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SUMMARY

Effective analysis of molecular data in combination with rigorous phenotypic data using appropriate statistical methods
can provide enhanced understanding of the genetic and molecular bases of complex phenotypic traits. Coupled with the rapid
developments related to genome sequencing of crop plants, advances in statistical methods have aided in detecting Quantitative
Trait Loci (QTL) influencing an array of traits, including epistatic QTLs, besides analysis of genotype X environment interactions,
discovery of ‘consensus QTL’ through meta-analysis of data, expression-QTL (eQTL) through genetical genomics, and even
epigenomic QTL. The profusion of powerful DNA-based markers, particularly single nucleotide polymorphisms (SNPs) and
the evolution of statistical algorithms and experimental strategies, including the extension of the concept of linkage disequilibrium
(LD)-based association mapping in crop plants, further promise to revolutionize the discovery of marker-trait associations for
several important traits. While these exciting advances have brought closer the statisticians, bioinformatics experts, geneticists
and molecular biologists, the new focus on genomics has also highlighted a significant challenge: how to integrate the different
views of the genome given by various types of experimental data and provide a proper biological perspective that can lead to
crop improvement. In this article, from the user’s perspective, I shall review some of the ongoing work on the above-mentioned
areas in crop plants, especially using maize as a model system, and the opportunities and challenges for application of statistical
genomics in molecular plant breeding.
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Due to the tremendous advances made in the
instrumentation for DNA sequencing, coupled with
sophisticated molecular tools and bioinformatics, in the
last few years we have witnessed the genome

1. INTRODUCTION

Ever since the advent of molecular biology,
research labs across the world identified and

characterized a large number of genes controlling
various aspects of plant development, biotic and abiotic
stress resistance, quality traits, etc. Simultaneously,
there has been an evolution in the development and use
of DNA-based molecular marker systems, which has
revolutionized several important areas in genetics,
including analysis of genetic relatedness, assessment of
genetic diversity in individuals and populations, tagging
of genes controlling qualitative traits, mapping of
Quantitative Trait Loci (QTL), and molecular marker-
assisted selection.
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sequencing of several important plants, beginning with
Arabidopsis, followed by rice, poplar, grape, papaya,
sorghum, cucumber, and most recently, maize (Schnable
et al. 2009). The list shall continue to grow at a rapid
pace, soon providing an extraordinary source of
genomic information for use in basic, strategic and
applied research on crop plants.

These efforts already have had profound
implications, in terms of identification of numerous
DNA markers in crop plants, especially in cereals,
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including thousands of mapped microsatellite or simple
sequence repeat (SSR) markers, and more recently,
single nucleotide polymorphism (SNP) markers (e.g.,
Jones et al. 2009). Several high throughput genotyping
platforms have been developed in recent years (e.g., Fan
et al. 2006; Gupta et al. 2008; Yan et al. 2010), allowing
rapid and simultaneous genotyping of up to a million
SNP markers, and whole-genome scanning for
identification of favourable allelic variants in crop
plants like maize (e.g., Belo et al. 2008) and barley
(Waugh et al. 2009).

Array-based high-throughput methods combined
with innovative algorithms are providing great insights
into genomic structure, organization and function, and
promise to identify key functional regulatory features
in non-coding DNA. Although the major emphasis on
data mining from genome sequences continues to be on
coding regions, intensive studies on maize, highlighted
the significance of even non-coding DNA (Clark et al.
2006). Functional cis-elements could be buried in the
repetitive sequences, and these do play a significant role
in the development and evolution of crop plants.

In this review, I shall focus on some of the recent
developments with regard to diversity analysis, QTL
mapping and LD-based association mapping, and
highlight the intrinsic challenges that warrant a greater
role of statistical genomics from the perspective of crop
improvement.

2. MARKERS, HAPLOTYPES AND A NEW
VIEW OF GENETIC DIVERSITY

The profusion of genetic marker data in crop
plants, particularly with respect to powerful, genetically
codominant markers like microsatellites and SNPs is
one of the important aspects that promises to
revolutionize modern genetics, including analysis of
genetic diversity at various levels. While the multiallelic
microsatellite/SSR markers are being used worldwide
in different crop plants, the high throughput SNP
genotyping technologies make it likely that SNPs will
be more used in the years to come because of the cost
considerations. Nevertheless, even in the SNP era, SSRs
would continue to be important for specific uses, such
as population genetic analysis. Also, as Weir et al.
(2006) indicated, the greater number of SNPs is partly
illusory, as an increased marker density implies
increased dependencies due to genetic linkage.

In the rapidly growing field of association mapping
in plants (discussed later), the use of (marker)
haplotypes rather than single markers can be an
effective way of improving detection power (Buntjer
et al. 2005). Elucidation of the evolutionary
relationships of local haplotypes is likely to improve
the power of detection even further, and will, in turn,
contribute additional tools to marker-assisted breeding.
The inter-haplotype relationships provide insight into
the grouping and origin of the genotypes in the breeding
germplasm and thereby provide a valuable tool for
making intelligent and non-redundant choices in
breeding programmes aimed at combining/pyramiding
favorable or favorably interacting alleles in novel
breeding lines.

Reconstruction of haplotypes, or the allelic phase,
of markers (such as SNPs) is a key component of
studies aimed at the above-mentioned goals. Given the
dramatic increase in the size and number of association
studies (discussed later), tools for analyzing,
interpreting and visualizing these data are of critical
importance to researchers everywhere. Zhang et al.
(2002) proposed an algorithm for haplotype block
“partitioning”, in which they define a block as a
segment of consecutive SNPs in which at least a percent
of haplotypes are represented more than once. Their
approach is implemented in the programme HapBlock
(http://www.cmb.usc.edu/msms/HapBlock). Another
approach for defining haplotype blocks was described
by Greenspan and Geiger (2003); this is based on a
Bayesian Network statistical model which takes account
of recombination hotspots, bottlenecks, genetic drift and
mutations. ‘Haploview’ (Barrett et al. 2005) provides
a comprehensive suite of tools for haplotype analysis
for a wide variety of dataset sizes. Haploview generates
marker quality statistics, LD information, haplotype
blocks, population haplotype frequencies and single
marker association statistics in a user-friendly format.

Haplotype maps have either been generated or are
being generated in diverse animals and plants. The most
recent example is that of maize. Gore et al. (2009)
identified and genotyped several million sequence
polymorphisms among 27 diverse maize inbred lines
and discovered that the genome was characterized by
highly divergent haplotypes and showed 10- to 30-fold
variation in recombination rates. This survey of genetic
diversity provides a foundation for uniting breeding
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efforts across the world and for dissecting complex
traits through genome-wide association studies.

3. LINKAGE DISEQUILIBRIUM (LD)-BASED
ASSOCIATION MAPPING

‘Association mapping’ makes use of genomic
surveys of linkage disequilibrium (LD). Originally
developed for human genetics, statistical methods and
their derivatives for detection of LD are now
increasingly being applied to crop plants, leading to
analyses of population genetic structure and QTL
detection. Association mapping has been used in many
crop species including maize, rice, wheat, barley,
sorghum, sugarcane, soybean, potato, tomato, and trees
such as eucalyptus, aspen and pine (Zhu et al. 2008).

The fundamental difference between an
association mapping study and a traditional QTL
mapping study is the nature of the mapping population.
The traditional QTL mapping approach generates
linkage disequilibrium between genetic markers and
QTLs through crossing of different genotypes and
creation of a segregating population (e.g., Fy.3 and
backcross). The central problem with the conventional
mapping approaches using structured biparental
mapping populations for QTL mapping is the limited
number of meioses that have occurred and (in the case
of advanced intercross lines) the cost of propagating
lines to allow for a sufficient number of meioses. Since
the number of crossover events is limited, the map
resolution of QTLs is determined by the size of the
progeny array.

In association mapping, statistical association
between genotypes and phenotypes is analysed in large
germplasm sets, thereby obviating the need for
generating mapping populations, such as F;.3, backcross
and RILs, for the purpose of QTL mapping. In an
association mapping study, individuals are selected
from (preferably) non-structured populations, where
recombination over many generations has broken up the
linkage disequilibrium that initially existed between a
marker allele and a novel QTL allele. A conceptual
advantage of association mapping is that the linkage is
evaluated over the large pool of historic meioses,
allowing gene localization with a higher resolution than
when using linkage mapping (Zhu et al. 2008).

LD mapping also has some potential limitations.
It assumes that the trait of interest is segregating in the

breeding material and hence may not assist in the
identification and introgression of novel alleles.
Therefore, there will be a continuing requirement for
advanced backcross QTL mapping for introgression of
novel alleles from wild relatives and a capability for
map construction for other special cases. LD mapping
strategies will work best where there is strong selection
pressure for the trait of interest, so the location and
management of field trials and the design and
application of laboratory assays is crucial to its success.
Also, in the plant breeding germplasm sets, we can
expect the presence of population structure, which will
significantly influence the results of an association
study and cause spurious trait-marker associations.
Algorithms, methods and software are developed to
correct for these effects (Pritchard ez al. 2000, Zollner
et al. 2005, Caldwell et al. 20006).

The “nested association mapping” (NAM)
population concept is novel in terms of mapping genes
underlying complex traits, by combining the statistical
power of conventional QTL mapping with the high
(potentially gene-level) chromosomal resolution of
association mapping (Yu ef al. 2006, 2008). The NAM
population developed in maize, comprises 5000 RILs
(200 RILs from each of 25 populations), and represents
a very important genetic resource developed in recent
years. The RILs are “nested” in the sense that they all
share a common parent, but each population has a
unique second parent. The common parental line used
in all 25 families, B73, is the most important US corn
breeding line. Descendents of B73 are widely deployed
in US production corn agriculture, and the B73 genome
has been recently sequenced (Schnable ez al. 2009). The
global diversity has been captured in the NAM RIL
germplasm resource, which will provide the maize
research community with the opportunity to map genes
involved for an array of traits of agronomic or scientific
interest (Yu et al. 2008). By integrating genetic design,
natural diversity, and genomics technologies, this novel
strategy is expected to aid in linking molecular variation
with phenotypic variation for various complex traits
(Prasanna et al. 2010).

It must be emphasized here that the experimental
design and statistical methods associated with
association mapping are still evolving. Linkage or QTL
mapping and association mapping are complementary
and are best used in conjunction to increase statistical
power and mapping resolution (Myles e al. 2009).
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This is particularly important for genome-wide
association studies, which can suffer high rates of false-
positive results (Manenti et al. 2009).

The candidate gene approach, using a Bayesian
model-based probabilistic clustering, implemented
through the STRUCTURE software, was first utilized
for associating Dwarf8 polymorphisms with flowering
time variation in maize (Thornsberry et al. 2001). The
same strategy of ‘allele mining’ is now increasingly
being used in diverse crop species where genome/gene
sequence information is available (Prasanna 2007).
Empirical analyses of LD patterns have been
undertaken for several genes in crop plants like rice and
maize. For example, in maize, the list of publications
on allele mining has significantly expanded in the last
one decade, including Dwarf8 (D8), Yellowl (Y1),
Teosinte branched 1 (Thl), several genes involved in
starch biosynthesis, and most recently, the Lycopene
epsilon cyclase (LcyE) gene influencing the carotenoid
biosynthesis. These studies not only highlighted the
importance of haplotype modeling (discussed in detail
by Veyrieras et al. 2007), but also indicate the
tremendous potential for crop improvement through
identification of favourable alleles/haplotypes of
interest (e.g., Harjes et al. 2008).

4. QTL ANALYSIS

Locating QTL in experimental or natural
populations is one of the major activities of present-day
genetics, relying heavily on a variety of statistical
approaches and software. Powerful analytical
techniques are now available to scan the genome for
significant marker-trait associations and estimate QTL
positions and effects (e.g., Korol et al. 2001, Han and
Xu 2008). Thanks to these advances, there has been an
exponential increase in the information on QTLs
influencing an array of important traits in crop plants
in the last two decades. For example, at IARI, New
Delhi, we have mapped and validated QTLs for
resistance to downy mildews (George et al. 2003, Nair
et al. 2004), Banded leaf and sheath blight resistance
(Garg et al. 2010), and drought stress tolerance
(Prasanna et al. 2009).

There is also an increasing realization that novel
approaches are required to understand and utilize
quantitative genetic variation, as only a few of the
identified QTLs were found reproducible across
environments, genotypes, or years, leading to questions

about the complexities of the system being studied. The
reasons for the lack of consistent major successes in the
application of QTL information in crop improvement
are numerous, including epistatic interactions among
QTL, to varying genetic backgrounds, QTL X
environment interactions, and even epigenetic
consequences. This poses challenges to statisticians in
devising powerful approaches for reliable analysis of
those factors, and to geneticists for formulating
strategies to integrate this information during molecular
marker-assisted breeding.

Estimating epistatic and QTL X environment
interactions: Epistasis, or interactions between genes,
has long been recognized as fundamentally important
to understanding the structure and function of genetic
pathways and the evolutionary dynamics of complex
genetic systems. The presence of epistasis can greatly
obscure the mapping between genotype and phenotype.
While many of the QTL mapping experiments did not
identify reliably the epistatic interactions, the advent of
user-friendly statistical software (e.g., QTL Network)
are now enabling estimation of epistatic effects of QTLs
as well as QTL X environment interactions (e.g., Zhang
et al. 2007, Prasanna et al. 2009).

Epistatic QTL and QTL X environment interactions
— A case study in maize: The Banded Leaf and Sheath
Blight (BLSB) disease, caused by Rhizoctonia solani
f.sp. sasakii Exner (teleomorph) Thanatephorus sasakii
is considered as one of the most important disease of
maize in Asia, and has the potential ability to cause
significant yield reduction and loss in fodder quality of
maize crop due to premature death, stalk breakage, and
ear rot (Sharma and Saxena 2002) in hot humid
conditions. The occurrence of BLSB has also been
reported in maize growing countries outside Asia,
including Sierra Leone, Ivory Coast (Africa) and USA
(Arkansas), besides several countries in central and
South America (Sharma et al. 2000).

At the Maize Genetics Unit, Indian Agricultural
Research Institute (IARI), New Delhi, we undertook
QTL analysis of BLSB resistance in maize (Garg et al.
2010) using an F.5 population, derived using CA00106
(BLSB-resistant) and CM 140 (BLSB-susceptible) as
parental lines. Genotyping of the 192 F, individuals
was carried out using 127 polymorphic SSR (Simple
Sequence Repeat) markers covering the maize genome.
Linkage mapping was performed using the Multipoint
software (Mester et al. 2003) based on genotypic data
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from 108 SSR markers, after excluding markers
showing segregation distortion. The map had a total
length of 2001.3 cM, with an average marker interval
of 19.53 ¢cM. Phenotyping of the 192 F5 families, along
with the parental lines, was undertaken for evaluation
of responses to BLSB under artificial inoculation
conditions, during Kharif (monsoon season) 2005, at
three locations (Pantnagar, Udaipur and Delhi).

A total of eight QTLs influencing resistance to
BLSB at the three different locations in India have been
identified through Composite Interval Mapping (CIM)
implemented using QTL Cartographer v2.5 (Wang
et al. 2005). Three QTLs for BLSB resistance were
identified at Delhi; one each on chr. 4 (bnlg252-
bnlgl621), chr. 8 (umc2146-umci172) and chr. 9
(phil08411-umc2346). At Pantnagar, only one QTL was
detected on chr. 7 (umcl066-bnlgl792). In contrast,
three QTLs influencing BLSB resistance at Udaipur
were located, one each on chr. 2 (umc2363-umcl622),
chr. 3 (umc2101-umc1892), chr. 6 (umcl127) and
chr. 10 (bnlgl518-bnigl526). Most of the favorable
QTL alleles were contributed by the resistant parent
CA00106, but at Udaipur even the susceptible parent
CM140 also contributed towards BLSB resistance.
Additive effects were relatively higher for most of the
QTLs detected, although dominant gene effects were
also high in many cases, thereby resulting in over
dominant gene action for some QTLs. The QTL with
phenotypic variance of 11.5% for BLSB resistance

detected on chr. 7 had the largest effect at Pantnagar
while other QTL showed less phenotypic variance at
Udaipur as well as Delhi.

We further analysed the possible epistasis among
the QTLs using the software QTL Network 2.0 (Yang
et al. 2005). Permutation test (1000 permutations) was
used to identify putative epistatic QTL (Churchill and
Doerge 1994). Three significant epistatic QTLs were
identified on Chr. 6, 8 and 9 through this analysis,
which were not detected as main-effect QTLs through
CIM. These interactions include those with only
epistatic main effects (I), with only epistasis X
environment interaction (IE) effect, as well as with both
effects (IE) as depicted in Fig.1, clearly indicating that
the inheritance of BLSB could be more complex than
expected.

The study clearly shows that the interactions
between genes of minor effects or even interactions
between ones that do not have effects detectable by
single locus analysis may have sizable effects on traits
of importance in crop plants like maize. Moreover, the
effects of both major and minor genes are also
sometimes subject to environmental modifications,
which can cause dramatic differences in the phenotypic
effects of the genes. In addition, the effects of epistatic
QTLs and QTL x environments (QEs) explain the
genetic basis of the continuity in the distribution curves
of these traits in the segregation population, as observed

B NoD B D+DE M oE [

ChB..... # * ----------
[ [
1236 134.4 140.4
91.6 ‘1\26.5\127_4 148.1

72

—

@ NoA

——— BE

Fig. 1. Significant epistatic QTLs on chr. 6, 8 and 9 influencing resistance to Banded Leaf and Sheath Blight (BLSB) disease in maize.
These epistatic QTLs, identified through QTL Network 2.0, were not detected as main-effect QTLs through composite interval

mapping.
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in this study, and also the quantitative differences in
these traits among different genotypes. Thus, it is
apparent that in addition to the major genes/QTLs,
attention should also be directed to the effects of minor
QTLs, epistatic QTLs and QEs while implementing
marker-assisted selection (MAS) for improvement of
complex, polygenic and environmentally highly
influenced traits, such as BLSB resistance in maize.

Some of the issues that arise in QTL mapping in
the presence of gene interactions are also illustrated in
a recent study by Carlborg et al. (2006). In an excellent
review on epistasis, Phillips (2008) described how
genotype-specific patterns of epistasis could complicate
the relation of findings from the association and QTL
mapping studies. Association mapping in natural
populations will be based on ‘statistical epistasis’,
whereas QTL mapping in two inbred lines draws closer
to ‘compositional epistasis’. Statistical epistasis is the
usage of epistasis that is attributed to R.A. Fisher, in
which the average deviation of combinations of alleles
at different loci is estimated over all other genotypes
present within a population. ‘Compositional epistasis’
is a new term that is intended to describe the way that
a specific genotype is composed and the influence that
this specific genetic background has on the effects of
a given set of alleles. Aylor and Zeng (2008) have
introduced the concept of systems biology into
quantitative genetics, in which a framework was
proposed to estimate and interpret epistasis. A mixed-
model QTL analysis was utilized by Boer et al. (2007)
to explain genotype-by-environment interaction by
differential QTL expression in relation to environmental
variables.

The existence of a large number of SNP markers
provides opportunities and challenges to screen DNA
variations affecting complex traits using a candidate
gene analysis. Using an extended Kempthorne model,
Mao et al. (2006) detected SNP epistasis effects of
quantitative traits. The method consisted extension of
Kempthorne’s definitions of 35 individual genetic
effects to allow HWD and LD, genetic contrasts of the
35 extended individual genetic effects to define the 4
epistasis effects, and a linear model method for testing
epistasis effects. This method could provide an
opportunity to assemble genome-wide SNPs into an
epistasis network, and to assemble all SNP effects
affecting a phenotype using pairwise epistasis tests.

Meta-analysis: Although the concept of meta-analysis
of data is not new in the social sciences, its application
to the genomic information is more recent, largely
driven by the need to collate and utilize the ever-
increasing information in a manner useful for both
strategic and applied research. This assumes
significance in QTL mapping experiments, which often
yield heterogeneous results due to the use of different
genotypes, environments, and sampling variation. Meta-
analysis of the QTL mapping results could provide a
more complete picture of the genetic control of a trait,
revealing patterns in organization of trait variation.
Thus, there could be opportunities to detect potential
“needles in the haystack” and utilize the same in
breeding strategies.

Meta-analysis of the QTL information led to
greater understanding of the genetic architecture of
various traits, including disease resistance (Wisser
et al. 2006) and identification of ‘consensus QTLs’ and
candidate genes for drought tolerance (Tuberosa et al.
2007, Hao et al. 2009) in maize, root development and
development of an online resource Rootbrowse in rice
(Suryapriya et al. 2009) and discovery of unequal
contributions of subgenomes to a complex network of
genes and gene clusters implicated in lint fiber
development in polyploidy cotton (Rong ef al. 2007).

Using the QTL data points for flowering time in
maize, Veyrieras ef al. (2007) demonstrated a new
computational and statistical package, called
‘MetaQTL’, for carrying out whole-genome meta-
analysis of QTL mapping experiments. MetaQTL offers
a new clustering approach based on a Gaussian mixture
model to establish a consensus model for both the
marker and the QTL positions on the whole genome.

In recent years, a number of comparative map
viewers have been created, some web-based and some
as stand-alone applications, including the Comparative
Map and Trait Viewer (Sawkins er al. 2004), the
GenBank’s mapviewer (Wheeler et al. 2007), and more
recently, the web-based SGN comparative viewer for
mapping data, including genetic, physical and
cytological maps, that is part of the SGN website (http:/
/sgn.cornell.edu/) but that can also be installed and
adapted for other websites (Mueller et al. 2008).

Genetical genomics: In general, microarray
experiments do not take into account other sources of
information, such as molecular marker or phenotype



B.M. Prasanna / Journal of the Indian Society of Agricultural Statistics 64(1) 2010 77-87 83

data. Since more insight might be gained by combining
such data with microarray data, ‘Genetical genomics’,
also colloquially referred to as “expression genetics”,
was first introduced by Janson and Nap (2001). Schadt
et al. (2003) coined the term ‘eQTL’ or expression QTL
for studies where gene expression is considered to be
a trait and QTL analysis is conducted. The goal is to
merge the high throughput genomics technologies and
parallel phenotyping capacity (i.e. microarrays,
proteomics and metabolomics), with genetic segregation
to test or generate specific hypothesis. The rationale is
that a specific gene’s expression level is easier to
quantify than the more complex developmental or
physiological traits. Thus, by identifying loci
controlling the differential gene expression patterns for
all the genes in an organism and comparing this to those
loci controlling a specific physiological trait the
researcher could develop a systems biological
understanding of more complex traits. Thus, ‘genetical
genomics’ is technically a marriage of high-throughput
expression profiling technology and QTL analysis, but
which still holds the underlying statistical principles of
QTL mapping. The body of knowledge of this field is
growing at an extraordinary fast rate.

The significance of analyzing eQTL for crop
improvement through heterosis has been excellently
illustrated by Swanson-Wagner et al. (2009). Hybrids
between the maize inbred lines B73 and Mo17 exhibit
heterosis regardless of cross direction. These reciprocal
hybrids differ from each other phenotypically, and 30
to 50% of their genes are differentially expressed.
Swanson-Wagner et al. (2009) identified ~4000 eQTL,
and found that over three-quarters of these eQTL act
in trans (78%) and that 86% of these differentially
regulate transcript accumulation in a manner consistent
with gene expression in the hybrid being regulated
exclusively by the paternally transmitted allele. This
result suggests that widespread imprinting contributes
to the regulation of gene expression in maize hybrids.

Improvements in the statistical methods related to
genetical genomics are being made. For example,
instead of analysing each individual gene expression
level to map eQTL, Lan ef al. (2003) and Perez-Enciso
et al. (2003) undertook the dimension reduction
techniques of principal components analysis (PCA) and
partial least squares (PLS), respectively.
Simultaneously, software tools are also becoming
available for combining microarray, trait and marker

data. However, the field of genetical genomics is still
evolving, and development of new and sophisticated
analytical methodologies and user-friendly software are
required to interpret the large amounts of complex data
from such studies.

Functional mapping: Wu and Lin (2006) proposed a
general statistical mapping framework, called
“functional mapping”, to characterize, in a single step,
the quantitative trait loci (QTLs) or nucleotides (QTNs)
that underlie a complex dynamic trait. Functional
mapping estimates mathematical parameters that
describe the developmental mechanisms of trait
formation and expression for each QTL or QTN.

The approach of functional mapping is based on
a unified statistical model for functional mapping of
environment-dependent genetic expression and G X E
interactions for ontogenetic development. This model
was derived within the maximum-likelihood-based
mixture model framework, incorporated by biologically
meaningful growth equations and environment-
dependent genetic effects of QTL, and implemented
with the EM (Expectation Maximization) algorithm
(Zhao et al. 2004). He et al. (2010) recently described
how functional mapping and studies of plant ontology
can be integrated so as to elucidate the expression
mechanisms of QTLs that control plant growth,
morphology, development, and adaptation to changing
environments.

Understanding epigenetic influence on trait
expression: The focus and emphasis of quantitative
genetics has been mostly on DNA sequence variants as
the sole source of heritable phenotypes. This view needs
to be revised in light of the growing evidences for
widespread epigenetic variation in both natural and
experimental populations. ‘Epigenetics’, the study of
heritable changes in gene expression that occurs
without a change in DNA sequence, has emerged as an
important frontier in genetics research. Plants are
indeed characterized by a plethora of epigenetic
phenomena (Upadhyaya and Prasanna 2004), such as
paramutation and imprinting, many of which have
subsequently been rediscovered in animals. Intensive
research in recent years highlighted the significance of
epigenetic control of gene expression, leading to
recognition that this component is integral to a number
of developmental events, including flowering and seed
development. Johannes et al. (2008) argued
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persuasively that it is time to consider novel
experimental strategies and analysis models to capture
the potentially dynamic interplay between chromatin
and DNA sequence factors in the expression of complex
traits.

What could be the possible approaches to improve
the complex quantitative traits in light of the
opportunities as well as challenges mentioned above?
Given that mapping studies will identify only a
component of the standing genetic variation for traits
in a sample of the reference genotype-environment
system at a point in time, theory and experience
suggests that these studies should be viewed as entry
points into the study of the genetic architecture of traits
that will need to be continually refined (Podlich et al.
2004). It is important to realize that modeling the effects
of QTL is one component of a larger modeling effort
aimed at understanding the nature and role of genetic
variation.

Secondly, novel methods of molecular marker-
assisted breeding have to be devised and implemented
rather than focusing only on molecular marker-assisted
backcrossing. One such strategy is marker-assisted
recurrent selection (MARS), which refers to the
improvement of an F, population by one cycle of
marker-assisted selection (i.e., based on phenotypic data
and marker scores) followed commonly by two or three
cycles of marker-based selection (i.e., based on marker
scores only). Bernardo and Charcosset (2006) examined
the usefulness of having prior knowledge of QTLs
under genetic models that included different numbers
of QTLs, different levels of heritability, unequal gene
effects, linkage, and epistasis, and concluded that with
known QTL, MARS is most beneficial for traits
controlled by a moderately large number of QTL (e.g.,
40). Bernardo and Yu (2007) further analyzed the
prospects for genome-wide selection (GWS) for
improving quantitative traits in maize, and concluded
that this approach, although more expensive, is superior
to MARS for improving complex traits, as GWS
effectively avoids issues pertaining to the number of
QTL controlling a trait, the distribution of effects of
QTL alleles, and epistatic effects due to genetic
background. Using such strategies, some of the leading
private sector institutions have been successfully
exploiting marker-QTL associations in population
improvement and cultivar development (e.g., Johnson
2001, 2004; Eathington et al. 2007).

5. THE CHALLENGES

The recent focus on structural and functional
genomics of diverse plants has highlighted a particular
challenge: how to integrate the different views of the
genome that are provided by various types of
experimental data and provide a proper biological
perspective that can lead to crop improvement.
Mapping and studying the genetic architecture of
complex traits, and understanding the dynamic network
of gene interactions that determine the physiology of
an individual organism over time is another major
challenge that requires novel, quantitative and testable
statistical solutions.

Trait-allele association studies in crop plants are
now advancing rapidly which will result in a much
better understanding of the allelic diversity of breeding
populations. While high throughput genotyping can be
now outsourced, accurate and high throughput
phenotyping remains a significant challenge, especially
for complex, highly environmentally influenced traits.
In fact, this could become a major limiting factor for
many institutions, particularly in the developing world,
unless appropriate measures are taken. Equally
important shall be the development of appropriate
statistical models suitable under different situations
(high vs. low LD, annuals vs. perennials, different
levels of heterozygosity and genetic heterogeneity,
diploids vs. polyploids, etc.), which would otherwise
limit our ability to utilize powerful approaches such as
association analysis.

Of the vast public investment in genomics in the
recent years in various countries, including India,
relatively little has been focused on statistical genomics
and efficient analyses of the data. The problem is
further compounded by the fact that (i) the practitioners
of statistical genetics/genomics are far and few, and
often tend to work in relatively small groups that are
scattered across institutions; and (ii) little interface
between statisticians, geneticists, breeders and
bioinformatics experts. Concerted efforts are also
required in the National Agricultural Research System
(NARS) to make statistical genomics an active and
integral component of the teaching programmes in
statistics, genetics, and biotechnology.
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