatively at the observed points) between the six-component Gaussian mixture modeling the simulated data structure
of Section 3, and the empirical Gaussian mixtures associated to the six-class partitions produced by each method. The
best partitions are provided by information based asymmetric agglomerative segmentations with £ =2 and # = 3 or 4
(bold in Table; see Fig. 2B).




Francesca Chiaromonte et al./ Journal of the Indian Society of Agricultural Statistics 64(1) 2010 33-44 39

Finally, for our simulated data structure asymmetry
clearly produces an advantage. When non-mutual
neighborship is allowed, mergers between low
frequency classes and high frequency classes closest to
them are likely to make it into the candidate set, and
thus to be selected, as they result in better entropy
values than mergers between close high frequency
classes. In general, this helps attributing points in low
density areas to classes in nearby high density areas,
while preventing the merger of classes in high density
areas to one another. In the simulated data structure
considered here, asymmetry allows us to successfully
separate the two close-by, tight components in the upper
left corner of the data range.

In summary, the best partitions are provided by
information based asymmetric agglomerations with £ =
2 and 1 = 3 or 4 (see Table 1). Fig. 2B shows the
partition produced by the agglomeration with k£ = 2 and
t = 3, which captures the simulated data structure with
remarkable fidelity. The two panels of Fig. 3 show the
partitions produced by traditional agglomerative
clustering (distance only), and the k-means algorithm.

4. ALIGNMENT COLUMNS EXAMPLE AND
REGULATORY POTENTIAL

Computational tools aiding in the identification of
functional loci of a genome are an important and active
area of research. Current algorithms for predicting the
location of coding regions and genes are quite effective,
because existing knowledge about the structure of these
loci can be incorporated in explicit and relatively simple
probabilistic models for their sequences (e.g. hidden
Markov models; see for instance Siepel and Haussler
2004a and b, and Gross and Brent 2006). The problem
becomes harder when considering other types of
functional regions, such as those which regulate the
transcription of genes. Knowledge about them is
available; they often show a high degree of conservation
across species, are located in the proximity of genes,
and comprise modules of transcription factor binding
sites. However, this knowledge is less conclusive than
the one available for coding regions — for instance,
regulatory regions can withstand a fair amount of
divergence across species without losing function, may
be quite distant from genes, and binding site motifs are
well characterized only for a limited range of
transcription factors (see Tompa ef al. 2005 for a
review, as well as Costas et al. 2003 and Dermitzakis

and Clark 2002). For these reasons, when developing
tools to help locate regulatory regions it is important
to retain a data-driven perspective, allowing both
expected and unexpected signals in observed
alignments to contribute to prediction algorithms. This
is the approach we took in Taylor ef al. (2006), where
we used 7-species alignments (human, chimpanzee,
macaque, mouse, rat, dog, and cow) of known
regulatory regions and non-functional sequences to train
log-odds scores (called Regulatory Potential) based on
variable order Markov models. This allowed us to
exploit both conservation and composition patterns in
the training alignments — without postulating ex ante
which patterns may be relevant, or in what form they
would contribute to prediction.

The main complication in developing Regulatory
Potential scores arose from the very large number of
possible alignment columns (see Introduction), and yet
larger number of short motifs composed by them.
Without strong ex ante assumptions, the available
training data was extremely scarce relative to the size
of the models to be fit to compute the scores. Thus, in
order to extract meaningful predictive information from
the known regulatory regions and non-functional
sequences at our disposal, we had to collapse alignment
columns into a much reduced “alphabet™ which would
allow us to parsimoniously encode alignments.

For this purpose, we designed a two-stage
protocol. The first stage was unsupervised; we used our
information based agglomerative segmentation
approach to group alignment columns embodying
roughly equivalent evolutionary histories. Once this
moved us far enough along to dampen overfitting, we
switched to a supervised stage, where alignment
columns were further grouped based on classification
performance (i.e. the ability to separate regulatory
elements and non-functional sequences).

In more detail, we mapped each of the possible 7-
way alignment columns (a number approximating
275,000 when accounting for special encodings of
missing alignment entries) into a point in the
5-dimensional simplex representing an ancestral
distribution (see Introduction). As a preprocessing step,
we then merged ancestral distributions corresponding
to alignment columns that occurred less than 10 times
in the training data to the closest ones that occurred at
least 10 times, resulting in 923 points. These points
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Fig. 2. A shows the 2-dimensional simulated data structure used
in Section 3 to compare the performance of information
based agglomerative segmentations (symmetric and
asymmetric), traditional agglomerative clustering based on
distance alone, agglomeration based on entropy alone, and
k-means clustering (see Table 1). The data is produced
through six Gaussian components — a very sparse one
creating a background, and five more concentrated ones
located at the corners of the data range. The two
components very close to one another in the upper left
corner illustrate a geometric advantage of asymmetric
agglomeration: allowing non-mutual neighborship, mergers
between low frequency classes and high frequency classes
closest to them are likely to make it into the candidate set,
and thus to be selected, as they result in better entropy
values than mergers between close high frequency classes.
This helps attributing points in low density areas to classes
in nearby high density areas, while preventing the merger
of classes in high density areas to one another. B shows
the six-group segmentation produced by an information
based asymmetric agglomeration with £ = 2 and 7 = 3,
which captures the simulated data structure with remarkable

fidelity.

were grouped using Euclidean distance (other choices
of distance did not produce qualitatively different
results; data not shown), centroid linkage, and an
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Fig. 3. The 2-dimensional simulated data from Section 3
partitioned in six groups using traditional agglomeration
(based on distance only; A), and the k-means algorithm (B).
True labels are shown in Fig. 2A. Both methods fail to
separate the two components in the upper right corner, and
attribute a number of background points to the more
concentrated components. Moreover, traditional
agglomeration “wastes” one group to render the isolated
point on the extreme right, and k-means “wastes™ one group
splitting the central region (background) in two.
Information based agglomerative segmentations perform
much better on this data (see Fig. 2B and Table 1).

information based asymmetric agglomeration with
k=1 and t = max = m — 1 (where m indicates the
current number of classes in an iteration). Thus, in a
generic iteration, two classes y; and y were considered
for merger if y; was the closest to y; (regardless of
where y; ranked as a neighbor of y;), or yy was the
closest to y; (regardless of where y; ranked as a neighbor
of yy); in symbols

dr(vi, yr) = rp;,ltpdl-(y"y[) or r;giir]dL(yﬁ'yi')

The merger was then chosen by maximizing mutual
information, i.e. the entropy of the resulting partition.
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Agglomeration was conducted until 75 groups
were reached, and these were used to initialize stage
two — in which we used supervision to further group
alignment columns. Again operating iteratively, we
randomly generated candidate mergers and splits, and
selected among them based on the ability of the
resulting partitions to separate the two types of training
units (alignments of known regulatory regions and non-
functional sequences). This required fitting variable
order Markov models, deriving log-odds scores, and
computing classification success rates with cross-
validation — which could meaningfully guide the search
for a satisfactory partition only because stage one
allowed us to bypass the worst effects of overfitting (see
Taylor et al. 2006, for more details).

We terminated the process with a final alphabet
comprising 17 groups of alignment columns. The
Regulatory Potential scores derived from fitting variable
order Markov models with this alphabet afforded a
remarkable leave-one-out cross-validation success rate
of ~94% on the training data — as well as excellent
performance on largely independent test sets of

experimentally confirmed regulatory sequences from
the hemoglobin /£ gene cluster on human chromosome
11 (see again Taylor et al. 2006, for more details).

As with all tools relying on such a drastic
reduction in data complexity, deciphering how different
signals contribute to the predictive success of
Regulatory Potential scores is a very difficult task.
Fig. 4, which shows a Genome Browser (Karolchik
et al. 2003) view of the hemoglobin f gene cluster,
illustrates how Regulatory Potential manages to capture
signals beyond traditional conservation. For more
information on the interpretation and experimental
validation of our scores we refer the reader to Taylor
et al. (2006), Wang et al. (2006), King et al. (2005),
and King et al. (2007).

5. CONCLUSIONS

In this article we presented an approach to
agglomerate data points into spatially contiguous
groups that preserve both their distance and frequency
structure in a metric space. This approach is logically
close to traditional agglomerative algorithms (e.g.
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Fig. 4. A Genome Browser view of the hemoglobin / gene cluster locus on human chromosome 11. The blue track, which graphs the
7-species Regulatory Potential scores, is contrasted with information on conservation — in the form of mammalian conservation
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peaks specific to the former demonstrates that other signals extracted from the training data contribute to its predictions.
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hierarchical clustering), as well as other segmentation
techniques sometimes employed in statistics (e.g.
Voronoi tassellations, which can be used for
reweighting in several application contexts — see for
instance Cook and Nachtsheim 1994 and Olive 2002).
The approach also borrows from existing clustering
techniques based on information measures, which are
broadly used in machine learning (see Berjerano et al.
2004 and references therein in the domain of genomics
applications, and Banerjee ef a/. 2005 and Dhillon
et al. 2003 in other application domains). However, its
ability to leverage simultaneously distance and entropy
makes it more effective than other clustering
approaches for reducing data sets that do not present
spatially separated clusters. We list here a few
concluding remarks that point towards avenues for
future research.

Comparing partitions and data: In Section 4, we used
our knowledge on the model underlying the simulated
data to measure how accurately a given partition y
captures its structure. Completely model-free measures
can be designed though, and they have a more general
appeal. In these, the original Gaussian mixture ®(x;) at
the observed points would be replaced by the empirical
distribution, i.e. f(x;), i = 1...n, and the empirical
Gaussian mixture CiDy()ﬁ) by a model-free empirical
distribution associated to the partition, e.g.

Yim

where the frequency accrued by each class is spread

uniformly on the points in the class. One could then
compute dissimilarity as

f(x)
Aly) = f(x)I =
072, T

However, this produces a non-trivial model-free
evaluation only if the distinct data points present
different frequencies, i.e. if the empirical distribution
is not fix;) = 1/n, i = 1...n. In fact, if the empirical
distribution is uniform on the distinct points (as was the
case in the simulated data structure of Section 4), we

have that fy (x;))=1/n,i=1...n, too, regardless of the

partition y. In other words, partitions with very different
degrees of resemblance to the data will all result in the

same distribution, and in dissimilarity equal to 0. This
is not as paradoxical as it seems at first; when the
empirical distribution is uniform on the distinct points,
spreading the frequency accrued by each class
uniformly on the points belonging to the class
reproduces exactly the distribution of the data, no
matter how uninformative the partition.

These observations support the practice of
implementing a pre-merger of the data, prior to running
an information based agglomerative segmentation — this
was done on the alignment column data example of
Section 4, and allows the evaluation of the final
partition based on its resemblance to the pre-merger
partition with which the agglomeration is initialized
(since the latter is not uniform). Notably, the pre-merger
could be obtained agglomerating with distance alone;
that is, one could utilize distance as the sole criterion
when grouping the data at a very fine scale, and then
switch to a mix of distance and entropy for the grouping
of larger scale segments.

Selecting the number of groups: Even though we did
not explore it in this article, the issue of determining a
satisfactory partition size is crucial for all kinds of
clustering and segmentation methods, including ours.
For methods comprising explicit models (e.g. mixture-
based clustering) information criteria such as BIC or
AIC can be used to optimize the number of clusters (see
for instance Fraley and Raftery 1998). A large repertoire
of heuristic diagnostics also exists, which can be used
with several clustering methods. Diagnostics that do not
rely directly on distance, such as those measuring
stability or predictability of a partition (Ben-Hur ez al.
2002, Dudoit and Fridlyand 2002), can be used
straightforwardly with our method. Interestingly,
diagnostics that do rely directly on distance, such as
silhouettes or gaps (Hartigan 1975; Tibshirani et al.
2001), could also be used with our method in
conjunction with measurements of entropy performance
— in other words, since our approach combines two
criteria, specialized “bivariate” diagnostics could and
should be developed for it.

Applications to more general objects: Many application
examples exist, in genomics as well as other fields, in
which the elements one seeks to group for data
reduction are not points in a Euclidean space, but more
complex objects, such as (i) graphs (e.g. phylogenetic
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trees for a set of species estimated on different multiple
alignment data — from different regions of the nuclear
genome, mitochondrial DNA, etc.), or (ii) matrices (e.g.
substitution matrices between two species estimated on
different 2-way alignment data), or even (iii) functions
(e.g. parametric or non-parametric fits for an expression
response sampled over a time or dose course for
different transcribed loci).

Importantly, the methodology proposed in this
article could be employed in all these cases, regardless
of the complexity of the objects; all that is needed is a
sensible distance on the feature space in which they are
represented, and an empirical distribution (a frequency
vector) on the elements if their occurrence is non-
uniform.
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