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SUMMARY

The two-parameter exponential distribution E(, ©), © > 0, is a well known probability model used for life-length studies
owing to the useful description of observed variation it gives for many real life situations. In the context of life-length studies,
the location parameter | and the scale parameter 6 respectively represent the minimum guaranteed life and the average excess
life of an equipment or system. The parameters [ and © are functionally unrelated and the statistical inference about these
parameters make use of the existence of complete minimal sufficient statistics. This brings about a substantial simplification in
the inferential problems. There, however, exist situations where the average life © depends on the guaranteed life . and the
functionally independent nature of the parameters no longer hold, resulting in the loss of optimal properties of the statistics. In
this situation, the two-parameter model reduces to a one-parameter model E(a0, 0), where ‘a’ is known. Ironically though the
reduced model looks simplified with a single parameter 6, however, from the inference point of view, the problem of inference
about 6 becomes complicated. Several authors including the present author, have studied this kind of inference problem. In the
present paper, the problem of testing a simple hypothesis about 0 in the reduced model E(a0, 0) has been studied in the type II
right censored situation from a conditional view point.

Keywords : Conditional UMP test, Minimal sufficient statistic, Power of unconditional test.

1. INTRODUCTION relationship between the location (&) and scale (6)
parameters of the original two-parameter exponential

The exponential distribution E(a6, 6) with p.d.f. distribution E(u, 6). The interest for inferentialists

given by comes from the fact that in the reduced model
(x — af) E(aB, 6), the inferential procedures instead of getting
fx: 0=~ [Ti‘& 2 ab (L. simplified becomes more intricate. The property of

where 6> 0 is the unknown parameter and a > 0 is a
known constant, has generated interest in the recent past
owing to the scope it has offered to the existing
procedures of statistical inference. For this distribution
the coefficient of variation is known and is given by
100/(1 + a). This arises as a result of a functional
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completeness enjoyed by the statistics in the case of
E(u, 6) distribution no longer holds for that of
E(a6, 6), as the standard theory of UMVUE in not
applicable in this case.

In this background, two distinct approaches have
been distinguished with respect to the choice of the
reference set against which performances have to be
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evaluated. These are the unconditional and conditional
approaches having their own merits/limitations.
Naturally therefore, various workers have approached
differently the inference problem of E(a6, 6). The
attractive feature of the conditional viewpoint is that
conditional models tends to be simpler than the original
unconditional ones and frequently brings about
simplification of theory (Lehmann 1986).

While Ebrahimi (1985), Ghosh and Razmpour
(1984), Joshi and Nabar (1991) and Joshi and Sathe
(1983) used the unconditional approach, Handa et al.
(2002) and Samanta (1985) followed the conditional
approach to study the inference problems. In general
the unconditional approaches adopted by these workers
produced adhoc, approximate or sub-optimal
procedures whereas the conditional approaches
produced conditionally optimal procedures, probably
because the conditional procedures make use of
ancillary information. In the next section, we show how
this could be done.

For testing the simple hypothesis
Hy: 6= @g)against H,: =6, (> ) (1.2)

Ebrahimi (1985) developed a test which was
approximate because the distribution of the test statistic
turned out to be complicated. Handa et al. (2002) using
the conditional approach, developed a conditional UMP
test for testing (1.2). They also investigated some
interesting properties possessed by the distribution (1.1)
like (1) the conditional superiority of the conditional test
over its unconditional counterpart (Ebrahimi 1985),
(i1) the property of conditional completeness,
(iii) choice of ancillary statistics and (iv) large sample
approximations. Their test, however, was based on a
complete sample of size n.

There do exist numerous practical situations where
complete samples are either unavailable or undesirable.
For example, in life testing, fatigue testing and other
kinds of tests of destructive nature, where data become
available in an ordered manner, one can choose to
discontinue experimentation after one has observed the
first r observations. There are obvious advantages for
choosing such a course, such as, one might be able to
reach a decision in a shorter time or with fewer
observations, than observing all items under test.

Let X1y < X(2) < ... < Xy denote the ordered
statistics of a random sample of size n from the

distribution (1.1) where r < n. When only the first r
observations are made or become available, the sample
is usually termed a right censored sample (Epstein and
Sobel (1954) and Tiku et al. (1986)). The objective of
this paper is to extend the conditional UMP test
developed by Handa et al. (2002) for complete samples
to tests based on a right censored sample.

2. THE CONDITIONAL UMP TEST

It is well known that (X(;), L) is a minimal
sufficient statistic for ©, where

.
L= 2 (X —Xg)+ =X —Xq)
i=2
Define

¢ X +r 'L (1.3)

Then C is an ancillary statistic and (X(;), C) is also

minimal sufficient. We now explore the existence of a

conditional monotone likelihood ratio (MLR) for the

family of conditional densities of X(;), given the

ancillary C. For this purpose, we derive the conditional
distribution of X(;), given C, in the following lemma.

Lemma 1. The conditional p.d.f. of X, given C is

fX(])lC (X c,9)
|:r+(n—r)c}rexp{_{r+(n—r)c}x} o
6 6
, x=a0
a
_ J[E{r+(n—r)c}, r}

0, otherwise
(1.4)

oo

where J(a; §) = [ 't ldr = ©(B)Pr{x’ (2B)> 20}

o
and 7( f) is the gamma function of .

Proof. The joint p.d.f. of X;, and L is given by

; n(x=a0) 5] .
= exp| — +=|y ™, x2 a6, y>0
0z(r—1) { 0 e} Y
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Applying the transformation
-1
U:X(l), C: X(l)/(X(1)+r L)

the joint p.d.f. of U and C is obtained as follows:

fuc @, c/6)
et =0 N [ra(nmn)e] |
"¢t (r-1) cO

u=ab, 0<c<l
This yields the marginal p.d.f. of C as
nr e (1—c) 7 r+(n-r)c
(=) [(r+e=ne), ]
t(r=1){r+(n—r)c})’ c
O<c<1l (1.6)
The lemma now follows from (1.5) and (1.6).

fc(C):

Now in the next lemma, we prove that the family
of conditional densities given by (1.4) has an MLR
in X(])

Lemma 2. The family of conditional densities
{fx(1)|c (x/c,0), 6 >0} given by (1.4) has an MLR in
Xy, given C.
Proof. For any 6 > 6, we have, on using Lemma 1:
Fxpjcx/c.0)
Fxlc/e:8)

r+(n—r)c
u

(H(n r)cl A )I(u>aé)

r+(n—r)c
1

= (r+(n r)c) ( 6 ]1(u>a9)

[ )r r+(n r)c

where I(e) is the indicator function of the set (o) and

9 ) éjub(u)

bu)=1@w>ab)/Iu>ad)
_{1, ifu>aé

0, if a <u < ab

Define b(u) = 0 if u < a6. Then it follows that

function of X(;y and the family of conditional densities
given by (1.4) has an MLR in X, conditionally on C.
The existence of a UMP conditional test for testing
(1.2) follows by Theorem 2, pp. 78, Lehmann (1986).
We state this result in the following theorem.

fX(l)‘c(“ ¢ c,0) is a non-decreasing

Theorem 1. The conditional size o test, given C, for
testing

Hy: 6< @ against Hi: 0> g
given by
reject Hy if X(;)> K(c) is a UMP test.

3. THE POWER OF THE CONDITIONAL UMP TEST

The implementation of this UMP conditional test
requires the computation of K(c) as well as the test’s
power function. The next lemma presents these.

Lemma 3. For the testing problem stated in Theorem 1,

(1) for a UMP test of size , 0 < v < 1, K(c) is the
solution of the equation

J{[Mjm), ,} . JKM},, ,}
CQO c

(1.7)

(i) the power function of the UMP conditional test
at @1is given by

J [[r * (nO_ rc ]K(c), r}
¢ if0<——= k()

y@lc) = ,HHO@W‘]Q, r} ’ a
C

K(c)
a

1, if 6=

(1.8)

where K(c) is the solution of equation (1.7).
Proof.
(i) We have P, (X1)> K| c, 6p) =

Using Lemma 1, we have
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- N r+(n—-r)c
j [Mjre [ <6o }ur_ldu

K(c) C90

=a J{(w]a, r}
C

r+(n—r)c)
—

Change of variable by ¢ = (
Ceo

yields the required result.

(i) The power at f1is given by

Pr(X(l) > K(c)| 6,9)7 i< K(c)
7(9’0) = .

Pr(X(l) > a0| 0,9), 1f92m

a

. p _(r+(n—r)c}
j (r‘l'(ne_r)c) e 0 ur—ldu
Cl
K©) Lifg < X©
= J[(r+(n—r)cja’ r} a
C
1 itg > X©
a

r+(n—r)

Transformation ¢ = (
c

)u yields (1.8).
4. COMPARISON OF CONDITIONAL AND
UNCONDITIONAL TESTS

Comparison is done numerically between our
proposed conditional test with the existing
unconditional test of Ebrahimi (1985) for the censored
case in terms of the power criterion. (The comparison
of the tests in the case of complete samples has already
been dealt with by Handa et al. (2002). Before carrying
out the comparison, however, the critical point K(c) of
the conditional test is to be obtained from equation
(1.7). Since the equation involves incomplete gamma
functions, the solution for K(c¢) has been obtained
numerically by using the Newton-Raphson’s method for
which standard computer routines are available. Next,
we have computed range of values of ¢ for which the
power of the conditional test dominates the power of
the unconditional test. The power values were
extensively computed for various values of the
parameters for the UMP conditional test from (1.8) and

for the unconditional test, from Theorem 1 of Ebrahimi
(1985). The numerical comparison revealed that there
exists an interval (0, ¢”) such that the power ¥ @1 ¢) of
the conditional test uniformly exceeds the power of Y(6)
of the unconditional test when ¢ € (0, ¢’) and the upper
end point of (0, ¢) moves closer to unity as a increases,
implying that higher the value of a (which is the same
as a smaller coefficient of variation), the more effective
is an ancillary statistic in providing conditional
inference about the parameter €, It was also noted that
lesser the value of ¢, more was the power of the
conditional test.

Table 1 gives the value of ¢ for some chosen

values of n, 1, a, 6, and ¢. It also gives the values of

Table 1. Values of ¢’ for interval (0, ¢’) of domination of
conditional test over unconditional test

& =10, a=005

r a C/ CI/
3 2 0.4 0.8 -
0.7 * -
3 0.4 * 0.3
0.7 * 0.5
5 2 0.4 * -
0.7 * -
3 0.4 * _
0.7 * -
4 0.4 * -
0.7 * -
5 0.4 * 0.3
0.7 * 0.4
7 2 0.4 * -
0.7 * -
3 0.4 * -
0.7 * -
4 0.4 * -
0.7 * -
5 0.4 * -
0.7 * -
6 0.4 * -
0.7 * -
7 0.4 * 0.3
0.7 * 0.4

* The whole interval (0,1)
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Table 2. Comparison of power values of conditional and unconditional tests
& =1.0, 6 =1.109)1.9, = 0.05
a c Test Power values at various values of 6,
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.4 | 0.8 | Conditional test 0.0753 | 0.1053 | 0.1392 | 0.1762 | 0.2156 | 0.2565| 0.2983 | 0.3405| 0.3827
- | Unconditional test | 0.0750 | 0.1041 | 0.1363 | 0.1707 | 0.2064 | 0.2427 | 0.2788 | 0.3144| 0.3492
0.7 | 0.9 [ Conditional test 0.0799 | 0.1170 | 0.1610 | 0.2110 | 0.2657 | 0.3244| 0.3859| 0.4494| 0.5141
- | Unconditional test | 0.0781 | 0.1116 | 0.1494 | 0.1901 | 0.2325| 0.2755| 0.3182 | 0.3600( 0.4005
0.4 | 0.9 [ Conditional test 0.0770 | 0.1092 | 0.1454 | 0.1847 | 0.2258 | 0.2679| 0.3102| 0.3521| 0.3931
- | Unconditional test | 0.0763 | 0.1073 | 0.1418 | 0.1789 | 0.2173 | 0.2563 | 0.2952| 0.3333| 0.3704
0.7 | 0.9 | Conditional test 0.0804 | 0.1181 | 0.1621 | 0.2111 | 0.2637 | 0.3188 | 0.3753 | 0.4322| 0.4888
- | Unconditional test | 0.0788 | 0.1133 | 0.1524 | 0.1945 | 0.2383 | 0.2827 | 0.3268 | 0.3699| 0.4114
0.4 | 0.9 [ Conditional test 0.7890 | 0.1145 | 0.1563 | 0.2033 | 0.2545 | 0.3090 | 0.3659 | 0.4244| 0.4837
- | Unconditional test | 0.0775 | 0.1102 | 0.1469 | 0.1863 | 0.2273 | 0.2688 | 0.3102 | 0.3507| 0.3900
0.7 | 0.9 [ Conditional test 0.0891 | 0.1426 | 0.2114 | 0.2951 | 0.3928 | 0.5030| 0.6242| 0.7547| 0.8927
- | Unconditional test | 0.0824 | 0.1224 | 0.1682 | 0.2179 | 0.2697 | 0.3219 | 0.3734 | 0.4231| 0.4704
0.4 | 0.9 | Conditional test 0.0796 | 0.1159 | 0.1580 | 0.2045 | 0.2543 | 0.3061 | 0.3589| 0.4119| 0.4644
- | Unconditional test | 0.0830 [ 0.1121 | 0.1503 | 0.1913 | 0.2340 | 0.2772| 0.3202 | 0.3622| 0.4027
0.7 | 0.9 [ Conditional test 0.0876 | 0.1379 | 0.2007 | 0.2747 | 0.3583 | 0.4497| 0.5469 | 0.6481| 0.7518
- | Unconditional test | 0.0827 | 0.1232 | 0.1696 | 0.2200 | 0.2725 | 0.3254 | 0.3774 | 0.4276| 0.4754
0.4 | 0.9 [ Conditional test 0.0813 | 0.1198 | 0.1643 | 0.2131 | 0.2645 | 0.3173| 0.3701 | 0.4222| 0.4727
- | Unconditional test | 0.0795 | 0.1152 | 0.1556 | 0.1993 | 0.2446 | 0.2906 | 0.3361 | 0.3804| 0.4231
0.7 | 0.9 | Conditional test 0.0872 | 0.1361 | 0.1959 | 0.2645 | 0.3401 | 0.4203| 0.5033 | 0.5874| 0.6711
- | Unconditional test | 0.0833 | 0.1247 | 0.1722 | 0.2239 | 0.2776 | 0.3317 | 0.3849 | 0.4361| 0.4846
0.4 | 0.9 | Conditional test 0.0835 | 0.1254 | 0.1738 | 0.2267 | 0.2821 | 0.3382( 0.3936 | 0.4473| 0.4985
- | Unconditional test | 0.0811 | 0.1191 | 0.1624 | 0.2093 | 0.2581 | 0.3074 | 0.3560 | 0.4032| 0.4484
0.7 | 0.9 | Conditional test 0.0876 | 0.1367 | 0.1958 | 0.2624 | 0.3342 | 0.4087 | 0.4839 | 0.5582| 0.6304
- | Unconditional test | 0.0841 [ 0.1267 | 0.1758 | 0.2292 | 0.2876 | 0.3405| 0.3952| 0.4477| 0.4973
0.4 | 0.9 [ Conditional test 0.0837 | 0.1264 | 0.1769 | 0.2334 | 0.2940 | 0.3571| 0.4212| 0.4851| 0.5477
- | Unconditional test | 0.0814 | 0.1198 | 0.1636 | 0.2110 [ 0.2604 | 0.3103 | 0.3595 | 0.4072| 0.4527
0.7 | 0.9 | Conditional test 0.0948 | 0.1587 | 0.2419 | 0.3433 | 0.4603 [ 0.5901 | 0.7294 | 0.8753| 1.0000
- | Unconditional test | 0.0840 | 0.1341 | 0.1890 | 0.2488 | 0.3108 | 0.3727 | 0.4328 | 0.4899| 0.5431
0.4 | 0.9 [ Conditional test 0.0850 | 0.1295 [ 0.1817 | 0.2395 | 0.3005 | 0.3630| 0.4252| 0.4859| 0.5442
- | Unconditional test | 0.0825 [ 0.1225 | 0.1684 | 0.2182 | 0.2700 | 0.3222 | 0.3736| 0.4232| 0.4704
0.7 | 0.9 | Conditional test 0.0937 | 0.1545 | 0.2316 | 0.3227 | 0.4247 | 0.5344 | 0.6486| 0.7645| 0.8798
- | Unconditional test | 0.0875 | 0.1353 | 0.1911 | 0.2520 | 0.3150 | 0.3779 | 0.4389 | 0.4966| 0.5503
0.4 | 0.9 [ Conditional test 0.0870 | 0.1343 | 0.1898 | 0.2508 | 0.3146 | 0.3789| 0.4420| 0.5024| 0.5595
- | Unconditional test | 0.0838 | 0.1258 | 0.1742 | 0.2268 | 0.2814 | 0.3364 | 0.3903 | 0.4421| 0.4912
0.7 | 0.9 | Conditional test 0.0934 | 0.1527 | 0.2265 | 0.3115 | 0.4044 | 0.5016 | 0.6000 | 0.6972| 0.7911
- | Unconditional test | 0.0881 | 0.1369 | 0.1939 | 0.2560 | 0.3204 | 0.3845 | 0.4465 | 0.5050| 0.5594
0.4 | 0.9 | Conditional test 0.0893 | 0.1402 | 0.2000 | 0.2655 | 0.3335| 0.4013 | 0.4668 | 0.5286| 0.5859
- | Unconditional test | 0.0852 [ 0.1295 | 0.1807 | 0.2364 | 0.2943 | 0.3523| 0.4090| 0.4631| 0.5141
0.7 | 0.9 [ Conditional test 0.0938 | 0.1531 | 0.2257 | 0.3079 | 0.3959 | 0.4858 | 0.5747| 0.6603| 0.7411
- | Unconditional test | 0.0888 | 0.1387 | 0.1972 | 0.2609 | 0.3268 | 0.3923 [ 0.4555] 0.5150] 0.5700
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¢”’ corresponding to the cases when r = n, i.e. when
samples are complete. Table 2 presents the power
comparison of the conditional and the unconditional
tests for various levels of censoring r. For the
conditional test, only the power values corresponding
to ¢ = 0.9 is shown, since for values of ¢ < 0.9, the
power automatically exceeds the power at ¢ = 0.9.

5. CONCLUSION

It is clear from Table 2 that the power of the
conditional test completely dominates the power of the
unconditional test for all values of the parameters when
the samples are censored. It is pointed out here that in
the complete sample case also, where the comparison
was with the most powerful (MP) unconditional test of
Joshi and Nabar (1991), an interval (0, ¢’) was found
such that the power of the conditional test dominated
the power of the unconditional MP test. Thus, it has
been possible to establish the supremacy of our
conditional UMP test over the unconditional test of
Ebrahimi (1985) for all values of ¢, thus demonstrating
the effectiveness of the conditional test.
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SUMMARY

Modelling and forecasting of India’s spices export data set, which exhibits a volatile behaviour, is first attempted through
the Box-Jenkins Autoregressive integrated moving average (ARIMA) approach. Subsequently, Generalized autoregressive
conditional heteroscedastic (GARCH) nonlinear time-series model along with its estimation procedures are thoroughly studied.
Lagrange multiplier test for testing presence of Autoregressive conditional heteroscedastic (ARCH) effects is also discussed.
The GARCH model is employed for modelling and forecasting of the data. Comparative study of the fitted ARIMA and GARCH
models is carried out from the viewpoint of dynamic one-step ahead forecast error variance along with Mean square prediction
error (MSPE), Mean absolute prediction error (MAPE) and Relative mean absolute prediction error (RMAPE). The SAS and
EViews, Ver. 4 software packages along with computer programs in C are used for data analysis. Superiority of GARCH model
over ARIMA approach is demonstrated for the data under consideration. Possible use of more accurate forecasts obtained by
GARCH methodology vis-a-vis ARIMA approach is briefly discussed.

Keywords: ARIMA, EViews software package, Generalized autoregressive conditional heteroscedastic model, Monthly export
data of spices, SAS software package, Volatility.

1. INTRODUCTION target set by Government of India is to increase the
spices export by ten-folds in the next ten years. To
achieve such an ambitious target, the twin goals of
spice sector should be to enhance the annual
growth rate from 13% to 20% and share of export
of value-added spice products from 58% to 75%. As
emphasized by Jaffee (2005), volatility seems to be the
norm rather than the exception in international markets
for spices due to the structure of the trade, climatic
conditions, and the rapidity with which producers can
respond to price changes. Proper monitoring and
appropriate policy measures require efficient modelling
and forecasting of spices time-series data.

Spices are the most important commercial crops of
our country. The important spices extensively grown in
India are cardamom, pepper, chillies, turmeric, and
ginger. With respect to production, consumption and
export of spices, India ranks first in the World. The total
area in India under these spices is over one million
hectares, and these accounted for an annual export of
about Rs. 3330 crores during the year 2006-07. In short,
India commands a formidable position in the World
spices trade with 47% share in volume and 40% in
value. More than 150 value-added products of spices
are currently available for export. The most important

among these are spice oils and oleoresins. More than
70% of their total World supply is from India. The

*Corresponding author - Prajneshu
E-mail address : prajneshu@yahoo.co.in

The most widely used technique for analysis of
time-series data is, undoubtedly, the Box Jenkins
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Autoregressive integrated moving average (ARIMA)
methodology. However, it is based on some crucial
assumptions, like linearity, stationarity, and
homoscedastic errors. Further, time-series data quite
often exhibit features which can not be explained by
ARIMA model, which is “linear”. As an example, the
famous time-series of average monthly sunspot numbers
exhibits a cyclical behaviour in such a way that the
series generally increases at a faster rate than it
decreases. Similarly, asymmetric phenomenon arises
with economic series, which tend to behave differently
when the economy is moving into recession rather
than when coming out of it. Many financial time-series
show periods of stability, followed by unstable periods
with high volatility. The loss in continuing to use the
age-old ARIMA methodology is that this type of
behaviour can not be explained satisfactorily, and so
“nonlinear time-series models” are usually needed to
describe data sets in which variance changes through
time. The search for an appropriate model of this type
would lead to a greater insight into the underlying
mechanism. An excellent description of these and other
related issues is given in Chatfield (2001).

During last two decades or so, the area of
Nonlinear time-series modelling has been rapidly
developing. The most promising parametric nonlinear
time-series model has been the Autoregressive
conditional heteroscedastic (ARCH) model, which was
introduced by Engle (1982), and for which he was
awarded the prestigious Nobel Prize in Economics in
2003. This entails a completely different class of
models which is concerned with modelling volatility.
The objective is not to give better point forecasts but
rather to give better estimates of the variance which,
in turn, allows more reliable forecast intervals leading
to a better assessment of risk (Chatfield 2001). The
ARCH model allows the conditional variance to change
over time as a function of squared past errors leaving
the unconditional variance constant. The presence of
ARCH-type effects in financial and macro-economic
time series is a well established fact. The combination
of ARCH specification for conditional variance and
the Autoregressive (AR) specification for conditional
mean has many appealing features, including a better
specification of the forecast error variance. Ghosh and
Prajneshu (2003) employed AR(p)-ARCH(g)-in-Mean
model for carrying out modelling and forecasting of
volatile monthly onion price data. The AR-ARCH

model has also been used as the basic “building
blocks” for Markov switching and mixture models
(See e.g. Lanne and Saikkonen 2003, and Wong and
Li 2001). Various aspects of the family of mixtures
of ARCH models have been thoroughly investigated
by Ghosh et al. (2005, 2006).

However, ARCH model has some drawbacks.
Firstly, when the order of ARCH model is very large,
estimation of a large number of parameters is required.
Secondly, conditional variance of ARCH(g) model has
the property that unconditional autocorrelation function
(Acf) of squared residuals, if it exists, decays very
rapidly compared to what is typically observed, unless
maximum lag ¢ is large. To overcome these difficulties,
Bollerslev (1986) proposed the Generalized ARCH
(GARCH) model in which conditional variance is also
a linear function of its own lags. This model is also a
weighted average of past squared residuals, but it has
declining weights that never go completely to zero. It
gives parsimonious models that are easy to estimate
and, even in its simplest form, has proven surprisingly
successful in predicting conditional variances.
Angelidis et al. (2004) used GARCH model for
describing Value-at-Risk.

In this paper, our purpose is to thoroughly study
the GARCH model and its estimation procedures.
Subsequently, this model along with the Box Jenkins
ARIMA model is applied to describe the volatility of
monthly export of spices from India during the period
April 2000 to August 2006. Finally, the performance of
one-step ahead forecasting for three months, i.e. from
September 2006 to November 2006 by both the models
is examined.

2. DESCRIPTION OF MODELS

2.1 The ARIMA Model

The Autoregressive moving average (ARMA)
model, denoted as ARMA(p, g), is given by

VW= OVt QYo tot Oy, + & — 61&

- 6&,-.— 0,5, (2.1)
or equivalently by
PB)y, = AB)g, (2.2)

where

@B)=1- B~ @B —.~ 9, B’
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and
&B)=1- 0B - &B* —.— 6,B

In the above, B is the backshift operator defined
by By, = y,.;. A generalization of ARMA models, which
incorporates a wide class of nonstationary time-series,
is obtained by introducing “differencing” in the model.
The simplest example of a nonstationary process which
reduces to a stationary one after differencing is

“Random Walk”. A process { y,} is said to follow
Autoregressive integrated moving average (ARIMA),
denoted by ARIMA(p, d, ¢), if V¢y, = (1 - B)? g is
ARMA(p, g). The model is written as

@B)(1 - By, = AB)s, (2.3)
where ¢, are identically and independently
distributed as N(0, o). The integration parameter

d is a nonnegative integer. When d = 0, the
ARIMA(p, d, g) model reduces to ARMA(p, g) model.

2.2 The GARCH Model

The ARCH(g) model for the series {&} is given
by
&y ~ NQ, hy) (2.4)

Here i, ; denotes information available up to time ¢ —
1, and

q
2
hy= o+ Y 2.5)
i=1

where ag > 0, a; = 0 for all i and zq:ai <1 are required
i=1

to be satisfied to ensure nonnegativity and finite

unconditional variance of stationary {&} series.

Bollerslev (1986) proposed the Generalized ARCH
(GARCH) model in which conditional variance is also
a linear function of its own lags and has the following
form

q )4
2
h = ag+ Zaiet_i + Zb b (2.6)
i=1 j=1

A sufficient condition for the conditional variance to
be positive is
ay>0,a,20,i=1, 2, ...,q;ijO, j=12,..,p

The GARCH (p, g) process is weakly stationary

q p

if and only if Zai +ij <1. The most popular
i=1 j=1

GARCH model in applications is the GARCH(1, 1)

model. To express GARCH model in terms of ARMA

model, denote 77, = 83 —h, . Then from eq. (2.6)

5 Max(p.q) 5 p
g =ay+ Y (a,-+b,-)€;_,-+77,+zbﬂ7,_j
i=1 =
2.7

Thus a GARCH model can be regarded as an extension

of the ARMA approach to squared series { € tz }.

2.3 Estimation of Parameters

Estimation of parameters for ARIMA model is
generally done through Nonlinear least squares method.
Fortunately, several software packages are available for
fitting of ARIMA models. In this paper, SAS, Ver. 9.1
software package is used. The Akaike information
criterion (AIC) and Bayesian information criterion
(BIC) values for ARIMA model are computed by

AIC = Tlog(A) +2(p + g + 1) (2.8)
and
BIC = Tlog(®) + (p + g + DlogT”  (2.9)

where T~ denotes the number of observations used for
estimation of parameters and o denotes the Mean
square error.

In order to estimate the parameters of GARCH
model, Method of maximum likelihood is used. The
loglikelihood function of a sample of T observations,
apart from constant, is

T
L&) = TY (logh, + &1

t=1

where

q p
h, = ag +Zaiyt2_i +ij ht_j
i=1 j=1
If f(.) denotes the probability density function of
&, generally, maximum likelihood estimators are
derived by minimizing
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L0 = T_li(log\/i— log f(s,/\/hff))

where Er is the truncated version of /4, (Fan and Yao

2003). For heavy tailed error distribution, Peng and Yao
(2003) proposed Least absolute deviations estimation
T
(LADE), which minimizes Y| logz; ~log ()], where
t=vy
v=p+1,ifg=0andv>p+1, if g > 0. Fan and Yao
(2003) and Straumann (2005) have given a good
description of various estimation procedures for
conditionally heteroscedastic time-series models.

The Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values for
GARCH model with Gaussian distributed errors are
computed by

T
AIC= Y (logh +&7 ) +2(p + g + 1) (2.10)
t=1
and
T ~ ~
BIC = " (loghy + /A |+ 2(p + g + 1) log(T v + 1)
=1
' 2.11)

where T is the total number of observations.

Evidently, the likelihood equations are extremely
complicated. Fortunately, the estimates can be obtained by
using a software package, like EViews, SAS, SPLUS
GARCH, GAUSS, TSP, MATLAB, and RATS. In the
present investigation, the Gaussian maximum likelihood
estimation procedure available in EViews software
package, Ver. 4 is used for data analysis. Further, AIC and
BIC values for ARIMA and GARCH models are
computed separately by writing computer programs in C.

2.4 Testing for ARCH Effects

Let & = y;, — ¢y,_; be the residual series. The

Lagrange multiplier (LM) test for squared series { gf }

may be wused to check for conditional
heteroscedasticity. The test is equivalent to usual F-
statistic for testing Hy: a; =0, i =1, 2, ..., g in the
linear regression

2 2 2
& = ayptaE t.ta g e t=q+1,..,T
(2.12)

where e, denotes the error term, ¢ is the prespecified
positive integer, and T is the sample size. Let

T 2 T
SSR, = 2 (Etz—a)) , Where w= z E,Z/T is
t=qg+1 t=g+1

T
sample mean of { ¢ 12 } ,and SSR, = Z élz , where ¢,
t=q+1

is the least square residual of eq. (2.12). Then, under
H,, the ARCH-LM test statistic, viz.

_ (SSRy—SSR,)/q
OSSR /(T -g-1)

(2.13)

follows asymptotically the chi-squared distribution with
q degrees of freedom.

3. MODELLING OF INDIA’S SPICES
EXPORT DATA

All-India data of monthly export of spices during the
period April 2000 to November 2006 are obtained from
Indiastat (www.indiastat.com) available at I.A.S.R.I., New
Delhi and the same are exhibited in Fig. 1. From the total
80 data points, first 77 data points corresponding to the
period April 2000 to August 2006 are used for building
the model and remaining are used for validation
purpose. A perusal of the data shows that, during the
period from April 2004 to February 2006, these varied
between Rs 143 crores and Rs 189 crores. Then the
spices export suddenly jumped almost 80% to the level
of Rs 345 crores in March 2006, which was followed
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Fig. 1. Data of monthly spices export from India
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by a sudden dip to as low as Rs 188 crores in the very
next month. All this clearly shows that volatility was
present during March 2006. Similar type of presence
of volatility was noticed at several other time-epochs,
like May 2001, August 2001, and June 2002.

3.1 Fitting of ARIMA Model

A perusal of estimated autocorrelation functions
(acf) of original series, reported in Table 1, shows that
it decays very slowly, implying thereby that this series

Table 1. Sample autocorrelation functions (acf) and partial
autocorrelation functions (pacf) of the original and
differenced series

Lag acf of the pacf of the acf of the pacf of the
series series differenced | differenced
series series
1 0.550 0.550 -0.498 —0.498
2 0.525 0.319 —0.048 -0.393
3 0.539 0.267 0.188 —0.065
4 0.405 -0.022 -0.197 -0.181
5 0.457 0.147 0.079 -0.110
6 0.303 —0.148 0.042 -0.040
7 0.274 -0.023 -0.009 0.069
8 0.251 -0.039 —0.008 0.049
9 0.211 0.053 0.000 0.040
10 0.202 0.001 —0.058 -0.064
11 0.214 0.121 -0.007 -0.120
12 0.239 0.102 0.105 0.014
13 0.182 -0.031 -0.078 —-0.009
14 0.196 —0.006 0.044 0.033
15 0.175 —-0.035 -0.014 0.000
16 0.165 -0.013 -0.018 0.034
17 0.162 -0.020 —0.001 —-0.007
18 0.138 0.031 0.040 0.047
19 0.109 -0.038 0.005 0.059
20 0.089 —-0.009 -0.035 0.016
21 0.095 0.022 0.018 —0.005
22 0.083 0.019 —0.009 0.007
23 0.089 0.016 -0.113 -0.175
24 0.163 0.161 0.306 0.222

may be differenced. Analytically, this issue may be
resolved by applying the unit root test, proposed by
Dickey and Fuller (1979) for parameter p in the
auxiliary regression

Ay, =py+ oAy + & (3.1)
which is derived from the AR(2) model, viz.
(- L- gLy =g (32)

by expressing the associated autoregressive polynomial
in L as

l-@L-@l’=10-¢ - @)L+ - L)1~ ol

(3.3)

where ;= — ¢,. Using (3.3) in (3.2), we get
(1-L)(A-al)y, = ply, + & 3.4
where p = ¢; + ¢, — 1. Now, presence of unit root, i.e.
L =1 in the autoregressive polynomial implies that the
condition for nonstationarity is 1 — ¢; — ¢, = 0, i.e.
¢, + @, = 1. Further, region of stationarity is

¢, + @ < 1. Thus, the unit root test reduces to testing
Hy: p=0 against H;: p< 0. In the present situation,

p is computed as 0.005. Since calculated value of

t-statistic, i.e. 0.212 is found to be greater than the
tabulated value of #-statistic at 5% level of significance,
i.e. —1.95 (Franses, 1998, Page 82), therefore H,is not
rejected at 5% level and so p = 0. Thus, there is
presence of one unit root and so differencing is required
until the acf shows an interpretable pattern with only a
few significant autocorrelations. On taking the first
difference of the original series, it is seen that only a
few autocorrelations, reported in Table 1, are high
making it easier to select the order of the model. On
differencing the original series twice, it is seen that the
sum of the autocorrelations of double differenced series
is —0.507, which implies that the series is
overdifferenced (Franses, 1998, Page 50). This suggests
that only one differencing would be more appropriate.

The appropriate ARIMA model is chosen on the
basis of minimum Akaike information criterion (AIC)
and Bayesian information criterion (BIC) values. Using
egs. (2.8) and (2.9), the AIC and BIC values, which are
respectively computed as 521.29 and 532.95, the
ARIMA(1, 1, 1) model is selected for modelling and
forecasting of India’s spices export data. The estimates
of parameters of above model are reported in Table 2.

Further, the residual error variance for the fitted
ARIMA model is computed as 867.762. The graph
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Table 2. Estimates of parameters along with their standard
errors for fitted ARIMA(1, 1, 1) model

Parameter Estimate Standard error
ARI1 —-0.100 0.159
MAI1 0.696 0.119
Constant 1.468 0.966

Using eqs. (2.10) and (2.11), the AIC and BIC
values for fitted AR(1)- GARCH(1,1) model are
respectively computed as 479.77 and 521.97.

Table 3. Sample autocorrelation functions (acf) and partial

autocorrelation functions (pacf) of the squared residuals of
the ARIMA (1, 1, 1) series

of fitted model along with data points is exhibited in
Fig. 2. Evidently, the fitted ARIMA(I1, 1, 1) model is
not able to capture successfully the volatility present at
various time-epochs, like October 2001; May 2002;
March 2004; and March 2006.
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Fig. 2. Fitted ARIMA(1, 1, 1) model along with data points
3.2 Fitting of GARCH Model

On investigating autocorrelations of squared
residuals of the fitted ARIMA(1,1,1) model, reported
in Table 3, it is found that the autocorrelation is
highest at lag 24, which is 0.265. The ARCH-LM test
statistic at lag 24 computed using equations (2.12) and
(2.13) is 37.48, which is significant at 5% level. But
it is not reasonable to apply ARCH model of order 24
in view of the enormously large number of parameters.
Therefore, the parsimonious GARCH model is
applied. The AR(1)-GARCH(1, 1) model is selected on
the basis of minimum AIC and BIC values. The
estimates of parameters of the above model along with
their corresponding standard errors in brackets () using
Method of maximum likelihood with Gaussian
distributed error terms are

y,=157.99 + 0.829 y, ,+&,
(33.692) (0.087)

where g, =h,1/2nt, and h, satisfies the variance
equation

h, = 1427.855 + 0.354 €2, +0.509 h, ,
(237.058) (0.277)  (0.206)

Lag acf of the squared pacf of the squared
residuals series residuals series
1 -0.015 -0.015
2 -0.045 -0.045
3 -0.030 -0.031
4 —0.041 -0.044
5 0.009 0.005
6 -0.023 —-0.027
7 —-0.007 -0.010
8 -0.022 -0.027
9 -0.025 -0.027
10 -0.025 -0.031
11 -0.029 -0.035
12 0.028 0.020
13 -0.021 -0.028
14 -0.023 -0.028
15 -0.014 -0.020
16 -0.029 -0.035
17 -0.005 -0.016
18 -0.030 -0.039
19 -0.015 -0.026
20 -0.021 -0.033
21 -0.024 -0.035
22 -0.001 -0.015
23 -0.022 -0.034
24 0.265 0.254

To study the appropriateness of fitted GARCH
model, autocorrelation functions of standardized
residuals and squared standardized residuals are
computed and the same are reported in Table 4. It is
found that, in both situations, the autocorrelation
functions are insignificant at 5% level, thereby
confirming that the mean and variance equations are
correctly specified. Conditional standard deviation for
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Table 4. Autocorrelation functions of the standardized residuals and squared standardized residuals
for fitted GARCH(1,1) model
Lag acf of standardized Q-Statistic Probability acf of squared Q-Statistic Probability
residuals standardized
residuals

1 —0.093 0.672 --- 0.157 1.906 ---

2 0.017 0.694 0.405 -0.009 1.913 0.167

3 0.222 4.589 0.101 0.018 1.937 0.380

4 -0.014 4.604 0.203 -0.113 2.957 0.398

5 -0.014 4.621 0.328 -0.041 3.093 0.542

6 0.083 5.192 0.393 0.152 4.995 0.416

7 0.138 6.784 0.341 0.092 5.707 0.457

8 0.009 6.791 0.451 -0.050 5.924 0.549

9 —-0.030 6.867 0.551 -0.069 6.336 0.610
10 -0.025 6.922 0.645 -0.135 7.927 0.541
11 0.064 7.288 0.698 -0.109 8.995 0.533
12 0.019 7.321 0.773 0.048 9.202 0.603
13 -0.002 7.321 0.836 0.009 9.210 0.685
14 0.218 11.784 0.545 -0.054 9.482 0.736
15 0.052 12.039 0.603 -0.028 9.558 0.794
16 0.021 12.084 0.673 -0.127 11.116 0.744

fitted model is plotted in Fig. 3. Further, graph of fitted
model along with data points is exhibited in Fig. 4.
Obviously, the fitted GARCH model is able to capture
the volatility present in the data set.
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Fig. 3 Conditional standard deviation of fitted
AR(1)-GARCH(1,1) model

4. FORECASTING OF INDIA’S SPICES
EXPORT DATA

One-step ahead forecasts of export of spices along
with their corresponding standard errors inside the
brackets ( ) for the months of September 2006 to
November 2006 in respect of above fitted models are
reported in Table 5. In view of the assumption of
homoscedasticity of error terms in ARIMA approach,
the one-step ahead forecast error variance remains
constant. A perusal indicates that, for fitted GARCH
model, all the observed values lie within one standard
error of their forecasts. However, this attractive feature

Table 5. One-step ahead forecasts of export of spices
(in Rs. Crores) for fitted models

Months | Observed Forecasts by

values | ARIMA (1, 1, 1)| AR(1)-GARCH (1, 1)
Sep. '06 | 27091 235.67 (29.61) 247.14 (40.93)
Oct. 06 | 232.59 | 240.27 (29.61) 231.89 (48.17)
Nov. 06 | 286.21 241.50 (29.61) 265.68 (33.31)
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Fig. 4 Fitted AR(1) — GARCH (1,1) model along with
data points

does not hold for fitted ARIMA model. Further, for
GARCH model, it may be noted that the magnitude of
one-step ahead forecast error at a time-epoch is also
reflected in the magnitude of corresponding forecast
error variance at next time-epoch. For example, when
one-step ahead forecast error (i.e. 23.77, being the
difference of observed value 270.91 and forecast value
247.14) and corresponding forecast error variance
during September 2006 (i.e. 40.93) are large, one-step
ahead forecast error variance for October 2006 (i.e.
48.17) is also large. But when one-step ahead forecast
error during October 2006 (i.e. 0.70, being the
difference of observed value 232.59 and forecast value
231.89) is small, corresponding forecast error variance
for November 2006 (i.e. 33.31) is also relatively small.
It may be noticed that while periods of strong
turbulence caused large fluctuations in Indian spices
export, these were often followed by relative calm and
slight fluctuations. Further, while most volatility is
embedded in the random error, its variance depends on
previously realized random errors with large errors
being followed by large errors and small by small. Thus,
the fitted GARCH model is capable of explaining
volatility in the underlying phenomenon. This is in
contrast to the ARIMA model wherein the random error
is assumed to be constant over time.

The Mean square prediction error (MSPE) values
and Mean absolute prediction error (MAPE) values for
fitted GARCH model are respectively computed as
18.14 and 15.00, which are found to be lower than the
corresponding ones for fitted ARIMA model, viz. 33.17
and 29.02 respectively. Further, a comparative study of
forecasts of monthly spices export by above discussed
two models is carried out on the basis of their Relative

mean absolute prediction error (RMAPE) values
defined as

1< .
RMAPE = gz{‘)’zﬂ‘ _yt+i‘/yt+i}><100
i=1

The RMAPE values for fitted ARIMA (1,1,1) and
AR(1)-GARCH(1,1) models are respectively computed
as 32.46 and 10.82. The lower values of all the three
statistics, viz. MSPE, MAPE, and RMAPE reflect
superiority of GARCH approach for forecasting
purposes also.

The more realistic forecast intervals for India’s
spices export data obtained through GARCH approach
could be of immense help to planners in formulating
appropriate strategies. This type of information would
go a long way in arriving at the appropriate decisions
on several issues, like Quantities of spices in future to
be exported and quantities to be earmarked for domestic
consumption, Whether to impose ban on exports at
various points of time, and Whether or not to impose
export duty and how much in case export of spices is
allowed. This would enable the planners to take
appropriate policy decisions from time to time well in
advance in order to meet the targets set for Indian spices
export. These, in turn, would also benefit the farmers
in production of optimum quantities of spices. All this
would ultimately result in efficient management of
India’s spices sector export scenario on a sound
statistical basis.

S. CONCLUDING REMARKS

It has been shown that for Indian spices export
time-series data, the wusual assumption of
homoscedasticity of error terms is not satisfied. For
modelling as well as forecasting of this data, the
GARCH nonlinear time-series model has performed
better than the well-known Box-Jenkins ARIMA model.
Therefore, for data sets exhibiting volatility, ARIMA
approach should be abandoned in favour of GARCH
methodology in order to obtain more accurate forecasts
and changing forecast interval lengths. The
methodology advocated in this paper can also be used
for forecasting other volatile data sets.
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SUMMARY

The problems of estimating the population total in multi-character surveys in varying probability sampling schemes when
the measure of size is not well-related to the study variables, have been considered by Rao (1966), Scott and Smith (1969) and
Arnab (2001). In the present note, their results are extended for a wider class of superpopulation models and sampling designs.

Keywords: Auxiliary information, Model design unbiased estimator, Multi-character surveys, Optimal estimator, PPSWR

sampling, Superpopulation model.

1. INTRODUCTION

In large-scale surveys, we generally estimate
population parameters like totals, means and variances
for more than one character at a time. In such a survey
if a sample is selected by a varying probability
sampling scheme using an auxiliary variable x as a
measure of size, then the resulting sampling design
may yield efficient estimators for those characters
which are well-related to the auxiliary variable but may
not provide efficient estimators for the characters which
are poorly related to the auxiliary variable. Rao (1966)
first addressed the requirement for the adjustments of
the conventional estimators in such a multicharacter
survey and provided with some alternative estimators
for estimation of a finite population total under various
sampling schemes when the correlation between the
study and auxiliary variable is very low. The alternative
estimators, proposed by Rao (1966), fare better than the
conventional estimators under the following
superpopulation model:

*Corresponding author : Raghunath Arnab
E-mail address : arnabr@mopipi.ub.bw

Model M1 : Eyi(y) = 4. Vin(y) = 0

and Cyy(y;, y)) =0 fori#j (D)
where, , o*( > 0) are unknown model parameters and
Eyni, Va and Cyyy denote respectively the expectation,
variance and covariance with respect to the model M1.
Following Rao (1966), Scott and Smith (1969), Bansal
and Singh (1985), Kumar and Agarwal (1997), Mangat
and Singh (1992-93) and Singh and Horn (1998),
among others also suggested some alternative
estimators under the PPSWR sampling scheme. Arnab
(2001) extended Rao’s (1966) results for an arbitrary
varying probability sampling scheme and showed that
Rao’s (1966) results could be derived from his results
as special cases. For the sake of clarity, let us describe
Rao (1966), Arnab (2001) and Scott and Smith (1969)
results relevant to our present discussion as follows.

1.1 Estimators due to Rao (1966), Arnab (2001) and
Scott and Smith (1969)
Let U= {1, ..,1, .., N} be a finite population of ;y
units and y; (x;) be the value of the study (auxiliary)
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variable for the i™ unit of the population andY(X) be

their total. Here x;’s are assumed to be known and
positive for every i € U . Let a sample s of size n be
selected from U by a varying probability sampling
scheme using x; as a measure of size for the i™ unit. Rao
(1966), Arnab (2001) and Scott and Smith (1969)
alternative estimators are given below.

1.1.1 Rao’s (1966) estimators

The conventional estimators for a finite population
total Y under PPSWR, 7 ps and Rao-Hartley-Cochran
(1963, RHC) sampling schemes are respectively given
by

1 Vi
t =— 2 nj(s)— 2
pps niss ) pi (2)
the(wps)= 3 b= 3 2L 3)
esT; iesnp;
and
P.
e =2 Vi~ (4)
ies Dj

where p; = x;/X, n,(s) = frequency of the i™ unit in s,
z; = inclusion probability for the i™ unit and
P; = sum of p;’s for the group containing the i (e 5)0
unit for selection of sample under RHC sampling
scheme.

Rao (1966) showed that the alternative estimators

1 _ —
tpps(l): - 2 nl(S)yl =N ynt()(s)z N 2 yl/n =N Vs
nies ies
and t,;(1)= N 2 y; P, are unbiased for Y under model
ies
M1 and more efficient than the corresponding

conventional estimators £, , y, (7 ps) and f,,.

The Murthy’s (1957) estimator for PPSWOR
sampling scheme is given by

* 1

Tmur = migs yip(sli) (5)
where p(s) and p(sli) denote respectively the probability
of selection of an unordered sample s based on
PPSWOR sampling scheme and the conditional
probability of selection s given that the unit i was
chosen on the first draw. Rao (1966) proposed an

alternative estimator of b (2) (which is tur with n =
2) as

Ad=py)yp+A=p)yj (6)
J

ouar (2 =
mur 2-p-p

The estimator ¢, (2) is inconsistent but unbiased
under model M;. Rao (1966) did not prove theoretically
whether or not the proposed alterntive estimator ¢,,,,. (2)

is superior to the conventional estimator t:mr (2).
However, he showed empirically the superiority of

tr (2) OVET £ (2) .

1.1.2 Arnab’s (2001) estimators

Let P, be the class of fixed effective size n
sampling design and C be the class of linear
homogeneous unbiased estimators for Y consisting of
estimators of the form

1(s)=Y by, (7N
i€s
where b’s are constants free from y;’s satisfying the
unbiasedness condition

Y bip(s)=1 VieU (8)

sDi

Arnab (2001) showed that the alternative
estimators #y(s) = Ny, fares better than any estimator
belonging to C in the sense that

EpiV, (10()) S EpV, (1(s)) YV pe B 1(s)eC  (9)

From equation (9), we can establish the following
inequalities

Vi *

ies Vi
and also
EM IVp (tO(s)) < EM lvp (trhc (l)) < EM IVp (trhc)

1.1.3 Scott and Smith’s (1969) estimators

Scott and Smith considered a class C~ of linear
homogeneous model design unbiased estimators of the
population total ¥ based on a sampling design p € P,
of n distinct units. The class C" consists of estimators
of the form
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1(5)= Y by¥; N
EypVltyp(D] = Eppy | —| Y 21— 77
satisfying the model-design unbiasedness condition n\ o Pi
()b (10) o
ZP g;‘ i = where z; = y;p; and z =ZZ,~
i=1
Scott and Smith (1969) proved that | N
2
EvaVyltpp(D] = 2,07 pi1 = p;) (12)

Epy((MSE (1(s))) = Eyy E,, (t5(s) —Y)?

< Ep (MSE(t(s5))) = Ey E, (1(5) = ¥)?
Here E, denotes expectation with respect to design p.

2. PROPOSED ESTIMATOR UNDER
MODEL M2

In this present note we have showed that Rao
(1966) and Arnab (2001)’s results can be extended
further for a wider superpopulation model given below.

Model M2 : Eyp(y) = i, Va(y)) = ©, ,2 = sz(xi)

and Cwo(yi» yp) =0 for i #j

where v(x;) is a function of x; only. Various forms of
the variance function v(x;) specially v(x;) = x{ with
g 2 0 are referred to by Cassel ef al. (1971), and
Chaudhuri and Stenger (1992) among others. We have

also extended the Scott and Smith’s (1969) result by
showing that their result is valid also for the wider

classes of sampling designs P: (D P,) consisting of n

units which may not necessarily be distinct.

Theorem 1. Ey5V, (1,,,(1))< EpoV, (1)

Proof. Ey,V,(1,,,) = EysV, ( PACES Yi j

ies

sl {300
(2

+ 1 V[ Zn(s)—] (11)

es

From (11) and (12), we get

N
- 0?1 Y e, [ Zn@)?}o
i=1 i ies

Theorem 2. E;;,V,(ty(s)) < EppV,(H(s)) VH(s) € C,

p € P, if Giz is a decreasing function of .

Proof. V,(«(s)) = E,(t(s))* - Y

3 Mz

N N
(2 b2 p(s) - 1) Zzyiy,-(st,-bs,-p@)—l)

§Di iz j=1 §Di,j

and

EypV(t(s)) = 26 (mep<s>—1]+ 12V, (S by)

i=1 sDi i€s

zg [2 2 p(s) - 1)

§O1

i)
>y ol —-1 (13)
i=1 T

S 2
bip(s) >x2i 1 _
( $Di 2 p(s) TT;

§Di

unbiasedness condition (8))

follows from the

N 2
14 <r0<s>>—— (Zy,) [El,yn]

es

1% j=1

N2 N ) N N
— Zﬂi(l_”i))’i _Zz(ninj_nij)yiyj
i=1

(14)
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Equation (14) yields

EnVplto(s) = — En 1-1;)
i=1

,LL 27:(1 m)— ZZ(ﬂlﬂj ]

i# j=l1
== m;(1- )0} (15)

N N N
(noting Zﬂ'i =n and ZZEU =nn-1))

i=1 i j=1

Finally from (13) and (15), we get
EypVp(t(s)) — EppV,(to(s))

N
> Zal-z[i—lj Zn(l m)o?
i=1 TT; i=1

—liq[ﬂ? n)
— o ——
NS N

= COV(q,', ﬂ-l)
where
Gl 1
qi: —2 n-——l (n+Nﬂl)
1

2
- :—;[n[%—lj+N(l—ﬂi)J (16)

Now if oiz is a decreasing function of 7;, then ¢;

will be an increasing function of z; since

1 : : :

n| ——1 |+ N(1—x;) is a decreasing function of 7. In
T

this situation Cov(g;, 7;) becomes positive.

Corollary 1. For an IPPS sampling design where

7; = np; and for the model with M2, 02 —szg

O'i /m; becomes a decreasing function of 7; if g < 1.
In this case EppV,(15(s)) < EppV,(1(s)).

2

In particular if 67 =c2, Theorem 2 reduces to

inequality (9).

Theorem 3. For a sampling design p € P: and 1(s)e C*

Eyi(MSE((s)) = EynE,(1(s) — Y > 2 N[% _1]

= EyE, (1) =Y)

where y = E,(y,) = expected effective sample size

= ZVS p(s) and p, is a fixed effective size sampling

N

design with Prob{y, = 7} = L.
Proof. E;;(MSE(t(s)))

= EwiEp(t(s) - Y)*

= E,Ey(1(s) - V)’

- GZZp(s)(st, +N - 22;;5,)

es ies

+ uzzp(w(zb ) (17)

ies

and

es les

Zp(s)(z‘bw +N - 2st,]

= 2p<s>21u +N-y (18)

Further the model-design unbiased condition (10)
yields

N N
zp(s)zlsi (bst :zzlsip(s)(bsi _1)2
K i=1

s =1

N 2
(Zzl‘yim)(hﬁ —1)}

> s i=1
- N
22 Lip(s)
s i=l
_(N-p)? (19)
Y

Finally using (17), (18) and (19), we get

Ey (MSE(1(5))) > N(E ~1 ]02 (20)
Y
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Equality in equation (20) holds for a sampling
strategy based on fixed effective size sampling design
Py satisfying Prob{ 7, = 7} = 1 and an estimator #(s) with
by = NIy, = Niy.

Remark 1: Scott and Smith’s (1969) assertions of non-
existence of the lower bound given in (20) for a with
replacement sampling design is clearly incorrect.
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SUMMARY

Joint regression has been very popular among plant breeders to evaluate stability of crop varieties tested under multi
location-year trials. The plant breeders often finish their investigation for stability with Eberhart and Russell model (1966)
though the component of deviation from linear regression is found significant for many varieties. Consequently, in such situations
one cannot do ranking of all the genotypes tested with regard to stability. Eventually pair-wise comparisons with respect to
stability can be made only in a subset of genotypes, whose deviations from linear regression are found not significant. This
paper aims to emphasize the limitations of Eberhart and Russell model in evaluating stability of a set of varieties tested and
suggest plant breeders alternative measures of stability when Eberhart and Russell model fails to comment on the stability of
a sufficiently large number of varieties tested. Another problem of plant breeders that this paper also attempts, is dealing with
the situation of the stability analysis when some cells in two-way table of genotype x environments are blank. This paper
examines methods cited in literature to handle incomplete data situations and brings out their practical relevance in the current
generation of computers. An attempt has been made to develop handy computational algorithms wherever required and compares
various procedures with respect to their capabilities in evaluating stability of the varieties.

Keywords: Eberhart and Russell model, Multi location-year trials, Stability, Stability variance.

1. INTRODUCTION is usually referred to as the sensitivity or adaptability
of a variety. The basic ANOVA model for two-way
crossed classification with interaction serves to obtain
a rough idea about the partition of variance over
different terms. However, it identifies the interaction as
a source but does not analyze it since the interaction
here is modeled by a separate, additive parameter for

each combination of genotype by environment coarsely

In developing countries like India, where the
number of small and marginal farmers with small
holdings is very high, stable yields minimize risk and
ensure sustainable food supply. One of the plant
breeders’ aim has been to develop cultivars that produce
stable yields across a range of environments.
Environments may be locations or years or

combinations of both.

The existence of interaction reflecting differences
among varieties in their ability to maintain performance
over a wide range of environmental conditions has long
been recognized to exist (Finlay and Wilkinson 1963).
This ability, which is an important property of a variety,

*Corresponding author : BM.K. Raju

E-mail addresses : bmkraju@yahoo.com, bmkraju@gmail.com

and un-parsimoniously. No attempt is made at the
interpretation of this interaction, leaving the causes of
interaction.

As an alternative to linear formulations of
interactions, multiplicative formulations may be chosen
in an attempt to quantify the variety’s contribution to
genotype X environment interaction. These
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multiplicative formulations permit the interpretation of
interaction as differential genotypic sensitivity to
environmental variable(s). Whenever the information
on external environmental characteristics such as
weather parameters and soil characteristics are
available, it may be accommodated in the basic ANOVA
model for making an attempt to interpret the interaction.
This technique consists of regression of the estimated
interactions of each variety on to the measured external
environmental variables to obtain the linear
sensitivities. However, it is difficult to obtain data on
natural environments that comply with the data
structure of varieties and properly explain variations in
agricultural value of crop varieties. In such cases one
may consider the regression of observed yield on the
observed environmental mean yield. Finlay and
Wilkinson (1963) reasoned that the average yield of a
large group of genotypes can be used to describe a
complex natural environment, without the complexities
of defining or analyzing the important edaphic and
seasonal factors. Environment averages, or their
deviations from the overall average, are generally used
as environmental indices. The resulting regression
coefficient may be interpreted as linear sensitivity of
the variety to environmental change. This technique
was first used by Yates and Cochran (1938) and later
by Finlay and Wilkinson (1963) and Eberhart and
Russell (1966). This technique is popularly known as
Joint Regression, as the joint effect of all the genotypes
is used as explanatory regression variable.

Though this technique is very popular among plant
breeders, it has got certain limitations. There is a need
to elaborate these limitations and suggest alternative
measures of stability that do not suffer from such
limitations. Another problem faced by plant breeders
is non-availability of data on all locations-years and
varieties, which makes the data set obtained from Multi
Environment Testing (MET) unbalanced. It may be
incidental or accidental. The list of varieties being
tested changes over the years and not all varieties are
tested in all the environments since the genotypes
change from year to year. As new varieties become
available, older ones become obsolete which makes the
data set unbalanced. Some causes for the accidental
imbalances are non-germination, damage of crop on
account of pests and diseases and floods etc. Literature
cites some methods that can handle incomplete data
situations. But it is again an issue for the plant breeders
to choose the best technique for a given situation.

Hence, there is a need to study the existing
methodologies to bring out their practical relevance in
the current generation of computers and to develop
handy computational algorithms for evaluating stability
of the varieties. Section 2 focuses on limitations of
Eberhart and Russell (1966) model and highlights
alternative measures of stability. The subsequent
sections elicit on the comparison of various
methodologies under incomplete data situations.

2. STABILITY ANALYSIS FOR BALANCED DATA

2.1 Eberhart and Russell (1966) model

Eberhart and Russell (1966) proposed an
observational formulation for the Joint Regression
context. The model proposed by Eberhart and Russell
(1966) is written as

Vi =0+ fe+ G
where
v is the performance of i-th genotype at the j-th
environment (i=1,...,K;j=1,.., N) averaged
over R replications

«; is the mean of i-th genotype over all the
environments

e; is the environmental index for the j-th environment
which is obtained as the mean of all genotypes at the
Jj-th environment minus the general mean.

B is the regression coefficient measuring the linear
sensitivity of i-th genotype to environment change.

0; is the “deviation from regression’ of the i-th genotype
in the j-th environment

Testing for the significance of genotype environment
interaction

The significance of either G x E (linear) mean
squares or pooled deviation mean squares or both when
tested against average error confirms the presence of
GE interaction. If the latter alone is significant then no
useful prediction is possible from this approach. If both
are significant then the practical usefulness of the
predictions depends on the significance of former
relative to the latter.

Stability and adaptability

A genotype with unit regression coefficient i.e.
[ = 1 and the mean squared deviation not significantly



B.M.K. Raju et al. / Journal of the Indian Society of Agricultural Statistics 63(2) 2009 139-149 141

different from zero (§Lf2; = 0) is said to be stable.
Significance of dz,» from zero invalidates the linear

prediction. If 5612; is not significantly different from
zero, the performance of the genotype for a given
environment may be predicted. Accordingly, a genotype
whose performance can be predicted is said to be stable
and it also helps in choosing genotypes for specific
adaptation.

Eberhart and Russell model analysis for groundnut
data

The data used in this study has been provided by
Regional Agricultural Research Station (RARS), Palem
of Acharya N.G. Ranga Agricultural University, Andhra
Pradesh. The data was an outcome of multi location
trials of released and pre-released varieties of groundnut
conducted at research stations situated in different
agro-climatic zones of Andhra Pradesh. The data was
consisted of 15 varieties of groundnut viz., TPT-1,
TPT-2, Girnar-1, ICG (FDRS)-4, ICG (FDRS)-10,
K-134, SVGS-1, TCGS-1, TCGS-3, ICGV-86699,
Kadiri-3, ICGS-11, ICGS-44, JL-24 and TMV-2. These
are designated as G-1 to G-15 respectively. These
varieties were grown in Kharif-1990 and Kharif-1991.
The locations used for these trials were 14. The 6
locations, namely, RARS-Tirupati, ARS-Utukur,
ARS-Darsi, RARS-Nandyal, ARS-Seethampet,
RARS-Palem were used for Kharif-1990 as well as
Kharif-1991. They are designated as E-1 to E-6 for
Kharif-1990 and E-9 to E-14 for Kharif-1991. The 2
locations, namely, ARS-Kadiri and RARS-Jagitial were
used in Kharif-1990 only. These were designated as E-
7 and E-8. Remaining 6 locations, namely,
ARS-Ananthapur, ARS-Peddipalli, ARS-Peddapuram,
RARS-Yellamanchili, ARS-Ragolu, ARS-
Vizayanagaram were used in Kharif 1991 only. These
were designated as E-15 to E-20. The structure of
environments is as under.

Location-Year combination is treated as
environment and accordingly 20 environments are
designated as E-1 to E-20. The experiments were laid
in Randomized Block Design (RBD) with 3
replications. The pod yields were expressed as kg/ha.
The mean data over the replicates for the 15 genotypes
and 20 environments is given in Raju (2002).

The stability statistics of Eberhart and Russell’s
model are presented in Table 1. The results revealed
that there was significant difference among the
genotypes indicating wider genetic diversity among the
genotypes. Genotype x Environment (linear) and pooled
deviation were found to be significant when tested
against pooled error. It indicated significant
Genotype x Environment interaction. Genotype X
Environment (linear) interaction was found to be not
significant when tested against pooled deviation which
implies that the genotypes do not differ for their
regression on environmental index and overwhelming
portion of G x E interaction is of non-linear type, which
ultimately makes the behaviour of genotypes
unpredictable. On examining the significance of
deviation from linear regression for the 15 genotypes
in Table 1, all the deviations are significant at 1%
level except genotype-7 and genotype-14. The
deviation for the genotype-14 is not significant and the
regression coefficient £ is around unity (0.921) and as
such it is regarded as stable variety. Similarly, the
deviation for genotype-7 is not significant at 1% level
and the coefficient of linear sensitivity is very close to
unity, hence this can also be regarded as stable variety.
Genotype-6 tops with respect to the average yield over
the environments. However, the significance of
deviation from linear regression makes its behaviour
unpredictable over the environments and one may not
be able to comment on its stability from Eberhart and
Russell model’s point of view.

Location 1 2 3 4 5 6
Year

7 8 9 10 11 12 13 14

Kharif
1990 E-1

Kharif
1991

E-2 E3 E4 E-5 E-6

E-9 E-10 E-11 E-12 E-13 E-14

E-7 E-8 X X X X X X

X X

E-15 E-16 E-17 E-18 E-19 E-20
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Limitation of Eberhart and Russell (1966) model
with regard to making comments on the stability of
each genotype

Eberhart and Russell (1966) model proves to be a
good tool for understanding the nature and type of GE
interaction exhibited by the data set in the sense that
whether a dominating portion of it, is linear or non
linear type. The scope of stability parameters of

Eberhart and Russell (1966) model (f; and §dzi) is
limited as it may not be possible to comment on the

stability of each of the genotypes tested. Whenever the
component of deviation from linear regression is found
to be significant for a genotype, then it is not possible
to make any comments about the stability of that
genotype. A genotype may possibly be stable, but due
to the fact that its interaction with environments is not
of linear type, one becomes handicapped to make any
comments on its stability. Further, if there is no
information about the stability of some genotypes, one
cannot make any comparison among all the genotypes
with respect to stability. The scope of the investigation

Table 1. Stability analysis results for balanced data

Eberhart and Russell Model Statistics Stability Variance
Statistics

Source df MS B, Stability| Stability

variance rank
Genotypes 14 | 254686 ** - - -
Env + Gen x Env | 285 - - -
Env (linear) 1 - - -
Gen x Env (linear)| 14 | 62925 - - -
Pooled deviation 270 90839 - - -
G-1 18 58480 ** 1.034 57030 6
G-2 18 40652 ** 0.961 37716 3
G-3 18 | 165738 ** 1.096 | 177785 13
G-4 18 | 211461 ** 1.100 | 228151 14
G-5 18 | 227958 ** 1.110 | 247177 15
G-6 18 51799 ** 1.109 54365 5
G-7 18 35235 % 0.998 31153 2
G-8 18 57064 ** 0.918 57951 7
G-9 18 83747 ** 1.074 86689 10
G-10 18 | 127073 ** 1.095 | 135561 12
G-11 18 52538 ** 0.910 53564 4
G-12 18 59875 ** 0.942 59582 8
G-13 18 73167 ** 0.833 84863 9
G-14 18 | 30754 0.921 | 28965 1
G-15 18 87042 ** 0.899 92239 11
Average error 560 20168

* Significant at 5% level of significance ** Significant at 1% level of significance
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will in that case be limited only to a subset of genotypes
tested, whose deviations from linear regression are
found to be not significant. Pair-wise comparisons with
respect to stability can be made in that subset only.
Ranking of all the genotypes tested with regard to
stability will not be possible. In these situations one thus
explores some stability measures on the lines of
stability variance given by Shukla (1972). This,
however, is not based on linear regression model. As a
result, some limitations which are inherent in linear
regression model, can be overcome. Nevertheless it
becomes inevitable to look for alternatives when
component of deviation from linear regression is found
significant for more number of genotypes. From the
results in Table 1, it is seen that the component of
deviation from linear regression is significant at 1%
level of significance for all genotypes except G-7 and
G-14. For such data sets, it is cautioned that plant
breeders may not end up their investigation for stability
with Eberhart and Russell model alone.

2.2 Stability Variance — An Alternative Measure
of Stability

Stability variance of i-th variety given by Shukla
(1972) measures the variance of interaction residuals
of i-th variety. The genotype with smallest stability
variance was the most stable among the genotypes
tested. The genotype with second smallest stability
variance was the second most stable among the
genotypes tested.

Stability variance of i-th variety given by Shukla
(1972) is

o 1 ZK
i (K—l)(K—2)(N—1){ (KW port }

where W, = Z(yij —Vi—YVj— j.)z is the Wricke’s
ecovalence fot the i-th genotype. It is shown that for
balanced data Shukla’s estimator is a MINQUE
(Minimum Norm Quadratic Unbiased Estimator) of
0'i2. It is obvious that Shukla’s estimator of stability

variance is equivalent to Wricke’s ecovalence W; for
ranking purposes.

Shukla model analysis for groundnut data

Stability variances were computed for the 15
genotypes of groundnut. The genotypes were ranked

with respect to their stability. The results are presented
in Table 1. Genotype-14 is found to have maximum
stability in pod yield whereas Genotype-5 is found to
have least stability variance among the 15 varieties
tested. Obviously there is no restriction with this
stability variance measure while making stability
comparisons among the varieties tested. This stability
measure can capture nonlinear interactions too. This
measure permits to make stability comparisons among
the 15 varieties tested unlike the Eberhart and Russell
(1966) model, where one can only make stability
comparisons between varieties 7 and 14.

3. STABILITY ANALYSIS WITH INCOMPLETE
GENOTYPE BY ENVIRONMENT DATA

The two stability approaches (i) Joint Regression,
and (ii) Stability Variance for incomplete data situation
are discussed as under.

3.1 Joint Regression Approach

When the yields of some of the genotypes are not
available or are not reliable, then the orthogonality of
the design is not satisfied and bias is introduced in the
observed varietal means. The comparison based on
these means is likely to favour the varieties which
happen to be exposed to better than average
environmental conditions. Hence before proceeding to
evaluate stabilities, such compensation needs to be
made in the means for the environments in which
particular varieties are not present. This section
describes two such procedures, namely, (i) Joint
Regression with Fitcon estimates, and (ii) Modified
Joint Regression. Though it is established that the latter
one is a more generalized one, but to establish the
superiority of the latter the details of methodology is
outlined. An iterative algorithm has been developed for
the latter procedure, which would be very handy for the
programmers attempting to evaluate it.

3.1.1 Joint regression with Fitcon estimates

Fitcon Analysis: The usual method of obtaining the
aforesaid compensation or adjustment is to use a fitting
constants technique, described by Patterson (1978), for
the additive model

Vi = O + e+ & 3.1
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where

y;j is the (average) yield of i-th variety in j-th
environment.

¢; is the mean of i-th variety.
e; is the effect of j-th environment.

&; 1s the random error, distributed normally with mean
zero and a constant variance.

For estimating the parameters ¢; and ¢;, we have
to minimize the residual sum of squares

2
Z(yij - - ej) 5ij with respect to both ¢; and e; ;
i,j ’

noting that the weights ¢;, introduced to obtain the

incomplete data set-up are such that

Lif y;; is present in the data
7 oif y;j 18 missing

The iterative algorithm to solve for the parameters
of (3.1) is as under

&=y, +y -+ (32)
e T
S..0
IESHEDY ”1 ’ (3.3)

where y/, y’; are the means based on the existing n;

and n; observations for the i-th variety and j-th
environment respectively. Adjustments for these
estimates depend on each other’s final estimates.
Summation over j~ is for those environments where the

i-th variety is found to be absent.

Firstly, start the iteration by considering the trial
value y; for ¢; in (3.3) giving rise to a set of ¢; values.
Substitution of these values in (3.2) gives rise to revised
estimates of ¢;’s. These are then substituted in (3.3) to

get the revised estimates of ¢;’s. This cycle is continued
till we reach more or less stable values for ¢; and e;.

During 1970s, computation of inverse of matrices
of higher dimension was indeed a difficult task.
Majority of researchers, during that period, were busy
in deriving numerical techniques that could yield an
approximate solution to normal equations. In those

days, the above iterative algorithm could prove to be
very handy. But it becomes redundant as on today in
the light of advanced software and hardware
technology. The current generation of computers can
invert a matrix of any dimension in no time. With
incomplete data set considered in this study, subroutine
of SAS statistical software namely Ismeans” produced
almost same results as produced by Patterson’s (1978)
Fitting constants technique.

The stabilized Fitcon estimates for e; can be used
for Joint Regression. The linear sensitivity for each
variety can be estimated by regressing the existing y;’s
on the Fitcon estimates of ¢;’s as shown below

yi= %+ fe; + 6

However, the estimates of 7; are not the same as
the estimates of ¢; except for the varieties that are
present in all the environments or that have unit
sensitivities. The discrepancy arises from the fact that
the adjustment given in (3.2) is made to be of same
degree for every variety; i.e. there is no allowance for
varieties differing in their response or sensitivity to
environmental effect. When such differences are
expected, it is better to incorporate the parameter f3; in
the adjustment as

s €
a; =Y.+ b 2_
e
This leads to the consideration of the non-additive
model

Vi = 0 + P + &
Digby (1979) proposed this improved adjustment
in his modified Joint Regression analysis for incomplete
variety by environment data.

3.1.2 Modified Joint Regression
The model considered by Digby (1979) is
Vi= 0+ fe+ g (3.4)
Minimization of residual sum of squares
2
E(y,-j -q; —ﬁiej) ; with respect to parameters
iJ
a;, f3, and e; leads to the following normal equations

Ismeans routine of SAS statistical software under ANOVA procedure produces the least square means of effects

specified.
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Z@yy,-j = a,-ZS,-j +ﬁiz5,-j€j (3.5)
J J J

D801y = 02, e+ B; D, 5e (3.6)
j j j

2
285y = 2 8B+ ¢, 2, 8B, (3.7)
i i i
where J; has the same meaning as given earlier.

Since equations (3.5), (3.6) and (3.7) are not
linearly independent, they are to be solved subject to

the constraint Z e; =0. To solve for the parameters of
J

(3.4) from (3.5), (3.6) and (3.7) subject to Zej =0,
the following iterative algorithm is proposedj

Step 1: Set the £’s equal to one, which reduces the
equations (3.5) and (3.7), the solutions of

which (& and ej) subject to constraint

Ze = 0 can be obtained from the iterative
J

algorithm given in the equations (3.2) and
(3.3)

Step 2:  Substitute the estimates of e; in equations (3.5)

and (3.6) and obtain the estimates of £,

Step 3: Substitute the estimates of 4 in equations (3.5)

and (3.7). Treat S as fixed

e .
Step 3a: Estimate ¢; as @; =y, + f3; [Z_J]

jE
Step 3b: Using the estimate of ¢; obtained in step 3a,
solve for the estimates of e; as

Z azjﬁi Yij — Z 5zjﬁi0‘i
6, =t )

/ Z 6[/' ﬁ 1'2

i
Step 3c: Go to step 3a, till there is convergence in ¢&;

and e;

Step 4:  Go to step 2, till there is convergence in ¢&;
ﬁi and é j

This algorithm is very handy for the programmers
doing the analysis work.

3.2 Stability Variance Approach
Piepho (1994) proposed a procedure for estimating

stability variance o, when some cells in two-way

table are empty. It is outlined as under

Let Xgj = Vi — Vrj

(szrj)z
1 2 j

LI S S B
N-114 5 N

and Vsz_r =

where N is the number of environments in which the
genotypes s, r are grown together.

We know that E[VSZ_,] = 652 + Grz where s = 1,
2,..,(K-=1)and r > s.

In order to estimate ol.z, the method of moments

may be employed where the sample moments are
equated to population moments. Replacement of

E[VZ, ]1by V2

_, may lead to the following system of

equations, to be solved for 61-2

Vi, =02 +0? [s=1,2,...,(K—1)and r > s]

There are K(K — 1)/2 different equations in
K unknowns, so that for K > 3 there are more equations
than there are unknowns. Grubbs’ estimates are the least
squares solutions of these equations (Jaech 1985).

Formally the system of equations can be
represented in matrix notation as

Qo =V (3.8)
where o is a K dimensional vector of G,-z’s, Vis

K (K — 1)/2 dimensional vector of Vsz_, 'sand Q is a
K (K —1)/2 x K matrix with elements 0 and 1, that picks

the appropriate Gl_z ’s.
Q’Q has full rank and thus can be inverted.
The solution of equation (3.8) is
& =QOQV (3.9)

Grubbs’ estimates are unbiased. If we take
expectation on both sides of equation (3.9)

E[5] = E(QQ)'Q'V] = E[(Q'0)"'Q'Qc]
= E[Ic] =0
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For 2 genotypes s and r, we can compute VSZ_ . as
long as they are grown together in atleast two
environments. In this case, the 2 genotypes s and r are
said to be connected. To obtain a unique solution of
equation (3.8), we require that there be atleast K
connected pairs of genotypes as we need atleast as
many equations as there are unknowns. Also each
genotype must be connected to atleast one other
genotype.

Comparison of potential of various methods for
incomplete data

The potential of a given method (for incomplete
data) may be judged by its ability to reproduce the
stability/sensitivity rank order given by the method with
complete data. The Coefficient of Spearman’s Rank
Correlation between rank orders displayed by balanced
and unbalanced data using that method may be used to
quantify the potential. Comparison of various methods
can be done with the help of their computed potentials.

Empirical study with unbalanced data

To evaluate the methodologies described for
missing data, unbalancedness is created by eliminating
20 cells at random in the 15 x 20 matrix of genotype
by environment yields. This unbalanced data has been
analysed for Patterson’s fitting constants, Joint
Regression with Fitcon estimates and Digby’s modified
Joint Regression analysis with the iterative algorithms
described earlier. The resulting parameter estimates are
obtained and are given in Table 3.

On comparison of the unadjusted varietal means
and the varietal means obtained from Patterson’s Fitcon
method, it is seen from equation (3.2) that if the variety
of interest is absent in the positive environments, the
adjustment is made upwards and vice versa. The sign
and amount of adjustment is determined by the sum of
environmental effects in which the variety of interest
is absent. This sum of environmental effects can be
obtained from Table 2. In this way the adjustment for
variety-1 is made upwards which is absent in the
environment-17 having the effect 457.83. Similarly, the
correction for variety-2 is positive whereas the
adjustment for variety-8 is negative, which is absent in
E-5 and E-10. The adjustment for variety-6 is zero as
it is present in all the environments.

Table 2. Estimated Environment effects with
incomplete data

Environment Fitcon Modified
Joint
Regression
1 180.66 175.42
2 -359.02 -364.43
3 1361.18 1368.64
4 667.00 657.58
5 -308.73 -314.38
6 -138.20 -126.95
7 -187.75 -192.01
8 -912.38 -900.51
9 -47.85 -46.62
10 -918.90 -906.07
11 808.69 825.25
12 348.50 338.16
13 -446.28 —447.78
14 368.05 359.58
15 -83.74 —83.66
16 776.38 795.08
17 457.83 436.28
18 -535.52 -539.29
19 —657.34 -661.97
20 -372.60 -372.31

If one wants to compare the varietal means
obtained from Joint Regression with Fitcon estimates
and Patterson’s Fitcon means, one has to study the
adjustment given by Patterson’s Fitcon method for the
unadjusted means and the improvement offered by the
Joint Regression with Fitcon estimates to Fitcon means
by allowing the varieties to differ in their sensitivities
to the environmental effect.

e
oy - J
J*

X j
iy = i +p; Z:‘n_
J 1
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Table 3. Estimated variety parameters with incomplete data

Variety | Unadjusted Fitcon Joint Regression Modified Stability Variance Statistics
mean mean with Fitcon estimates Joint Regression analysis
Mean Sensitivity Mean Sensitivity Stability Stability
variance rank
1 1478.68 1502.78 1503.32 1.023 1502.13 1.021 43976 6
2 1250.05 1321.69 1321.53 0.998 1321.95 0.998 39826 4
3 1422.79 1420.27 1420.03 1.094 1420.11 1.091 172119 13
4 1243.22 1296.39 1299.84 1.065 1301.22 1.076 235535 14
5 1325.37 1309.12 1307.24 1.116 1306.76 1.125 256158 15
6 1692.75 1692.75 1692.75 1.115 1692.75 1.115 57442 7
7 1481.58 1474.31 1474.29 1.003 1474.90 1.001 35030 3
8 1351.72 1283.52 1288.37 0.929 1288.90 0.927 27559 2
9 1390.53 1380.65 1379.82 1.083 1379.60 1.082 92553 10
10 1459.35 1401.81 1400.34 1.026 1399.55 1.030 109499 12
11 1338.50 1362.73 1361.63 0.955 1362.52 0.955 43863 5
12 1415.78 1472.20 1467.19 0.911 1465.98 0.908 59030 8
13 1480.58 1473.31 1474.50 0.836 1475.02 0.832 85740 9
14 1437.47 1456.85 1455.62 0.937 1455.16 0.935 26814 1
15 1324.79 1276.77 1282.45 0.882 1283.37 0.874 101612 11

and Q;

where y; is unadjusted mean; ¢; . is Fitcon mean;

(O))

i) is the mean obtained from the Joint

Regression with Fitcon estimates.

One may identify the following 6 cases to study

the adjustment offered to the Fitcon means by the Joint
Regression with Fitcon estimates.

1. When Zé ; 18 negative (unadjusted means are
j*

corrected downwards) and f; < 1: The adjustment

to the Fitcon means are positive, e.g. variety-8.

. When Zé ; is negative and /3 > 1: Fitcon means
j*
are corrected downwards, e.g. variety-5.

. When Zé j 1s positive (unadjusted means are
j*

corrected upwards) and £ < 1: The adjustment

to the Fitcon means is negative, e.g. variety-12.

4. When 25 ; is positive and 4 > 1: Fitcon means

J
are corrected upwards, e.g. variety-4.

. When 22 ;18 zero, i.e. the variety of interest is

14
absent in none of the environments: The
adjustment given by Fitcon means as well as the
adjustment given by the Joint Regression with the
Fitcon estimates to the unadjusted means are zero
e.g. variety-0.

. When £ = 1 i.e. the sensitivity is close to unity:

The adjustment made to the Fitcon means by the
Joint Regression with Fitcon estimates would be
negligible, as Joint Regression with Fitcon
estimates reduces to the Fitcon method, e.g.
variety-7, variety-2.

One may also compare the means obtained from

Digby’s Modified Joint Regression with unadjusted
(observed) varietal means, Fitcon means and the means
obtained from Joint Regression with Fitcon estimates.
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Unadjusted mean vs mean obtained from Digby’s
modified Joint Regression

If (Z ¢)p is positive, the unadjusted mean is
Jj*

corrected upwards and vice versa, where (2 i) is

*

the sum of environment effects in which the variety of
interest is absent and obtained from Digby’s modified
Joint Regression analysis.

Fitcon means vs Digby’s modified Joint Regression
means

The improvement in varietal means offered
Digby’s modified Joint Regression over Patterson’s
Fitcon is determined by the quantity

P Z;éj ¥y
i| J* -

J* = Q (say)
n; D n; p
e
where | is adjustment offered by Patterson’s
n.

i )P
Fitcon method to the unadjusted mean. If Q > O then
Fitcon means are corrected upwards and vice versa.

Joint Regression with Fitcon estimates vs modified
Joint Regression

In Joint Regression with Fitcon estimates, the e;’s
are merely unweighted means of (y; — ;) for those
varieties present in the j-th environment, whereas
modified Joint Regression estimates e;’s as weighted
means of (y; — ¢), the weights being proportional to
the varietal sensitivities. Hence, the weighted means
used by the iterative analysis are more appropriate.

For variety-15, Q = — 41.42 — (- 48.02) = 6.6.
Hence the adjustment offered by modified Joint
Regression to the Fitcon mean for variety-15 is +6.6.

Comparison between Joint Regression with Fitcon
estimates and modified Joint Regression and
stability variance

Joint Regression with Fitcon estimates and
modified Joint Regression techniques are compared
with respect to their ability to assess the sensitivity rank

order obtained with balanced data. The association
between the two has been quantified by Spearman’s
rank correlation. On observing the same sensitivity rank
order with Joint Regression with Fitcon estimates and
Digby’s modified Joint Regression, the correlation of
this rank order with the one obtained from balanced
data using Eberhart and Russell (1966) model is 0.95.
The result re-establishes that choice between Joint
Regression with Fitcon estimates and modified Joint
Regression is less critical when the varieties do not
differ much in regard to sensitivities to environmental
index.

Stability variance for the 15 genotypes of
groundnut was evaluated using the methodology
proposed by Piepho (1994) for incomplete two-way
data. The genotypes were ranked with respect to their
stability. The corresponding results are presented in
Table 3. The rank correlation between the stability rank
orders displayed by complete and incomplete data is
found to be 0.9429, which is reasonably good
concordance. So the researchers and plant breeders can
use the measure of Stability Variance safely even in the
case of incomplete data. This clearly indicated that
stability variance measure is a robust measure of
stability of crop variety.

As far as choice between Joint Regression and
Stability Variance is concerned, it is to be kept in mind
that stability rank order displayed by Joint Regression
(based on deviation of sensitivity coefficient from 1)
is not necessarily the true stability rank order of
varieties. It becomes true stability rank order only when
the components of deviation from linear regression are
found to be not significant for all the tested varieties.
This kind of problem, however, does not arise in case
of Stability Variance measure.

4. CONCLUSION

In view of the above results, it is concluded that
it is always better to employ the Stability Variance
measure to evaluate the stability of a set of genotypes
when the component of deviation from linear regression
is found significant for sufficiently large number of
varieties with Eberhart and Russell model. For
incomplete data situation also it is preferable to use
Stability Variance approach in place of Joint Regression
as it gives stability rank order rather than conditional
sensitivity rank order.
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SUMMARY

We generally use block designs in field experiments to control the experimental error due to positional variations. The
underlying assumption in classical block designs that the homogeneity of experimental area within the block may not satisfy
always, particularly when the block size is large. Also we may not know in advance the soil fertility gradient and other factors
influencing the response variable to divide the experimental area into homogeneous blocks. We propose spatial smoothing
technique to estimate/eliminate positional effect in field experiments. We have considered a semiparametric regression model
with treatment effect as the parametric component and the positional effect as the nonparametric spatial function. The only
assumption about the positional effect is that it is a smooth spatial function. The proposed method is also extended for the
analysis of data in the presence of sudden shifts in the spatial function (positional effect). The method is illustrated through
both simulated as well as field experimental data.

Keywords: Nonparametric regression, Design of experiments, Positional effect, Semiparametric regression, Jump regression
surface.

1. INTRODUCTION technique to tackle this problem. In the present study,
nonparametric spatial modeling technique has been
used to estimate/eliminate the positional effect in
agricultural field experiments. The treatment effect is
taken as the parametric component and the positional
effect (covariate) is taken as a spatial (bivariate)
nonparametric function. The only assumption about the
positional effect is that it is a smooth spatial function.
The field experiments with perennial or tree crops
require large experimental area and it is difficult to get
large homogeneous blocks to conduct experiments
particularly in farmer’s field. In many situations, the
soil characters or the environmental variables have
some sudden changes in the field or in other words, the
spatial function representing the positional effect may
have some jumps or discontinuities. The method is
extended for the analysis of data in the presence of

Experimental error or the unexplained variation is
the main concern in field experimentation technique.
We generally use block designs in field experiments to
control the experimental error due to positional
variations. The underlying assumption in classical block
designs regarding the homogeneity of experimental area
within the block may not satisfy always, particularly
when the block size is large. Field experiments with
perennial tree crops require large experimental area, and
it is grown mainly in hilly areas where getting large
homogeneous area is difficult. Also we may not know
in advance the soil fertility gradient and other factors
influencing the response variable to divide the
experimental area into homogeneous blocks. Gilmour
et al. (1997) suggested the covariance modeling

*Corresponding author : C.T. Jose
E-mail address : ctjos@yahoo.com
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sudden jumps in the spatial function. The proposed
method is applied to both the simulated as well as field
experimental data to see its performance.

2. MODEL SETTINGS AND ESTIMATORS

The semiparametric regression model considered
for the study is given by

Y=u+Xp+fU V) +¢ 1
where Y = [y; y» ....yn]T is the observation vector, i is
the general mean, X = [x; x, ...x,,]T is the design matrix,
B =185 ...,Bp]T is the treatment effect vector,
AU VY=[f(uy,vy) ... fuy,vy)]" is the nonparametric
spatial function representing the positional effect and
¢ is the independently and identically distributed (iid)
random error vector with mean zero. It is assumed that
fTU,V) is a smooth function. The backfitting algorithm
of Hastie and Tibshirani (1990) is used to compute the
estimates for the semiparametric regression model. The
backfitting estimators for # and f are equivalent to

A=Y, B=X"U- X" XU-S) (Y- 1)
and f =S(Y-XB-11)

where, S is the smoothing matrix derived using local
linear regression (Ruppert and Wand 1994). Let S, be
the row of the smoother matrix correspond to the

smoother vector §7 evaluated at the observation point

() = (u,vy), (Uz,vy), ..., (u,v,). Then

S=[S s 1

UVy "5 vpvap

where, S}, =el (ZLW,,Z,,)'ZLW,,

viotuvuy

1 (uy—u) (- )|

with Z,, =| . ,el'=[100]

1w, —u) v,—v)]

wue= a1 1) (7))
x| [4nu ’ v, =V
hy hy

functions K and bandwidths 4, and £, .

ﬂ} for some bivariate kernel

Under the assumption that the treatments are
allotted at random to the spatial locations, it can be
shown that B is asymptotically unbiased and its

asymptotic variance is o*(X" Xy which is same as
when the model is fully parametric (Opsomer and
Ruppert 1999). An estimate of olis given by

&t = 1
b (n—p—1—trace(S))

x[Y—ﬁ—Xﬁ—f]

v-a-xp-7]

The variance of B is estimated by
V(B)=PP'67
where, P= (X" (I-S) X )_1 X'(I-S). The significance
of the positional effect f is tested using the lack of fit

statistic by comparing parametric and nonparametric
models (Hart 1997).

Under the null hypothesis that the positional effect
f (U, V) =0, the mean residual sum of squares obtained
by fitting model (1) is given by
& = - 0-Xx 0" X"
X[ - XX"X)"' X1(Y - @) ln—p-1)

The lack of fit test statistic is given by

The statistic R; asymptotically follows an F
distribution with (n — p — 1), [n — p — 1- trace(S)]
degrees of freedom and it can be used for testing the
significance of the positional effect.

Additive model for positional effect: In many
situations, the number of experimental units is
comparatively small and estimating the spatial function
using the bivariate smoother will be inadequate. In such
situations, bivariate additive model can be fitted instead
of the two dimensional spatial function used in model
(1). By using bivariate additive function, model (1)
becomes

Y=pu+XB+HU)+/HV)+e (2
where, f; and f, are the univariate nonparametric

functions representing the positional effect in the U and
V directions and it is assumed that 2.f;(u;)= 2, (v;)= 0.
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Let M, and M, are the centered smoother matrices
corresponding to U and V. The backfitting algorithm
will provide an explicit solution to the above
semiparametric regression model and the estimates are
given by

f=Y,B=X"Ud-OX)'XT-Q (Y- )
and

f= A+h=00-a-Xp)

The matrix Q and the estimates fl and fz are
obtained by solving the set of equations

o A - i

fi= U=MMy) ™ A=M)} (¥ -fi- XB)

Ql(Y—/:l_XﬁA)

A

fa = I —(MM) " A=M)NY - fi- X B)

Qz(Y—/:l—XB)
and 0=0,+0

An estimate of ¢? under model (2) is given by

1

R ~ AT
n—p—tmce(Q))[Y_M_Xﬁ_fJ

a§=(

x [Y—/ﬁt—Xﬁ—f]

The significance of the positional effect fis tested
using the lack-of-fit test statistic

Oy
R2 =
2p)

The test statistic R, asymptotically follows an F
distribution with (n — p — 1), [n — p — trace (Q)]
degrees of freedom and it can be used for testing the
significance of the positional effect. An approximate
a-level point wise confidence band around the
estimated function f s given by

F )% 2426531007 1, for i = 1,...,n, where,

[QQ"];; represents the element in the i position of the

matrix [QQ].
The variance of [i is estimated by

V(B)=PPT63
where, P= X" (I - Q) X' X' (I - Q)

Choice of bandwidth: The procedure described above
involves two smoothing parameters i, and h,. The
choice of bandwidth parameters is very crucial in
smoothing technique. We have used the cross-validation
technique (Hardle 1990) to obtain the optimum
bandwidths. Let y;, i = 1,...,n are the observations and

Vi) mh, D€ its leave-one-out estimate (estimate without

using the i™ observation) with & 1 and h, as bandwidths.
Then the cross-validation score is defined by

1| & N 2
CV(hy, h2)=;{ i = Yym. ny) }
i=1

The values of /; and &, which minimize CV(h, h,)
can be used as the bandwidths for estimating the
regression model.

3. JUMPS IN THE SPATIAL FUNCTION

Sometimes the soil characters or environmental
variables have some sudden changes in the field or in
other words, the spatial function representing the
positional effect has some jumps or discontinuities. In
such situations the procedure given in Section 2 needs
to be modified. Let us first define a jump in the spatial
function f as follows:

S, v) = g(u, v) + AW) 1 5oy ( v) €10, 112 (3)

where, g(u, v) is the continuous part, c(x) denotes the
jump location curve and A(u), is the jump magnitude
function. The functions g and A are assumed to be
smooth. The jump location curve c(u) is assumed to
have first order derivative. Note that the jump location
curve c(u) divides the entire experimental area into two
parts. Under the assumption that the treatments are
randomly distributed to the entire experimental area,
initial estimates for & and [ are given by

=Y B:[XT(I—S)X]_1 xT1-5)y-7)
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Let Y =y-4-XxB

We have used the method of Jose and Ismail
(2001) to estimate the jump location curve. Define the
set Qiu, v), i = 1, ..., 4 as the set of points in the i
quadrant with respect to the point (#, v). At any point
(u, v), consider the following two kernel weighted least
squares (minimization) problem:

Minimize
Z{yl _bO (u—ui)—bz(v—vi)—ao(u,v)l

[(ui,vt-) 30 (u,v)]}2 I[(ul- V) €Q(u,v)U s (u,v)] K
4)
Minimize

n

2 {y;EIE —by—b(u—u;)—b,(v—v;)—agu,v)

i=1

1) € 0w} 101 € 0y ) L O, )] K,
(5)

u—u v=y
where, K; =K —L L'|| is some bivariate
h hy

kernel function.

If the slope of the jump location curve at any
(u, v) € c is negative, then for small bandwidths /; and
h,, the points in Q;(u, v) and Q;(u, v) will be in the
opposite sides of c. Similarly, if the slope of ¢ at (i, v)
is positive, the points in Q,(u, v) and Q4(u, v) will be
in the opposite sides of c(u). The estimates of a; (i, v)
obtained by solving the least squares problems (4) and
(5) corresponding to the point (u, v) are denoted by
do(u, v) and dy,(u, v) respectively. Among these two
estimates, the estimate with maximum absolute value
is denoted by dy(u, v). Then the estimate of the jump
location curve is given by

arg  max|dy(u,v)|
ve[hz, 1—h2]

6(14) =

and dy(u,c(u)) is the estimate of the jump size
function A(x) which divides the experimental area into

two disjoint sets, say A and B. The estimate f of the

spatial function f on both sides of ¢(u#) can be estimated

separately based on the observations on either sides of

¢(u) by the method of kernel weighted local linear
regression (Ruppert and Wand 1994).

Let Y4, Yp' X4, Xp; fa, fpand S, Sp are the
observation vectors, design matrices, positional effect
vectors and the smoother matrices correspond to the
sets A and B respectively. The final estimate of the
treatment vector and the rearranged spatial function f :
are given by

Br=ixXTa-$XT' XT8N - p)

Fa S[Y i Xﬂ]

S, O Y . Y,
where § = A , Y = A , U= A ,
0 Sg Y Yy

==l

An estimate of the error variance ¢ is given by

Ak 1
O'2=

Y -y =X g
(n—p—1-trace(S ))

% [Y*_#*_X*B_f*]
The variance of B is estimated by

where P = [XTU-SHXT'XTUa-5"

The above method can be extended to a more
general case that the jump location curve does not have
the explicit functional form given in (3). Assume that
the jump location curve ¢( ) induces a partition of the
field into disjoint subsets A and B. Then the spatial
function f can be defined as

flu, v) = gy, v) + Ay, v) Ig(u, v), (u, v) € [O,l]2

where, g and A4 are smooth functions and
inf 1A(u, v)I > 0 for all (u, v) € c. As discussed above
obtain dy(u, v) for all (u, v) € (hy, 1 — hy) X (hy, 1 — hy).
Note that |dg(u, v)| near c¢ are significantly larger than

the others. An estimate of ¢ can be constructed by the
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maximin method suggested by Muller and Song (1994).
Find the curve that maximizes the minimum of

ldp(u, v)I along curves in 77; that is,

c= argmax[ min ‘&O(Lt,v)q
oel’ | (u,v)ep

where, 7" is a sufficiently rich class of candidate

boundaries, containing ¢. Once the jump location curve

is estimated, the positional effect on both sides of the

estimated jump location curve can be obtained

separately.

4. SIMULATION STUDY

A simulation study is carried out to see the
performance of the proposed method. We considered
the following model for the simulation study

Y=X6+fUYV)+c¢ (6)
where Y is the n x 1 observation vector, X is the
n X n design matrix, S is the k x 1 treatment effect
vector which is taken as f'= [-2 -2 0 4],
Su,v)=2{2+sin[2(u+v])} and the random error vector
€ follows N(O, 02). The spatial locations of the n
observations are obtained by dividing the region
[0, 1] x [0, 1] equally and each treatment is allotted
randomly to n/k spatial locations. Based on the above,
100 sets of data are simulated for different values of
n (100, 400, 900) and o (0.5, 1.0). The bivariate kernel
function considered is K(u, v)=0.75*(1 — u*)(1 — v*)
which is the product of two Epanechnikov kernels. The
treatment effect vector B =[5, 3, B 4], the bivariate

function f and the error variance o” are estimated using
the method given in Section 2. The Average Mean
Squared Errors (AMSE) of the estimated values of o,
B and f with the true values of 100 sets of simulated
data for different values of n (100, 400, 900) and & (0.5,
1.0) are given in Table 1. The AMSE of the estimated
parameters are calculated as follows:

1 100
AMSE of, §=— “(6-8& )?
° 100 2 =1 (@ (1))

1 100 2 .
AMSEof J=— ) | ;= ,j=1,...,4
of B =100 2in1 B = B

1 100 1
AMSE of =—>»  —
? 100 2’21 n

2 vy = fiy vl

where, E(D’Ejl(i) and P(i) (u iV j) are the estimated

values of o, f and f(u;, v, corresponding to the i

simulated data set. It can be observed that the AMSE
of the estimates are converging to zero as n increases
or in other words, the estimated values are converging
to the true values as n increases. This indicates the
consistency of the estimates. The MSE varies with
change in the choice of bandwidths. The optimum
bandwidth (bandwidth corresponds to the minimum
MSE) will depend on the curvature of the function.
The optimum bandwidth for estimating the regression
model is obtained based on the cross validation
technique given in Section 2.

Table 1. Average Mean Squared Errors (AMSE) of the estimated values with the true values of the
simulated data (Model 6)

MSE of the estimates multiplied by 100

c n PN N - = = A ~
XB+f o f By B, B; By
0.5 100 3.90 0.18 3.51 0.99 0.95 0.65 0.93
400 1.42 0.03 1.27 0.21 0.15 0.12 0.14
900 0.82 0.01 0.73 0.08 0.07 0.08 0.08
1.0 100 9.57 0.28 6.28 1.55 1.50 1.34 1.42
400 3.37 0.12 2.95 0.45 0.41 0.38 0.43
900 1.34 0.05 1.16 0.17 0.20 0.22 0.19
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The performance of the proposed method in the
case of sudden shift or jump in the spatial function is
illustrated through a simulation study. For this, the
regression model (6) is modified as

Y=XB+fi(UV)+ ¢ 7
where Y, X , fand ¢ are as defined in model (6). The

bivariate regression function f;(u, v) is taken as a jump
regression surface of the following form

filw, v) = 2{2 + sin[2(u + v)]}

+ [1 + 2sin(1 +2u)1l,, 0.6 sin(1+2u)
(u, v) € [0,117
Based on the above, one set of data is simulated
for n = 900 and o = 0.40, the treatment vector
B’ =[-2.0 -2.0 0.0 4.0], the spatial function f;(u, v)
the jump location function c(u) = 0.6 sin(1 + 2u) and
the jump magnitude function A(u) = 1 + 2sin(1 + 2u).
The treatment effect vector £, the error variance o, the
jump location curve c(#) and jump magnitude function
A(u) are estimated using the method given in
Section 3. The estimated values of f and o are
respectively [Af = [-1.95 -1.97 -0.06 3.99] and
6 = 0.44 which are very close to the true values. The
jump location function and jump magnitude function
are obtained by smoothing the point wise estimates of
the jump location curve and jump size function. The
estimated and true values of the jump location curve
and jump magnitude function are shown in
Fig. 1 and 2 respectively. It can be noted that the

estimated and true values are very close.

0.6
0.5

0.4+

c(u)

0.3 1

0.2 1

0.1 T T T T T T T T T

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
u

Fig. 1. Estimated (dotted line) and true values (solid line) of the
jump location function

01 02 03 04 05 06 07 08 09

u
Fig. 2. Estimated (dotted line) and true values (solid line) of the
jump magnitude function

5. FIELD APPLICATION

The proposed spatial technique is applied to the data
of irrigation cum fertilizer trial of cocoa + areca mixed
cropping system at CPCRI Regional Station, Vittal and
it has been compared with the traditional method of
eliminating the positional effect by blocking the
experimental area. The experiment was laid out in
randomized block design with 12 treatment
combinations, 4 replications and 6 trees per plot. The

Table 2. Estimated parameters with standard errors of the
field experiment

Proposed Method Method of blocking
Treatments | p+fB SE w+p SE
1 7.57 1.15 6.18 1.33
2 11.80 1.14 11.47 1.33
3 7.26 1.14 6.38 1.33
4 8.82 1.15 7.94 1.33
5 11.97 1.12 11.91 1.33
6 9.45 1.13 8.73 1.33
7 13.79 1.12 14.45 1.33
8 12.12 1.13 12.16 1.33
9 11.38 1.15 11.84 1.33
10 14.08 1.14 14.84 1.33
11 14.10 1.14 15.38 1.33
12 14.97 1.14 16.03 1.33
MSE 32.02 42.22

Note: u+f is the sum of the estimated values of general mean
and treatment effect after eliminating the positional/block
effect
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main objective of the experiment is to compare the
effect of different treatments on the yield of cocoa. Four
years cumulative yield data has been taken as the study
variable. A total of 288 experimental cocoa trees were
planted at a spacing of 2.7m x 5.4m. Estimated
parameters (general mean + treatment effect) with
standard errors and the mean squared errors (MSE) of
cumulative yield data of cocoa after eliminating the
positional/block effect through both the methods are
given in Table 2. There is a significant reduction in the
MSE of the proposed method than the traditional
method for comparing the treatment effect. We have
used MATLAB package to develop programmes for the
simulation study and the data analysis.

6. CONCLUSION

We generally use block designs to eliminate
positional effect in field experiments. In many
situations, the underlying assumption of homogeneity
with in the block may not be true. In the present study,
a method is proposed to eliminate the positional effect
nonparametrically and the only assumption about the
positional effect is that it is a smooth spatial (bivariate)
function. The method is also extended for the analysis
of data in the presence of sudden shifts in the spatial
function (positional effect). The proposed method is

useful when there is no advance information about the
field conditions to divide the experimental area into
homogeneous blocks.
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SUMMARY

Research on cattle growth is one of the important studies in the animal sciences. In the present study data on body weight
were taken from birth to an age of 36 months for double cross Friesian x Sahiwal (FxS) and tripple cross Friesian x Sahiwal
x Hariana (FxSxH) cattle. The data is found to contain heteroscedasticity of error variance and autocorrelation. The data in
the study were unequal spaced which made impossible to use convention autocorrelation technique and hence a technique has
been developed for finding out autocorrelation for unequal spaced data. Two nonlinear models, Logistic and Gompertz models
are fitted to estimate growth rate and other parameters. Models are modified incorporating heterogeneity of error variance
along with autocorrelation. Both the models were fitted under homoscedastic error structure and heteroscedastic error structure
along with autocorrelation for comparison. It is found that parameters estimated under heteroscedastic error structure along
with autocorrelation are better than the models fitted under homoscedastic error structure. Growth rate was found to be better
for FxSxH breed than FxS breed. Maturity weight was found to be more for FxS breed than FxSxH breed. The results shows
that Gompertz model outperformed Logistic model and correcting the models under homoscedastic error structure to
heteroscedastic error structure has greatly improved the estimates.

Keywords: Homoscedastic, Heteroscedastic, Autocorrelation, Crossbred, Non-linear model, cattle growth, Logistic model,
Gompertz model.

1. INTRODUCTION in the literature. But data of cattle growth generally
violate assumption of homoscedasticity, i.e., error have

Growth is a complex biological process that must  common variance. Therefore, the purpose of this study

be evaluated carefully if a profitable combination of is to compare the growth pattern under homoscedastic

growth and efficiency is to be realized. Knowledge and heteroscedastic error structure along with
relating to birth weight, mature weight, maturing rate autocorrelation.

and the point of inflection of the growth curve in
various breeds and crosses is useful for cattle growth
in various breeds so that producers can select breed
combinations that will produce the most efficient
growth pattern for their operations.

Growth models are used to predict rates and
change in the shape of the organism. They can be
applied in determining the food requirements so as to
get a desired growth. The estimated parameters of
growth function can evaluate various growth

The growth pattern of cattle has been mainly characteristics of animal. Comparison of nonlinear
studied under homoscedastic error structure, reported models for weight age data in cattle has been done

*Corresponding author : A.K. Paul
E-mail address : amrit_66 @rediffmail.com
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under homoscedastic error structure ((Brown et al.
(1972), Brown et al. (1976) and Kolluru et al. (2003)).
A number of such nonlinear models are available, but
comparisons of models are needed to find most
appropriate one. Such comparisons were made among
weight—age models for animals. Kolluru (2000) studied
only Logistic model under heteroscedastic error
condition for cattle growth. Therefore, there is a need
to study other models also. Two models are taken for
the present study; these are Logistic and Gompertz
models. When heterogeneity of variance is evident,
ordinary least square estimate of parameters may be
inefficient as well as when weights are collected over
time for each cattle, serial correlation is often present.
In the present study Logistic and Gompertz models are
fitted incorporating heteroscedasticity of variance along
with autocorrelation.

2. MATERIAL AND METHODS

2.1 Data Description

Data used in the study were collected from history
sheets of cattle from birth to 36 months of age from
military dairy farms at Dehradun for Friesian x Sahiwal
breed for 40 cattle. For Friesian x Sahiwal x Hariana
breed data for 35 cattle were taken for comparing the
growth pattern.

Let us consider the following model

yi=fX;, P +e (2.1
where y; is the j’h observation, X;is covariate vector, /3
is parameter vector, e; is the error term and f is a
non-linear function. In the present study two non-linear
models have been considered viz. Logistic and
Gompertz Models. The functional forms of these
models are as follows

By
1+ Brexp(—p5 1)

(i) Gompertz model: f (¢, B) = B, exp(—ﬁze_ﬁ 3ty

(i) Logistic model: f (¢, f) =

Here in f(X; /), the covariate vector X is replaced
by ¢, which is the only covariate in the model.
Usually, it is assumed that (i) the errors e; have zero
means, (ii) the errors e; are uncorrelated, (iii) the errors
ej have common variance and (iv) the errors e; are
normally distributed. In case of the animal growth data,
many a times, the above assumption are violated; errors
are generally correlated and do not have common

variance. In the present study we, therefore, fitted these
models considering non-constant and correlated error
variances. However, for the sake of comparison, models
are also fitted under homoscedastic error variance.

2.2 Models with Heteroscedastic Error Structure
along with Autocorrelation

2.2.1 Heteroscedastic error structure

In the present study data revealed
heteroscedasticity of error variance. Heteroscedasticity
of variance is tested by Rank correlation test

R,=1-{6Zd’ | (n (n* - 1))}

where, d; = difference between the ranks of
corresponding value of y; and e;. A high rank correlation
suggests the presence of heteroscedasticity.

Let us consider the model as given in (2.1). As
mentioned earlier assumption of constant
intra-individual response variance is violated frequently
for growth data. Generally, growth data often exhibit
constant coefficient of variation rather than constant
variance (Davidian and Giltinan 1995); that is, variance
is proportional to the squares of the mean response. In
this case, a more appropriate assumption is

EG) = fiX;, B). Vo) = & fX, O 22
where, o a scale parameter, is the coefficient of
variation. Under such situation, where variance is
nonconstant across the response range, it is assumed
that the variances of y; are known up to a constant of
proportionality, (Davidian and Giltinan 1995), that is,

V(y) = olw (2.3)
for some constants wj, j = 1, ...., n. This type of setting
might arise in the case where the responses y; are
themselves averages of w; uncorrelated replicate
measurements, with all such measurements having
common variance ¢*. Under this model, except for the
multiplicative constant 0%, variance is known up to the
value of the regression parameter £, which appears
through the mean response. An obvious approach is thus
to take advantage of the functional form for a variance
to construct estimated weights, replacing S by a suitable
estimate, and to apply the weighted least squares idea.

The OLS estimator f3, ¢ is a natural choice to use

for construction of estimated weights. An estimator for
[ that takes into account the assumed mean-variance
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relationship may be obtained by forming estimated
weights (Davidian and Giltinan 1995)

N 1

W, =—————— 2.4)
! fz(Xj’ Bors)

2.2.2 Auto-correlated structure

In the present study, the presence of
autocorrelation in the data was checked by
Durbin—Watson test. The Durbin—Watson statistic is
given by

n n
d= Z (eu _eu—l)z/z4eu2

u=2 u=1
which ranges between O and 4. Value of d near 2
indicates no autocorrelation, a value towards 0 indicates
positive autocorrelation, while the value towards
4 indicates negative autocorrelation. When there is
evidence for the presence of autocorrelation, we find
the value of auto correlation and model is fitted
accordingly.

Correlation among observations on a given
individual (cattle) is more likely to be present in this
context (weight). In many cases, a systematic pattern
of correlation is evident, which may be characterized
accurately by a relatively simple model. To
accommodate intra-individual correlation, a description
of the assumed correlation pattern among the elements
of e (error vector) is made. This assumption will be
simple if the observations are taken at equal intervals.
But the situation is quite complex when the unequally
spaced observations are considered in the present study.
Suppose that

Corr () = I'(@) (2.5)

where the correlation matrix 7 () is a function of a
vector of correlation parameters «. The choice of a
suitable correlation matrix depends on the nature of the
repeated measurement factor. As a special case where
the repeated observations are taken over time, standard
models for serial correlation patterns are available, i.e,
the autoregressive (AR) model of order one. For
definiteness, the observations are assumed to be
indexed in the order in which they were collected. In
the simplest case where the n repeated measurements
are equally spaced in time, if the correlation between

two adjacent observation is ¢, then the correlation
between any two measurements j; and j, is given by

Corr (ejl s ejZ ) OC|]1 _]2| (26)

The AR(1) correlation pattern may be generalized
to accommodate situations where the observations are
not equally spaced (see, Liang and Zeger (1986) and
Chi and Reinsel (1989)) . If j; and j, are measurements
taken at times 7; and ?j, respectively where j; #j,
then

lt; —t; |

Corr (ejl ’ejz) = o 2 2.7
This may be expressed by the correlation matrix
as
[ g2 B ) ]
1 o372 . gl
o=
a(tn ~tn—1)
i 1

(2.8)
The method of estimation of ¢ is described in the
next sub-section.

2.2.3Auto-correlation for unequally spaced
observations

When observations are taken on subjects at
arbitrary time points, there must be an underlying
continuous time process (Jones 1981, Diggle 1988, Chi
and Reinsel 1989). For equally spaced observations,
there may or may not be an underlying continuous time
process. Unequally spaced observations differ from
equally spaced observations with some missing
observations in that there is no basic sampling interval.
The mathematical model for a continuous time AR(1)
process, denoted as CAR(1), (Jones and Boadi-Boateng
1991), is given by

%g(x)+0¢8(t) = G (29)

where G is a constant, G is variance per unit time, 7(¢)
is continuous time ‘white noise’, Z(7) is error at t" time
and « is the correlation between two adjacent
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observations. A model for 77 (¢) is a differential equation
given by

d
n@ = Ew(t) (2.10)

where @(f) is Brownian motion or a Wiener process.

Combining equations (2.9) and (2.10), we get
de (1) + ce (n)dt = Gdw(¥) (2.11)
This equation is solved by integration. A solution
of (2.11) with the random input removed is given by
(see, Jones 1993)
d
ae(r) +oae) =0 (2.12)

If (2.12) is integrated from time #; to time t,, the
solution is a prediction

€ () =exp {~a(n, — n)}e (1)) (2.13)

The solution, (2.13) is now in the form of a

discrete time AR(1) process with an auto regression

coefficient . The equation (2.13) can be generalized
as

£ (ty) = exp {—a (t, — )} (t,1)  (2.14)
Fitting equation (2.14) by nonlinear modeling
techniques, one can estimate .

2.2.4 Computational aspects
Once the weights are calculated by (2.4) by using

OLS estimator ﬁOLS, they form the weight matrix for
all observations. Let us denote this matrix as W, a
diagonal matrix whose diagonal elements are the
weights estimated through (2.4). Then the
variance-covariance for y under heteroscedastic model
is

Cov(y) = W (2.15)

For the model with heteroscedastic error variance

along with auto-correlation, the variance-covariance
matrix of y becomes

Cov(y) = & W2 [Ta) W2 = X (say) (2.16)

where /() is as given in (2.8). After estimating « by
the model (2.14), it is incorporated in (2.16).

Now applying Generalized Least Squares
principle, the one-step ahead estimates of parameters
can be obtained by minimizing

O~f X Bors)) T 0~ f X, Bors)  (2.17)

After getting new estimates of /3, weights are again
estimated and another set of parameters are estimated
through (2.17). The process is continued till the values
of B converges. Final value of estimates of f is
represented as Sy

2.3 Measure of Model Adequacy

The empirical comparison of models can be made
using with goodness of fit statistics such as RMSE and
RMAPE. Lower the values of RMSE and RMAPE
better are the models. It is concluded that the model
which has minimum RMSE and RMAPE gives better
parameters of the fitted model. For calculating the
RMSE and RMAPE following formulas are used.

Root mean squared error (RMSE)
a2

Y. —¥ )
—_— (2.18)

——x100 (2.19)

where Y; is original value, Yi is predicted values or
estimated value and n is the total number of
observations, p is the number of parameters.

3. RESULTS AND DISCUSSION

Models are first fitted under homoscedastic error
structure. For this purpose SAS package Version 9.1 has
been used. In the present study the data revealed
heteroscedasticity of error variance as rank correlation
is found to be 0.6920 for FxSxH breed and 0.6210 for
FxS breed. In the present study data also have auto-
correlation, when checked using Durbin—Watson test.
The Durbin—Watson statistic (d) is found to be 0.8120

Table 1. Auto-correlation of different breed by
different model

Name of Breed Model Auto-correlation
FxS Logistic 0.1254
FxS Gompertz 0.1330
FxSxH Logistic 0.4448
FxSxH Gompertz 0.4319
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Table 2. Parameter estimates of models under homoscedastic error variance and heteroscedastic error variance

along with auto-correlation of Friesian x Sahiwal breed at Dehradun station

Parameters Under Under heteroscedastic error variance
homoscedastic error variance along with autocorrelation
Logistic model Gompertz model Logistic model Gompertz model
B 354.4000 382.5000 299.9152 328.5822
(15.6193) (15.7104) (3.3298) (1.7363)
B> 6.6555 2.3190 9.4134 2.5333
(0.8399) (0.0966) (0.1504) (0.0064)
B3 0.1534 0.0927 0.2643 0.1377
(0.0142) (0.0072) (0.0035) (0.0009)
Goodness of fit statistics
RMSE 16.7320 11.3109 0.1210 0.0908
RMAPE 21.4587 13.4961 12.9276 8.1148
Autocorrelation - 0.1254 0.1330

Note: Figures in the brackets indicate standard errors.

for FxSxH breed and 0.8394 for FxS breed. o was
estimated by fitting equation (2.14) by nonlinear
modeling technique. The value of « (auto-correlation)
is obtained through NLIN option of SAS procedure.
The estimated values of autocorrelation for different
breeds are given in Table 1.

For fitting models under heteroscedastic error
structure along with autocorrelation, program is written
in SAS/IML language.

It can be observed from Table 2 that for FxS breed
at Dehradun farm RMSE (11.3109) is less for Gompertz
model than RMSE (16.7320) by Logistic model and
similarly RMAPE(13.4961) is Less for Gompertz
model than RMAPE(21.4587) by Logistic model, this
shows that results of Gompertz model are better than
logistic model under homoscedastic error condition.
The data of the breed are having heteroscedasticity of
variance and autocorrelation which was tested by
Durbin Watson test. Auto correlation for this breed is
found to be 0.1254 and 0.1330 of Logistic and
Gompertz models respectively.When the results under
homoscedastic error structure and heteroscedastic error
structure along with autocorrelation are compared it is
found that RMSE and RMAPE under heteroscedastic

error structure with auto correlation are found less than
homoscedastic error structure for both models, this
shows that results for heteroscedastic error structure are
better than homoscedastic error structure.

From Table 3 it is observed that for FxSxH breed
RMSE (23.9571) by Gompertz model is less than
RMSE (24.3640) by logistic model under
homoscedastic error structure and RMAPE (7.1689) by
Gompertz model is less than RMAPE (13.3725) by
Logistic model, so results of Gompertz model are better
than Logistic model under homoscedastic error
structure. RMSE (0.2942) and RMAPE (7.2071) of
Logistic model and RMSE (0.2975) and RMAPE
(4.3462) of Gompertz model under heteroscedastic error
structure along with auto correlation are less than
RMSE and RMAPE under homoscedastic error
structure. This shows that results under heteroscedastic
error structure with autocorrelations are better than
homoscedastic error structure. Mature weight is found
to be more for F x S breed than mature weight of F x
S x H breed under homoscedastic error structure where
as mature weight found more for F x S x H breed than
F x S breed under heteroscedastic error structure along
with autocorrelation. Growth rate was found to be better
for F x S x H than F x S breed.
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Table 3. Parameter estimates of different models under homoscedastic error variance and heteroscedastic error
variance along with auto-correlation of Friesian x Sahiwal x Hariana breed at Dehradun station

Parameters Under Under heteroscedastic error variance
homoscedastic error variance along with autocorrelation
Logistic model Gompertz model Logistic model Gompertz model
By 327.8000 349.2000 362.7186 475.8925
(17.2990) (23.9764) (8.6022) (5.2318)
B> 8.5121 2.5636 13.3927 2.9731
(1.9712) (0.2814) (1.4666) (0.1243)
Bs 0.1949 0.1156 0.2429 0.0941
(0.0262) (0.0176) (0.0179) (0.0100)
Goodness of fit statistics
RMSE 24.3640 23.9571 0.2942 0.2975
RMAPE 13.3725 7.1689 7.2071 4.3462
Autocorrelation - - 0.4448 0.4319

Note: Figures in the brackets indicate standard errors.
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SUMMARY

The present article deals with generation of designs for 2* factorial experiments (without and with confounding) that permit
the estimation of main effects free from linear trend effects present in the experimental units. The proposed method exploits
the use of component wise product of vectors to generate linear trend-free for main effects designs for two-level factorials.
The procedure of identifying two- and three- factor interactions that are linear trend-free has also been incorporated in the
method. The method has also been extended to generate designs for confounded factorial experiments with any number of
factors k ( = 3) that are linear trend-free for main effects and identify two- and three- factor interactions for which the design

is linear/nearly linear trend-free.

Keywords: Factorial experiments, Linear trend-free designs, Orthogonal polynomials, Run orders, Systematic designs.

1. INTRODUCTION

Designs for factorial experiments are very popular
among the agricultural, biological and industrial
experimenters. Designs for factorial experiments are
used for identifying the important main effects and
interactions. However, the experimental units in these
designs may exhibit a trend over space or time. Such
situations occur in agricultural experiments when there
is a slope, in the field and there is sequential application
of treatments to the same experimental unit over
different time periods. Trends may also occur in the
experimental units when the land is irrigated and the
nutrients are supplied by the fertilizers but because of
the slope, the distribution of nutrients is not uniform.
In such experimental situations, a common polynomial
trend within experimental units is likely to occur. The
trend may be represented by a polynomial of
appropriate degree smaller than the block size. The
presence of trends among the experimental units within
a block affects the inference problem on main effects

*Corresponding author : Krishan Lal
E-mail address : klkalra@iasri.res.in

and interactions of interest. In the presence of trends
among the experimental units it may be desirable to
estimate the main effects and interactions of interest
free from trend effects. Generally, we consider the
presence of a linear trends among the experimental
units within a block. In the presence of linear trends
among the experimental units within a block of a
factorial experiment, it is desired to allocate the
treatment combinations to experimental units in such
a manner that the main effects and interactions of
interest are estimated free from the linear trend effects.
Such designs are called as linear trend-free designs for
factorial experiments for estimating the effects of
interest and the ordered application of treatments to
experimental units is called run order.

Bradley and Yeh (1980) gave a rigorous treatment
to the theory of trend-free block designs. Yeh and
Bradley (1983) discussed the existence of trend-free
block designs for specified trend polynomials under a
homoscedastic model. For further research on trend-free
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block designs, one may refer to Dhall (1986), Bradley
and Odeh (1988), Stufken (1988), Chai and Majumdar
(1993), Jacroux et al. (1995, 1997), Majumdar and
Martin (2002), Lal et al. (2005, 2007), among others.
For factorial set up of treatments, Daniel and Wilcoxon
(1966) developed plans for sequencing the treatment
combinations of a two-level full or fractional factorial
to experimental units. Cheng and Jacroux (1988) further
introduced trend-free run orders of two-level designs
using group theory. John (1990) introduced a fold over
method and discussed the trend-free properties of
systematic run orders based on their method. Coster
(1993) extended the work of Coster and Cheng (1988)
to mixed level factorials. For the construction of trend-
free fractional factorial and response surface designs
using computer, readers may visit the website of
Nguyen (http://designcomputing.net/gendex/rat/). The
approach used to generate trend-free designs is to
minimize a proper objective function using the random
seed.

The present article attempts to generate linear
trend-free designs for full factorials both without and
with confounding. The search is restricted to two-level
factorials. The designs are generated by making use of
a computer-aided search because this approach is
relatively easy and fast as compared to generating
designs through an algebraic treatment. The search is
restricted to linear main effects trend-free designs but
the search also identifies 2- and 3- factor interactions
that are linear trend-free/nearly linear trend-free in these
designs. The method is illustrated with suitable
examples. Section 2 deals with general description of
linear trend-free designs for two-level factorial
experiments. Section 3 develops the method for
generation of linear trend-free 2% full factorial
experiments in which main effects are estimated free
from linear trend effects and 2- and 3- factor
interactions are identified that are estimable free from
linear trend effects. The method is illustrated in
Section 4. Section 5 modifies the method to generate
confounded factorial experiments that are linear
trend-free for main effects and identifies 2- and 3-factor
interactions that are also estimable free from linear
trend effects. The working of the algorithm for
generating linear trend-free confounded factorial
designs has been described in Section 6. Catalogues of

linear trend-free 2% factorial experiments for
(k =3, ..., 7) are available with the authors.

2. LINEAR TREND-FREE DESIGNS FOR TWO
LEVEL FACTORIAL EXPERIMENTS

In factorial experiments, generally the interest of
the experimenter is to estimate the lower order factorial
effects precisely. In general, the treatment combinations
are applied to experimental units randomly. If it is
known or assumed that experimental units exhibit a
linear trend over space or time, then it is advantageous
to choose a systematic run order so that the run order
is linear trend-free for main effects and is linear/nearly
linear trend-free for lower order interactions. For a
design of 2F factorial experiment the total number of
treatment combinations is n = 2 and the model for
factorial experiment with linear trend effect conducted
in a single replication is

y=UB+TO+e (D
E(e) =0, D(e) = &I

where y is a n x 1 vector of observations, U is an
n X n design matrix and £ is an n-component vector of
general mean and treatment effects (treatment
combinations written in lexicographic order from the
left), T is the vector of coefficients of the first degree
orthogonal polynomial of order n, @is a regression
coefficient and e is n x 1 vector of independently and
identically normally distributed errors. In a 2k factorial
experiment, the total number of treatment combinations

is even. So vector T is
Ir=-mn-1,-n-3),..,-3,-1,1,3,(n-3),(n—-1))
(2)

We may redefine

U=[1: X, { X, ! 1 X X,
where 1 is an n-component vector of ones, X; is an

N

k ) .. )
nx matrix of coefficients of the s-factor factorial
s

effects, s =1, 2, ..., k. Based on general definition given
by Bradley and Yeh (1980), all the s-factor factorial
effects are linear trend-free if X ;T =0 . Here 0, denotes
a t-component vector of all zeros. For example, a design
for factorial experiment would be linear trend free for

main effects if X{T =0.

It may not be possible always to generate a design
for factorial experiment that is linear trend-free for all
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the effects of interest. This provides a motivation to go
for nearly linear trend-free designs for some of the
effects of interest. The condition given by Chai (1995)
for a balanced incomplete block design to be nearly
linear trend-free block design can be generalized for the
factorial experiments. In a factorial experiment, the
condition for the n x 1 column vector of coefficients
of contrast of interest, say A, to be nearly linear
trend-free is

0<A'T<n 3)

Our interest is to obtain designs for factorial
experiments in which contrasts for the main effects are
estimated free from linear trend effects and to
identify/search two and three factor interactions that are
estimable free from linear trend effect. To obtain such
designs, we begin with following lemmas:

Lemma 2.1 {Cheng and Jacroux (1988)}. In any run
order of a complete 2k design, the number of mutually
orthogonal linear trend-free factorial contrasts (main
effects or interaction) are at most 25 _k-1.

Let s¢, $,,..., s, denote the coefficients of the
estimates of the main effect contrasts, defined in
Section 3 as 13.

Lemma 2.2 {Cheng and Jacroux (1988)}. For
p=1, ..,k let Sp denote the vector of coefficients of
the estimated contrast of main effect of factor p and °
denote the component-wise product of vectors.

For example, for s = (-1, 1, -1, 1, -1, 1,-1, 1),
(-1,-1,1,1,-1,-1, 1, 1) and

S§ = (_1’ _19 _17 _17 1, 17 1’ 1)’
sposyoss= (=1, 1, 1, -1, 1, -1, =1, 1).

’
$2

Then the component wise product
t+1

H"sjp =5p°Spp°

p=1

e 0§ .
Je+1

is orthogonal to T, T, ..., T,, where T; is the vector of
coefficients of i™ order orthogonal polynomial for
number of design runs n, i =0, 1, ..., £.

Using these two lemmas, the algorithm to develop
the factorial experiments that are linear trend-free for
main effects is given in Section 3 and working of the
algorithm is given in Section 4.

3. GENERATION OF TREND-FREE DESIGNS
FOR FACTORIAL EXPERIMENTS

We shall henceforth denote by AL1 the algorithm
that generates designs for complete factorial experiment
in single replication that are linear trend-free for
estimation of main effects and also identifies the 2- and
3- factor interactions that are estimable free from linear
trend effect. AL1 is described in the sequel.

I. The Method AL1

I1 Let the number of factors be k; number of
treatment combinations be n = 2k, n is even.

I2 Generate an n x k array with n/2 symbols as +1
and n/2 symbols as —1 in each column. The
generation of columns is explained in the
following steps.

I3 The j™ column of the array contains 2/
replications of the symbols -1 and +1
alternatively; j = 1, 2, ..., k. Thus, the first column
contains symbols —1 and +1 alternatively and the
k™ column contains n/2 times symbol —1 and n/2
times symbol +1.

I4 In the generated n x k array, the k columns
correspond to the coefficients of the contrasts
corresponding to the k main effects.

IS The n rows of n x k matrix represent n treatment
combinations in lexicographic order.

Now we describe the steps to convert the full
factorial generated in I3 into a linear trend-free
for main effects design by using the steps given
below. Let sy, 5, s; denote the k columns of the
array with each column denoting the coefficients

of contrasts for main effects. We shall denote by
k

H °§; the component wise product of symbols.
j=1
For example, if k = 2, then s/ = (-1 +1 -1 +1),

sé: (—1 -1 +1 +]) and (SIOSZ),: (+] —1 -1 +1).

I6 Case I: k is odd.

k
Fori=1,2,..,k1,define A= J] o
j(#i)=1

i and

k

Ay ZH"S]-. Then
j=1
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X=[4, A, ~ A -~ Al

is the required linear trend-free design for main
effects for a 2* factorial experiment.

I7 Case II: k is even.

k
Fori=1,2,.. k define A= [] es;. Then
Jj(i)=1
X=[A A, - A - Al

is the required linear trend-free design for main
effects for a 2* factorial experiment.

We further describe steps to identify linear trend-
free two-factor and three-factor interactions in the
design generated in 16 or I7.

I8 From the linear trend-free for main effects design
generated in 16 or I7 generate a new design matrix

nx{k+(§]+(§ﬂ given by Z = [X x? x99

Here X("), u = 2, 3 contains columns
corresponding to the coefficients of the contrasts

k
of all the [

]u—factors interactions obtained
u

from X.

19 For u =2, 3, identify the columns in X that are
linear trend-free. Then the corresponding u-factor
interactions are linear trend-free. Further, identify
the columns from the remaining columns in X"
that satisfy the condition in (3). Then the
corresponding u-factor interactions are nearly
linear trend-free. The remaining columns are not
trend-free.

Remark 3.1: The algorithm ALI1 is infact a
combination of steps provided by Chen and Jacroux
(1988) as stated above in Lemma 2.2 and clarification
regarding odd and even number of factors given by
Hinkelman and Jo (1998).

4. WORKING OF AL1

Consider the problem of constructing a linear
trend-free design for main effects for a 2* factorial
experiment with four factors as A, B, C and D. Using
the method ALI, first obtain an 16 x 4 array using
step I3. The four columns of the array correspond to

Table 4.1(a)

Treatment

& 2 53 S4 combinations
-1 -1 1 1 0

1 -1 1 1
-1 1 1 o .
1 ! -1 -1 ab
-1 1 { o )
1 - ! -1 ac
- ! 1 -1 bc
1 ! 1 -1 abc
-1 1 1 . .
1 - -1 1 ad
- ! -1 1 bd
: ! -1 1 abd
- - 1 1 cd
1 -! 1 1 acd
- ! ! 1 bed
: ! 1 1 abcd
Table 4.1(b)

A B C D Tr'eatrr'lent

Design X combinations
-1 -1 1 1 D
B : 1 I bed
! -1 1 1 acd
1 ! -1 -1 ab
: ! -1 1 abd
] -l ! -1 ac
B ! 1 -1 bc
-1 1 1 | .
1 ! 1 -1 abc
] -l -1 1 ad
- ! -1 1 bd
-1 1 . o .
- - 1 1 cd
1 1 1 , ,
1 | 1 1 .
1 ! 1 1 abced
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the coefficients of the contrasts of the four main effects.
The full description of the generated array is given
below as Table 4.1(a). We denote the contrasts of main
effects as sy, 55, 53, and s,.

In this example k (=4) is even. So we use Step 17
to generate linear trend-free design for main effects.
This design is given in Table 4.1(b) as Design X.

In Design X, all the main effects are linear
trend-free; some other factorial effects, however, may
also be linear trend-free (Lemma 2.1). Since the interest
of the experimenter is to estimate lower order
interactions more precisely, we search for two and three
factor interactions that are linear trend-free by using
steps I8 and I9 of AL1. Using step I8, we first generate

design matrix Z for main effects, two-factor and three
factor interactions. The design Z is given in Table 4.2.

Using now Step 19 we identify two-factor and
three-factor interactions that are linear trend-free or are
nearly linear trend-free. It is found that all the six
two-factor interactions AB, AC, AD, BC, BD and CD
are linear trend-free. On the other hand, only one three
factor interaction, BCD, satisfies condition (3) and is,
therefore, nearly linear trend-free. Other three-factor
interactions are neither linear nor nearly linear trend-
free.

Table 4.3 gives an example of a design Z for 2°
factorial which is linear trend-free for all main effects,
all two-factor and three-factor interactions.

Table 4.2. Design Z for 2* factorial

VA
X X X
A B C D AB AC AD BC BD CD | ABC ABD ACD BCD
-1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1
-1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1
1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1
1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1
1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1
1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1
-1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1
-1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1
1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1
1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1
-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1
-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1
-1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1
-1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1
1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 4.3 Linear trend-free for main effects, 2-factors and
3-factors interactions design for
Complete Factorial Experiment

A B C D E
abcd 1 1 1 1 -1
ae 1 -1 -1 -1 1
be -1 1 -1 -1 1
cd -1 -1 1 1 -1
ce -1 -1 1 -1 1
bd -1 1 -1 1 -1
ad 1 -1 -1 1 -1
abce 1 1 1 -1 1
de -1 -1 -1 1 1
bc -1 1 1 -1 -1
ac 1 -1 1 -1 -1
abde 1 1 -1 1 1
ab 1 1 -1 -1 -1
acde 1 -1 1 1 1
bcde -1 1 1 1 1
(1) -1 -1 -1 -1 -1
e -1 -1 -1 -1 1
bcd -1 1 1 1 -1
acd 1 -1 1 1 -1
abe 1 1 -1 -1 1
abd 1 1 -1 1 -1
ace 1 -1 1 -1 1
bce -1 1 1 -1 1
d -1 -1 -1 1 -1
abc 1 1 1 -1 -1
ade 1 -1 -1 1 1
bde -1 1 -1 1 1
c -1 -1 1 -1 -1
cde -1 -1 1 1 1
b -1 1 -1 -1 -1
a 1 -1 -1 -1 -1
abcde 1 1 1 1 1

Remark 4.1: The method AL1 described in Section 3
can be operated in a very simple manner to generate
the same design as generated by ALI. The two cases

(D k is even and (I) k is odd are dealt separately. First
we describe the method for case (I).

Case I. n = 2"; k is even

Step-1 Generate full factorial design for n = 2k
factorial experiment in standard
(Iexicographic) order using the steps 11 to I3
of ALI.

Step-II Retain the even numbered letters treatment
combinations as such and in the same
position wherever these occur.

Step-III Replace the odd numbered letters treatment
combinations by the complement letters. In
other words produce another treatment
combination which contains those letters not
present in the original treatment combination.
Retain it in the same position as that of the
original one. The new design generated is the
same as the one produced by AL1. For
application of this simplified algorithm, see
Design 1 for 2* factorial experiments.

Step IV Steps 1 — 3 take care of steps I1 — 15 and 17
of ALLI.

Case IL n = 2%; k is odd

Step-I Generate full factorial design for n = 2%
factorial experiment in standard
(Iexicographic) order using the steps I1 to I3
of ALI.

Step-II Replace the even numbered letters treatment
combinations of 2¢! factorial by the
complement letters. In other words produce
another treatment combination which
contains those letters not present in the
original treatment combination. Retain it in
the same position as that of the original one.

Step-III For the odd numbered letters treatment
combinations augment the k™ letter with
each odd numbered letters treatment
combinations in 25! factorial experiment.
Retain these in the same position as that of
the original one.

Step-IV In this way first half of the treatments
combinations (25°!) of 2* factorial are
obtained. The second half of the treatment
combinations is obtained by writing the
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complement letters of first half treatments
combinations. Thus this is the desired
design.

Step-V Steps I — IV take care of steps 11 — 16 of
ALL.

Remark 4.2: The designs obtained above are the
component wise product of the contrasts of main
effects. These designs are same as generated by ALI.
Thus by Lemma 2.2 these designs are not only linear
trend-free for main effects but are also linear trend-free
for higher orders interactions. Lemma 2.1 will be
applicable on these designs.

In the next section we give an improved version
of the method AL1 to generate designs for confounded
two-level factorial experiments that are linear trend-free
for all the main effects and also for some of the 2- and
3-factors interactions.

5. METHOD AL2 FOR CONFOUNDED
FACTORIAL EXPERIMENTS

In this section we consider the problem of
obtaining confounded two-level factorial designs in the
presence of linear trends within blocks. The designs
obtained are trend-free for main effects and some
2-factor and 3-factor interactions. Consider a (2]‘, 2k )
factorial experiment run in b = 2” blocks of size
m = 2K7_ Suppose that p independent factorial effects
are confounded in each replication. We assume the
following linear additive model:

y=UB+By+TO+e 4
E(e) = 0, D(e) = &1,

where B is the n x b design matrix of observations
versus blocks and ¥ is a b-component vector of block
parameters; the other symbols are same as defined in

model (1). T=1, ® tand ¢ is the (m x 1) linear trend
vector for blocks of size m and b is the number of
blocks. The condition for main effects to be linear

trend-free is X{ T =0. For s = 1, 2,..., k, the matrix
X X1 . To
obtain the desired design that is linear trend-free for

main effects and for some of the 2- and 3- factor
interactions, we have the following method AL2:

X, is partitioned as X, =[X};

I. The method AL2

L1 Generate full factorial design for n = 2¥ factorial
experiment in standard (lexicographic) order
using the steps 11 to I3 of AL1. Replace the
symbols —1 and +1 in each column by O and 1,
respectively.

L2 Fix the p factorial effects to be confounded.

L3 Solve the following 2” equations for the p chosen
contrasts (factorial effects) to be confounded

Ax=0and Ax =1

where x” = (x|, Xa,..., X;) denotes the k factors in
the experiment and A = (a;) is a p X k matrix of
known coefficients aij's, i=1,2,.,p;j=1,2,
..., k. a;j =1 or 0 depending upon whether the M
factor is present or absent in the ith factorial effect
confounded. O is a p component vector of zeros
and 1 is a p component vector of all ones.

L4 Step L3 generates b = 2” blocks of size 27 each.

We now describe steps to convert the confounded
design generated in step L2 into a linear
trend-free design for main effects.

L5 The treatment combinations within the b = 27
blocks maintain the same order of sequence as in
the lexicographic order of complete factorial
experiment in step L1 with symbols as O and 1
instead of —1 and +1. Again replace the symbols
0 and 1 by —1 and +1, respectively.

L6 Let si, sh,... s,l( denote the k columns of the /™

block generated in step L3, [ =1, 2, ..., b. Perform
steps 16 and 17 on each of the b blocks separately.
Let X(;, denote the matrix of coefficients generated
for the /™ block by using this step.

L7 Then X = [X{,

linear trend-free design for main effects.

X{(3) -+ X{(] is the required

We further describe steps to identify linear
trend-free two-factor and three-factor interactions
in the design generated in L6 and L7.

L8 From the linear trend-free for main effects design
generated in L6 and L7 generate a new design

k k
nx[k+[2]+(3ﬂ given by Z:[X x? X(3)].
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Here X("), u = 2, 3 contains columns
corresponding to the coefficients of the contrasts

k
of all the [

] u-factors interactions obtained from
u

X.

L9 For u = 2, 3, identify the columns in X that are
linear trend-free. Then the corresponding u-factor
interactions are linear trend-free. Further, identify
the columns in X™ that satisfy the condition
in (3). Then the corresponding u-factor
interactions are nearly linear trend-free. The
remaining columns are not trend-free.

6. WORKING OF AL2

Consider again the problem of constructing a linear
trend-free for all main effects design for a 24
confounded factorial experiment obtained by
confounding the highest order interaction ABCD. Using

Design 6.1
Block - 1 Treatment
A B C D combinations
-1 -1 -1 -1 (1)
1 1 -1 -1 ab
1 -1 1 -1 ac
-1 1 1 -1 bc
1 -1 -1 1 ad
-1 1 -1 1 bd
-1 -1 1 1 cd
1 1 1 1 abcd
Block -2 Treatment
A B C D combinations
1 -1 -1 -1 a
-1 1 -1 -1
-1 -1 1 -1 c
1 1 1 -1 abc
-1 -1 -1 1 d
1 1 -1 1 abd
1 -1 1 1 acd
-1 1 1 1 bed

step I3 of algorithm AL1, we can obtain an 16 x 4 array
as in Table 4.1(a). Then use of step L3 of AL2 requires
solving the following two equations

S+ S, + 53 + 5, = 0 mod(2)
S1+ 8 + 53+ 54 =1 mod(2)

The two blocks obtained are given in Design 6.1.

Using steps L4, L5, L6 and L7 of AL2 gives the
two blocks of a linear trend-free for main effects design
for 2* factorial experiment in which ABCD is
confounded. The design is given in Design 6.2.

Design 6.2
Block - 1 Treatment
A B C D combinations
Xay
-1 -1 -1 -1 (1)
1 1 -1 -1 ab
1 -1 1 -1 ac
-1 1 1 -1 bc
1 -1 -1 1 ad
-1 1 -1 1 bd
-1 -1 1 1 cd
1 1 1 1 abcd
Block -2 Treatment
A B ¢ D combinations
Xo)
-1 1 1 1 bed
1 -1 1 1 acd
1 1 -1 1 abd
-1 -1 -1 1 d
1 1 1 -1 abc
-1 -1 1 -1 c
-1 1 -1 -1 b
1 -1 -1 -1 a
and X'=[X('D X,(z)]
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We now identify two- and three- factor interactions
that are linear trend-free in Design 6.2. Using steps L7,
L8 and L9 of AL2 gives that all the two factor
interactions i.e. AB, AC, AD, BC, BD and CD are linear
trend-free. Similarly, among three factor interactions,
BCD is linear trend-free, ACD is nearly linear trend-
free and the other two ABC and ABD are neither linear
trend-free nor nearly linear trend-free.

Using AL1 and AL2, one can obtain designs of
complete factorial and confounded factorial
experiments for any number of factors k ( = 3) that are
linear trend-free for main effects and can identify
two- and three- factor interactions that are linear/nearly
linear trend-free.

We give below another example of 25 confounded
design in which some of the two factor interactions are
nearly trend-free.

Example 6.1: 2° Linear trend-free design for

Confounded Factorial Experiment (ABCDE
confounded)
Block - 1
A B C D E
-1 -1 -1 -1 -1
1 1 -1 -1 -1
1 -1 1 -1 -1
-1 1 1 -1 -1
1 -1 -1 1 -1
-1 1 -1 1 -1
-1 -1 1 1 -1
1 1 1 1 -1
1 -1 -1 -1 1
-1 1 -1 -1 1
-1 -1 1 -1 1
1 1 1 -1 1
-1 -1 -1 1 1
1 1 -1 1 1
1 -1 1 1 1
-1 1 1 1 1

Block - 2
A B C D E
1 -1 -1 -1 -1
-1 1 -1 -1 -1
-1 -1 1 -1 -1
1 1 1 -1 -1
-1 -1 -1 1 -1
1 1 -1 1 -1
1 -1 1 1 -1
-1 1 1 1 -1
1 -1 -1 -1 1
1 1 -1 -1 1
1 -1 1 -1 1
-1 1 1 -1 1
1 -1 -1 1 1
-1 1 -1 1 1
-1 -1 1 1 1
1 1 1 1 1

Note: In this design all main effects, 2-factor and 3-factor
interactions are linear trend-free except the interaction BE which
is nearly linear trend-free. Interactions CE and DE are not linear/
nearly linear trend-free.

Remark 6.1: For obtaining a linear trend-free for main
effects design for complete factorial experiments, a
simple version of AL1 is given in Remark 4.1. It needs
to be further investigated whether such a simplification
of AL2 is possible for obtaining a linear trend-free for
main eftects confounded factorial design.

7. DISCUSSION

The algorithms AL1 and AL2 have been translated
in Microsoft Visual C++ program and these
programmes have been used in computer aided
generation of trend-free designs for the desired factorial
experiment for any number of factors k ( = 3). The
catalogue of the designs obtained for 2% factorial
experiment, for k = 3, ..., 7 (for both without and with
confounding factorial experiments) that are linear trend-
free for main effects are available with the authors and
can be obtained by sending an E-mail to
klkalra@ gmail.com.
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SUMMARY

Under the well known prediction approach of Basu (1971), we introduce a new class of estimators for the finite population
mean availing information on two auxiliary variables in a two-stage sampling.

Keywords: Asymptotic variance, Auxiliary variable, Prediction approach, Two-stage sampling.

1. INTRODUCTION

Consider a finite population U, partitioned into N
first stage units (fsu) denoted by Uy, U,,..., Uy such that
the number of second stage units (ssu) in U;is M; and

N
M = ZM i . Let y; and x;; denote values of the study
i=1
variable y and an auxiliary variable x respectively, for
the M ssuof U;(j=1,2,..,M;i=1,2, .., N). Define

M.
_ 1 ] o 1 L
i 20 X =—2X,-j as the means of U;
M; < M; <
Jj= Jj=
o1y - 1 N
and Y=N2u,-Y,-, X :NZL{,-X,- as the overall

1

i

population means, where u; = NM/M. To estimate Y ,
assume that a sample s of # fsus is drawn from U and
then a sample s; of m; ssus from the selected U, is drawn
according to the design simple random sampling

§i=*2)’ij,

) 1
without
ml jESi

replacement. Let

*Corresponding author : LN. Sahoo
E-mail address : Insahoostatuu @rediffmail.com

_ 1 _ 1 _ _ 1 _

i = xij’ y= uyp, X=-— Ui X; and
mi Jesl ies niEY

o, 1 —

T=— ul-Xl-.
n

When X is known accurately, Srivastava’s (1980)

class of estimators is defined by ¢, = y(y,x), where
y(y,x)is a function of y and x, such that
y(Y,X)=Y and satisfies certain regularity conditions
in R,, a 2-dimensional real space containing the point
(Y,X). But, in a two-stage sampling plan it is usually

felt that efficiency of an estimator depends on how well
the auxiliary information can be utilized at different

stages. With this spirit, using known values of X ;s for

the selected fsus, Sahoo and Panda (1997) considered
a class of estimators defined by

1 SR
ty = .U(;Zui:ui(yi’xi)’x)

iEes
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such that #(Y,X)=Y, p,(Y;.X;)=Y, i € s and the
functions u(.,.) and y(.,.) admit Srivastava’s (1980)
regularity conditions in R,.

In certain practical situations we get information
on another strong auxiliary variable z, taking value z;
for the j™ ssu of U; in such a way that the overall

population mean Z is unknown, but the population

means for the selected fsus ie., Z;, i € s, are known.

In this context, using both auxiliary variables, Sahoo
and Sahoo (2005) composed a class of estimators
defined by

1 — =\ —
Iy = O‘(_Z“io‘i(}’i’zi),x)

ies

1 . .
where z; = — 2 z;; and the functions ¢r and ¢; satisfy

. i jes;. . . .
regularity conditions in R,. The basic assumption

behind the construction of t is that X;,Z;,i€s and

X are known but Z is unknown. However, guided by
these assumptions, here we develop a general class of
estimators for ¥ motivated by the predictive approach
of Basu (1971, p. 212, example 3).

As an example of this type of situation, we may
refer to a crop survey conducted in a district with block
(cluster of villages) as the fsu and village as the ssu.
If y, x and z represent respectively yield, cultivated area
and area under wheat, then information on the average
area under cultivation per village in the i™ block,
ie., X; fori € s, can be obtained at a low cost from
the block records and average area under cultivation for

the district i.e., X can be known from the district

records. Information on Z; i.e., average area under

wheat for the i selected block can also be easily
available from the block level records.

2. PREDICTION CRITERION IN
TWO-STAGE SAMPLING

Let 5 denote the set of (N — n) fsus of U which

are not included in s and 5;, the set of (M; — m;) ssus

of U; which are not included in s;, i € s. Under the usual
predictive set-up, it is possible to express

- 1 —
V= X X vyt Xy 2 ME ()

ies | jes; JES; ies
Writing (N —n) }7r = 2 ui,-
ies
and (M; — m;) Yir = 2 Y;j » we have
J€s;

= 1 — = N-n
Yzﬁ{g;{miyi+(Mi_mi)Y;‘r}:|+ N Y, (2

To estimate Y , we, therefore have to predict the

quantities ¥, and Y, from the sample data because the

first component of the right hand side of (2) is already
known. Using T; and T as their predictors, a predictor

Y of Y of may be defined by the equation

?=${2{mi§i+(Mi—mi)7}}}+N];nT )

i€s

Note that if m;=M;and n=N; Y = Y the target
of our prediction.

Corresponding to various suitable choices of the
predictors 7; (i € s) and T, equation (3) generates a class
of estimators. But, we achieve this objective by defining

these predictors in terms of two auxiliary variables i.e.,
x and z.

3. THE CLASS OF PREDICTIVE ESTIMATORS

For given s; and s, let
el = (§[7 E[’ E[’ X”-, Z”-) (S R5

and e:(y’x,’yr)eR:ﬁ’

where (M; —m;)X;, = 2 X, (M;—m)Z;, = 2 Zjjs
jes; jesi
(N-n)X, = Zui}?i , Rs and R; are 5- and
LES

3-dimensional real spaces containing the points
E=.,X,Z,X»Z) i e sand E= (Y, X, X)
respectively. Further, let he;) and h(e) be some known
functions of e; and e respectively such that 4,(E;) = Z,
i €s,and WE) = Y . Let us assume that
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(a) the functions /; and & are continuous in Rs and R;
respectively, and

(b) the first and second order partial derivatives of
these functions with respect to their arguments
exist and are also continuous in their respective
range spaces.

Thus, based on information available on s; and s,
h (e,) and h(e) clearly define classes of estimators for
Y i€s, and Y respectively. Using h;(e;) and h(e) as
predictors in places of T; and T in our predictive
equation (3), we now define a class of predictive
estimators for ¥ by

1
= D Amyi+(M;—mp)hi(e)}
ies
Many estimators may turn out as special cases of
t, corresponding to various selections of h; and h.
Let us consider the following simple cases:

(i) If the information on x is completely ignored,
i.e,if h;=y;, and h = y then 1, becomes y , the

simple expansion estimator of Y .

v X,
(ii) When h; = ’_’i ir and h = —,,then
X;Z;
)?
w_ yE2_Ly,
t, >tg = )_C nz iYi X

les

{< f)—f[_fj[_fﬂ

. . n m
a ratio-type estimator, where f =N and f; =—-

(iii)) When h; = iti%i and h = , then
irZir Xr
f
= £ = DU X
ies
YiXiZ;

Vi + (= f.)? —= =
Jiyi+A=1) (X; = fix)Z; — fi7)

+ (- f)Xif_,

a product-type estimator.

@iv)

v)

(vi)

When h; = Vi~ ﬁiyx (x; =

h= y_ﬁbyx(},_ir)

h
t, — t;gG)

}?ir) - ﬂiyz (7 - Zir) and

= 5L Y By - X+ B - 20)

ies

_ﬁbyx (x - X)

a regression-type estimator, where

ﬁiyz Styx/ S
ﬂiyz SlyZ/ Stz > ﬂbyz = Sbyx/ szx such that
1 % _ _
Siyx = —Z(yij_Yi)(xij_X,')
LA
Sbyx N — Z(M,Y, —Y)(u,-X,- — X)

[9%]
¥
|

1

1 M;
7 \2
S PR

%)
SN
1l

S o o
—lz(uiYi —-Y)", etc
T =l
If the estimation procedure is carried out with the

involvement of x only, then ; = d;(¥;,X;, X;,) 50

d .. .
that 7 —>t,(1 ), a class of predictive estimators
defined by

1 B o
. H[Z{miyi +(M; _mi)di(yi’xi’Xir)}:|

ies

As a specific case of #,, we may also consider
another subclass of predictive estimators defined
by

1 _ _ —
- ﬁ[z{miyi +(M; _mi)ki(yi’zi’zir)}:|

ies

on considering k; = k; (3:,%:,Z;,) -
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4. ASYMPTOTIC VARIANCE OF ¢,

Expanding h/e;) and around the points E; and E
respectively in a first order Taylor’s series and then
neglecting the remainder term, we get
=) +hy (5 - X))

hi(e)) = h(E) + hjp(y;

+ (3 X))+ hy(Zy — 7))

“)

~Z)+h3(X;, —

and

h(e)= h(E) + hg(F=Y) + (X =X)+ hy(X, — X)
&)
where hy, h;y, by, h;3, and by, are respectively the values
of first order partial derivatives of h;(e;) with respect
to y;, X, X;, and Z; at E; and hy, hy and h, are
respectively the values of first order partial derivatives

ir

of h(e) with respect to ;, ¥ and X . at E.

NOting that hiO = 1, hil = _hi3’ hi2 = _hi4’
- MX -m%x - MZ -m7
X;, = it T Z, =—— ™% \we have after
M[' —m; i m;

1

a considerable simplification

th=§+izui[hil()_€i ~ X)) +hi(Z = Z)1+ Iy (T - X)
Ies (6)

Hence, after a few tedious algebraic steps
(suppressed to save space), the asymptotic variance of
t;, is obtained as

1-f
n

N — f.
L e %)

nN 5 m;

V(th) =

2 2a2
(Sby +h1 be + 2h1Sbyx)

where V; = SlV +f h,lS,x +f h,leZ +2 fh;1Siyy

+2fh12Sl)Z +2f hll ZSsz

Minimizing V(t,) over h;;, h; and h; we get

lﬁtyx ﬁ[)‘,ﬁl”x_ *
AR A

i1 =

h,’g _ _l ﬂiyz _ﬁiyxﬁixz _ hl*z (say)
f 1- ﬂizxﬂixz

and h] = _ﬁbyx
where B, = S/ SZ. B = Si. / S Use of these
optimum values in (7) yields the minimum asymptotic

variance of the class (may be called as the asymptotic
minimum variance bound (MVB) of the class) is given

by
) 1-
min V() = ~—L52 1= p,.)
1 &
nN 5
where Oy = Spyx / SpySpy and

2 2
0 = \/piyx + piyz - 2piyxpiyzpixz
i 2
1_pixz

the multiple correlation coefficient of y on x and z in
U;such that g, = S,/ S;, S, etc. An estimator attaining
this bound is called as an MVB estimator. In the present
context our MVB estimator is a regression-type
estimator of the form

0 —
g = Y~

O WALTCEP AT ACE A

Mies
_:Bhyx (' - )?)

The parametric functions h,-*l, h,-*z and /3, can be
replaced by their consistent estimates computed from
the sample itself. But, the asymptotic variance of the
resulting estimator remains unchanged and is given

by (8).
5. PRECISION OF ¢,

In an effort to study the efficiency aspect of the
predictive method of estimation developed in this work
in relation to the classical method, our first attempt is
to compare the efficiency of #, with that of #,. The
asymptotic variance of #; obtained through Taylor
linearization is given by
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1 —
Vi(ty) = Tf(Slgy + J/lzslgx + 27/1Sbyx)
1 ¥ ,1-7
b s st e 2,0 ©)

i=1 i
where 7 is the first order partial derivative of y(y, x)

with respect to x when evaluated at (17, X ).

From (7) and (9), it follows that V(z,) < V() i.e.,
an estimator of #, is more precise than an estimator
of ¢, if

‘YI +ﬂbyx‘ 2 ‘hl +ﬂbyx‘

and va |:(J/1 + ﬁiyx)2 - (fhil + ﬁiyx )2i|

2 fh'lsé (fh2 +2ﬂiyz +2fhi1ﬂixz) Vi (10)

These sufficient conditions basically depend on the
choices of different functions for composing ¢, and ¢,.
However, they give some indication that there is enough
scope for improving upon the estimators through our
predictive method over classical method. But, these
conditions can not lead to any straight forward
conclusions if the characteristics of the functions are
unknown. However, for simplicity, if we accept MVB
as an intrinsic measure of precision of a class, the
problem of precision comparison seems to be easier and
our attention will be concentrated on the MVB
estimators only.

The minimum asymptotic variance of f; is

minV(1) = —=5j, (1= p*)

I-f
n

+—Zu f’S,)(l—) (11)

and the corresponding MVB estimator is

thg = ¥—B(E-X)

where p is the correlation coefficient between y and

X and f is the regression coefficient of y on x.
Hence, we see that

minV(#,) < minV(z,)

tRG is more efficient than t 1f

P < Phyy and p} Vi (12)

Turning our attention to study the precision of #,
compared to other classes of classical and predictive

(d) (k)

estimators viz., ty, t,, f, ~ and f, on the ground of

MVB criterion, we see that
I-f
n

minV(1,,) = — S5, (1- pj)

1 —fia2
lSlVI lVX 1
+ nN; —~ (1-pi) (13)

1

f

) 1-
minV(t,) = Sb_) (I- byx)

1
F LS mf’ Sy1=pre) (14)

nN 5

rmnV(z(d)) = minV(z,)

man(z(k ) ) = minV(z)

The MVB estimators of g, or t,(,d)

are also respectively given by

and ¢, or t,(l )

() = T B (G~ X) = By (T — )

nlES

[I(???) - Zuﬂly”(zl Z) ﬂbyx(x X)

lES

From (8), (13) and (14) we have

min V(1) < min V() = V(igg) < VERE)

and min V(1) < min Vt) = V()< V)
Hence, we may conclude that ¢, is superior to f,,,

(d)

ty 1 and l,(ik) on the ground of MVB criterion.
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6. NUMERICAL STUDY

To study precision of the suggested methodology
numerically, we consider data of two populations as
described below.

Population 1. Consists of 198 blocks (ssu) divided into
N =27 wards of Berhampur city of Orissa. The number
of blocks (M;) of 27 wards are 6, 6, 12, 5, 6, 6, 10, 5,
6,6,6,6,6,12,6,7,7,7, 10,6, 6,7, 10, 11, 9, 8 and
6. The three variables viz., number of educated females,
female population and number of households are used
as y, x and z respectively, data on which are available
in Census of India (1971) document. We have taken
n=9%andm;=2,2,4,2,2,2,3,2,2,2,2,2,2,4,2,2,
2,2,3,2,2,2,3,4, 3,3 and 2 respectively.
Population 2. MU284 population available in Sarndal
et al. (1992, p. 660, Appendix C). It consists of 284
municipalities (ssu) divided into 50 clusters (fsu) with
three variables viz., Revenue from the 1985 municipal
taxation as y, 1975 population as x and 1985 population
as z. We consider n = 12, and m; = 2 for every i.

Relative precision of different MVB estimators
compared to the simple expansion estimator y , are

compiled in Table 1. The estimator t%G attains the

maximum precision for both populations. Thus, our
numerical study shows that the new methodology

Table 1. Relative precision of different estimators

Pop. Estimators

No.| ¥ | e | %G| e | e
1 100 148 184 175 195
2 100 947 3579 3366 3725

developed here to create predictive estimators may be
useful for many practical situations.
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SUMMARY

Most of clustering algorithms generate clustering results in the form of number of clusters and member objects in those
clusters. This further requires analysis by experts in order to understand the patterns of obtained clusters. Post processing of
cluster is then required in order to extract meaningful cluster pattern. In this paper a rough set based approach for pattern
discovery from individual clusters is proposed. In the proposed approach, Maximum Possible Combination Reduct (MPCR)
derived from rough set theory is used for generating concise cluster pattern. MPCR is defined as the set of variables which
distinguishes the objects in a homogenous cluster. Therefore these variables are not considered for pattern formulation. Remaining
variables are ranked for their contribution in the cluster. Cluster pattern is formed by conjunction of variables in the increasing
order of their contribution in the cluster such that pattern distinctively describes the cluster with minimum error. Applicability

of approach is demonstrated using soybean disease and zoo datasets from machine learning repository.

Keywords: Clustering, Data mining, Rough set theory, Reduct, Indiscernibility, MPCR, Cluster description, Pattern.

1. INTRODUCTION

Data Mining is a non trivial process of identifying
valid, novel, potentially useful and ultimately
understandable patterns in data (Han and Kamber
2006). Clustering is an important component of data
mining. The underlying assumption of clustering in data
mining is to find out the hidden patterns in the data,
which can be revealed by grouping the objects into
clusters. According to Mirkin (2005), clustering process
involves different stages, which include data
pre-processing and standardization, finding clusters in
data and description of clusters. Many clustering
algorithms are available in literature, one can refer to
Jain et al. 1999; Han and Kamber 2006; Mirkin 2005;
for comprehensive surveys on clustering algorithms.

*Corresponding author : Alka Arora
E-mail addresses : alkak @iasri.res.in, alka27 @yahoo.com

K-Means and Expectation Maximization (EM)
algorithms are the widely known partitional algorithms,
which divide the data into k£ non overlapping clusters.
These clustering algorithms just generate general
description of the clusters like which objects are
member of each cluster and lacks in generating cluster
description in terms of relevant variables those define
the cluster. According to Ganter and Wille (1997),
cluster description is able to approximately describe the
cluster in the form that “this cluster consists just of all
the objects having the pattern P, where pattern is
formulated using the variable and values of the given
many valued context”. From an intelligent data analysis
perspective deriving knowledge in the form of pattern
from obtained clusters is as important as grouping the
objects into clusters.
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Rough Set Theory (RST) proposed by Pawlak
(1991), has been successfully applied in classification
techniques for pattern/knowledge discovery
(Komorowski 1999). RST has also relevance in
clustering as RST divides the data into equivalence/
indiscernible classes; each indiscernible class can be
considered as natural cluster. Moreover, RST performs
automatic concept approximation by producing minimal
subset of variables (Reduct) which can distinguish
indiscernible classes in the dataset. In general,
classification problems using rough sets involve
computation of decision relative reduct. Clustering, an
unsupervised method of data mining requires reduct
computation purely on the basis of indiscernibility as
there is no decision variable. Such reduct are referred
as unsupervised reduct in this paper.

The proposed approach of cluster description is
applied as post processing step on obtained clusters. As
our aim is to generate characteristics of individual
clusters, hence partition based algorithm is used to
obtain non overlapping clusters. Applicability of
proposed approach is studied on soybean disease and
zoo datasets of agriculture domain from UCI repository
(UCI). Objective of applying the proposed approach on
soybean dataset is to study the relevant variables which
contribute towards the occurrence of a particular disease
and on zoo dataset is to characterize the animal clusters.

The paper is organized in six sections. Section 2
provides overview of rough set concepts. Section 3
gives background and related work in the area of cluster

description. Section 4, provides the details of proposed
approach. Section 5 details the application of proposed
approach on soybean disease and zoo datasets followed
by conclusions in Section 6.

2. ROUGH SET THEORY :
A BRIEF OVERVIEW

RST is a mathematical approach, proposed by
Pawlak (1991), further refined by Komorowski and
Polkowski (1999), Yao et al. (1997), to cope with data
analysis in the presence of imprecision, vagueness and
uncertainty. In RST, dataset is represented in the form
of information table; each case represents an object and
columns represent variables. More formally it is an
information system X = (U, A) where U is non-empty,
finite set of objects called the universe and A is non-
empty, finite set of variables on U. With every variable
a € A, aset V, is associated such thata : U —> V, .
The set V,, is called the domain or value set of variable
a. Small table from soybean disease dataset is used for
illustration (Table 1). The dataset has ten objects
characterized by eight nominal variables.

2.1 Indiscernibility Relation

Indiscernibility relation is core concept of RST.
Indiscernibility relation IND(B), for any subset B C A
is defined by

INDB) = {(x, y) la(x) = a(y), Vae B, x, y € U}

Two objects are considered to be indiscernible or
similar by the variables in B, if and only if they have

Table 1. Small soybean dataset

id date precip damage severity canker_lesion fruiting_bodies  decay

X1 july It-norm scattered pot-severe tan absent absent

X2 october norm scattered pot-severe tan absent absent

X3 september It-norm whole-field pot-severe tan absent absent

X4 august norm whole-field pot-severe tan present absent

X5 august It-norm upper-area pot-severe tan absent absent

X6 september gt-norm whole-field pot-severe dk-brown-blk absent absent

X7 july gt-norm scattered pot-severe dk-brown-blk absent firm-and-dry
X8 august gt-norm low-areas pot-severe dk-brown-blk absent firm-and-dry
X9 september gt-norm upper-area minor dk-brown-blk absent firm-and-dry
X10  october gt-norm whole-field minor dk-brown-blk absent firm-and-dry
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the same value for every variable in B. Objects in the
information system which have the same value form an
equivalence relation. Equivalence relation partition set
of objects (U) into set of equivalence classes. IND(B)
is an equivalence relation which partitions U into set
of partitions denoted by U / IND(B).

For example from Table 1, when B = {damage}
then objects X1, X2 and X7 are indiscernible and
therefore form one equivalence class; X3, X4, X6 and
X10 are indiscernible and X5 is indiscernible with X9.
Formally:

U/IND{damage} = {{X1,X2,X7}, {X3,X4,X6,X10},
(X5,X9},(X8}}

Similarly U/IND{canker_lesion, decay}

= [{X1,X2,X3,X4,X5},{X6),
{X7,X8,X9,X10}}

2.2 Reduct

Concept approximation is achieved in RST
through data reduction i.e. by retaining the minimum
subset of variables that can differentiate all equivalence
classes in the universe set. Such minimum subset is
called reduct. More formally reduct R is a set of
variables such that

Rc A
INDg(U) = IND4(U)

INDg_(U) # IND4(U) VaeR

There are many methods as well as many
software’s available for computation of reduct,
discussion on those is beyond the scope of this paper.
We have considered Genetic Algorithm (GA)
(Wroblewski 1995) for reduct computation, as it can
produce many reducts of varying cardinality. This
provides flexibility to the experimenter for selection of
variables from the reduct population produced by GA.
There are many approaches to consider variables from
reducts generated by GA (Komorowski and Polkowski
1999). Maximum Possible Combined Reduct (MPCR)
is defined as the union of variables present in the reduct
sets obtained after applying GA (Jain 2004). Any
variable that belongs to at least one of the reduct in the
population of reducts from GA also belongs to MPCR.
More formally MPCR is set of variables M, such that

McA

n
M =] R, where R; is the i™ reduct in the

population of reducts from GA.

For Example, reduct computation on the Table 1
resulted in six reducts of cardinality three;
R1 = {date, damage, canker_lesion}, R2 = {precip,
damage, severity}, R3 = {date, precip, severity},
R4 = {date, precip, damage}, R5 = {date, precip,
decay} and R6 = {precip, damage, decay}. MPCR set
computation from these reducts is {date, precip,
severity, damage, decay, canker_lesion}.

3. BACKGROUND AND RELATED WORK

Cluster description is useful in studying the object
variable relationship which describes the underlying
cluster. This can be applied in various areas for
understanding the clusters viz. In disease diagnostic
system, where there is a need to study the diseases
characteristics; In Web Mining, finding pattern in the
set of web users; Given a set of tourist places, finding
out what features of places and tourist attract each
other; In banks, customer data is available on many
variables, discovery of age and salary as sufficient
variables to grant loan to a customer; In characterization
of animal and plant taxonomy clusters.

3.1 Review of Literature

In the literature, Mirkin (2005), Han and Kamber
(2001), the problem of conceptual description of
partition has received by far more attention than the
problem of description of a single cluster. Decision tree
is mainly used for conceptual description of partition
as it provides easily understandable description.
Primary goal of building a decision tree is prediction
of the partition under consideration rather than its
description. Limitation of this technique is that it is
‘monothetic’ and hence each split goes along with only
one variable, and not directly applicable to cluster
whose definition involve combination of variables. In
clustering, the criterion is to get clusters as homogenous
as possible with regard to all the variables however in
decision tree; criterion is homogeneity with regard to
a pre-specified decision variable.

As discussed by Mirkin (2005), the problem of
producing description for a single cluster without any
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relevance to other clusters has recently attracted
considerable attention from the researchers. There are
few references of cluster description approaches
available in literature. Mirkin (1999) has proposed a
method for cluster description applicable to only
continuous variables. In Mirkin’s approach variables are
normalized first and then ordered according to their
contribution weights which are proportional to the
squared differences between their within group
averages and grand means. A conjunctive description
of cluster is then formed by consecutively adding
variables according to the sorted order. Description is
evaluated on precision error. Abidi et al. (1998, 2001)
has proposed the rough set theory based method for rule
creation for unsupervised data using dynamic reduct.
Dynamic reduct is defined as the frequently occurring
reduct set from the samples of original decision table.
However, these approaches have their limitations.
Mirkin’s (1999) approach is applicable only to datasets
having continuous variables. Abidi et al. (1998, 2001)
in his approach has used the cluster information
obtained after cluster finding and generated rules from
entire data with respect to cluster/class attribute, instead
of producing description for individual clusters.
However, our approach is to generate user
understandable cluster description for individual
clusters by conjunction of significant variables which
define the cluster.

3.2 Cluster Description Evaluation Criteria

As discussed by Mirkin (1999), accuracy of
obtained pattern is measured in terms of Precision Error
(PE). PE of pattern P, PE (P) is defined as

|false positive C(P)| |
U—c| (1

where numerator, false positive C(P) is defined as the

number of objects that lies outside cluster C, for which

pattern P is true and denominator denotes the number
of objects outside C.

PE(P) =

4. PROPOSED APPROACH (REDUCT DRIVEN
CLUSTER DESCRIPTION-RCD)

Proposed pattern discovery approach for individual
clusters, called RCD is applicable as post processing
step to clusters obtained using partition based clustering
algorithm. RCD approach is divided into three stages.

4.1 Cluster Finding

First stage deals with obtaining clusters from
dataset by applying clustering algorithm. We have used
Weka implementation of EM algorithm for cluster
finding (Weka). EM models the distribution of the
objects probabilistically, so that an object belongs to a
cluster with certain probability. The first step,
calculation of the cluster probabilities, which are the
expected class value, is “expectation”; the second step
which deals with calculation of the distribution
parameter is “maximization” of the likelihood of the
distribution given the data (Mirkin 2005).

We have selected EM algorithm as it can handle
both numeric and nominal variables. Weka
implementation of EM algorithm has built in evaluation
measure for computing the number of clusters present
in the dataset. EM selects the number of clusters
automatically by maximizing the logarithm of the
likelihood of future data, estimated using
cross-validation. Beginning with one cluster, it
continues to add clusters until the estimated
log-likelihood decreases (Weka).

4.2 Computation of Unsupervised Reduct

Clustering algorithm is intended to form clusters
having most variable values common to their members
(cohesion) and few values common to members of other
clusters (distinctiveness) (Talavera 1999). Hence,
variables which have similar value for majority of
objects in the cluster are considered significant and rest
are non significant for generating cluster pattern
(Arora 2007).

Reduct accounts for discerning between the
objects in a cluster, hence computation of unsupervised
reduct in a cluster C provides the set of non significant
variables for that cluster. Genetic Algorithm produces
many reducts, hence computation of MPCR set (RC)
in a cluster C provides the set of non-significant
variables for that cluster. These non-significant
variables (reduct) can be straight away removed from
the cluster. The remaining variables (non reduct) form
the set of significant variables ( /) for that cluster.

4.3 Cluster Description

Cluster description approximately describes the
cluster in the form of pattern. Pattern is formulated by
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conjunction of significant attribute = value pairs from
that cluster. There can be many possible patterns for a
single cluster. Our aim is not to generate all possible
patterns, but meaningful and concise pattern from the
cluster. Therefore attributes in set are then ranked on
Precision Error (PE) which is defined as

| false positive C(a=v) |

|u-C|
where numerator defines the number of entities that lies
outside cluster C, for whicha=v (a € A,v € V,) is
true and denominator defines the number of entities
outside cluster C. An attribute value pair a = v is said
to be more contributing if it has less PE, means majority
of objects satisfying this attribute value pair belongs to
a single cluster.

PE (a=v)= (2)

Therefore problem of cluster description can be
defined as forming a description P by combining the
significant variables with less PE such that PE for P is
minimum. Hence pattern P distinctively describes the
cluster.

Procedure for RCD approach

1. Obtain clusters by applying partitional clustering
algorithm.

2. Compute unsupervised reduct for individual
clusters and then compute MPCR set (RC) for
every cluster C.

3. Compute set of significant variables (I) for C,
where I = A — RC.

4. Calculate PE for significant variables in set / for
cluster C and arrange the set / in increasing order
of PE score.

5. Combine variables from / with less PE to make
the description such that PE for that description
is minimum.

5. EXAMPLE OF APPLICATION

In this section, we illustrate the application of RCD
approach on soybean disease dataset, followed by
results of the same on Zoo dataset from UCI repository.

5.1 Soybean Dataset

In soybean disease set, Universal set (U) contains
47 objects and set of variables (A) consist of 35
multi-valued variables characterizing diaporthe-stem-
canker, charcoal-rot, rhizoctonia-root-rot and
phytophthora-rot diseases. All the variables are nominal
in nature. Variables are broadly categorized into

environmental descriptors, condition of leaves,
condition of stem, condition of fruit pods and condition
of root. Table 2 shows variable information of soybean
dataset. It is observed that dataset is having unique
value for some of the variables hence those variables
are irrelevant and removed from the dataset. Reduced
dataset then has 20 variables characterizing soybean

Table 2. Variable information of soybean dataset

vl date: april=0, may=1, june=2, july=3,
august=4, september=5, october=6

v2 plant-stand: normal=0, 1t-normal=1
v3 precip: lt-norm=0, norm=1, gt-norm=2
v4 temp: It-norm=0, norm=1, gt-norm=2

v5 hail: yes=0, no=1
v6 crop-hist: diff-1st-year=0, same-Ist-yr=1,
same-Ist-two-yrs=2, same-Ist-sev-yrs=3

v7 area-damaged: scattered=0, low-areas=1,
upper-areas=2, whole-field=3

v8 severity: pot-severe=1, severe=2

v9 seed-tmt: none=0, fungicide=1

v10 | germination: 90-100%’=0, *80-89%’=1,
1t-80%°=2

vll | plant-growth: abnorm=1

v12 | leaves: norm=0, abnorm=1

v13 | leafspots-halo: absent=0

vl4 | leafspots-marg: dna=2

v1l5 | leafspot-size: dna=2

v16 | leaf-shread: absent=0

v17 | leaf-malf: absent=0

v18 | leaf-mild: absent=0

v19 | stem: abnorm=1

v20 | lodging: yes=0, no=1

v21 stem-cankers: absent=0, below-soil=1,
above-soil=2, above-sec-nde=3

v22 | canker-lesion: dna=0, brown=1,
dk-brown-blk=2, tan=3

v23 | fruiting-bodies: absent=0, present=1
v24 | external decay: absent=0, firm-and-dry=1
v25 | mycelium: absent=0, present=1

v26 | int-discolor: none=0, black=2

v27 | sclerotia: absent=0, present=1

v28 | fruit-pods: norm=0, dna=3

v29 | fruit spots: dna=4

v30 | seed: norm=0

v31 | mold-growth: absent=0

v32 | seed-discolor: absent=0

v33 | seed-size: norm=0

v34 | shriveling: absent=0

v35 | roots: norm=0, rotted=1
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EM clustering algorithm learnt four clusters from
the dataset. Table 3 shows the dataset along with cluster

information.

diseases. Dataset consist of instance number and class
variables that are not considered while clustering.

Table 3. Soybean dataset with clustering results

vO v10 v12 v20 v21 v22 v23 v24 v25 v26 v27 v28 v35 Cluster

v3 v4 v5 v6 V7 v8

v2

Sno vl

clusterl

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1

clusterl

clusterl

clusterl

clusterl

clusterl

clusterl

clusterl

clusterl

clusterl

cluster2
cluster2
cluster2
cluster2
cluster2
cluster2
cluster2
cluster2
cluster2
cluster2
cluster3
cluster3
cluster3
cluster3
cluster3
cluster3
cluster3
cluster3
cluster3
cluster3
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4
cluster4

10

11

12
13
14
15
16
17
18
19
20
21

3
3
3
3
3
3
3

22
23

24
25

26
27
28

3
3

29
30
31

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

32
33

34
35
36
37
38

39
40
41

42

43

44
45

46
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In order to study the disease characteristics, reduct
analysis is carried out on individual four disease
clusters. Table 4 shows the MPCR variables in different
clusters.

Table 4. MPCR variables in different clusters

MPCR variables
Clusterl vl, v5, v6, v7, v8, v9, v10, v20, v22
Cluster2 vl, v4, v5, v6, v7, v9, v10, v20
Cluster3 vl, v5, v6, v8, v9, v10, v12, v20, v25, v35
Cluster4 vl, v3, v4, v5, v6, v8, v9, v10, v21, v24

Reduct analysis on different clusters shows that it
has different MPCR variables, as variables are having
different values in different clusters. Variables are not
common across clusters and as such some variables are
playing role in one cluster and not in other cluster.

Let us consider cluster4 for illustration (Table 3).
Cluster4 has 17 entities of phytophthora-rot disease. To
study the disease characteristic, reduct analysis is
carried out on this cluster. Reduct computation on this
cluster resulted in 22 reducts of varying cardinality.
MPCR set is then computed from these reducts.
Removal of MPCR variables (v1, v3, v4, v5, v6, v8,
v9, v10, v21, v24) (Table 4) resulted in cluster having
same value for all of its instances. These remaining
variables (v7 =1, v12=1,v20=1, v22 =2, v23 = 0,
v25=0,v26 =0, v27 =0, v28 = 3, v35 = 1) are playing
major role in characterizing this specific cluster. PE is
calculated for these remaining variables. In Cluster4,
PE for variable v7 = 1 is 13/30 (Equ. 2), as 3 entities
from Clusterl and 10 entities from Cluster3 are
satisfying this condition (Table 3). Similarly PE for

Table 5. Patterns obtained for soybean disease clusters

Cluster Pattern PE
Cluster 1 stem-cankers = above-sec-nde or
(diaporthe-stem-canker)| fruiting-bodies = present 0
Cluster 2 precip = lt-norm or

stem-cankers = absent or
canker-lesion = tan or
int-discolor = black or

charcoal-rot

sclerotia = present 0
Cluster 3 canker-lesion = brown *
(rhizoctonia-root-rot) |temp = It-norm 0
Cluster 4 canker-lesion = dk-brown-blk 0

(phytophthora-rot)

other variables in this cluster are v12 = 1(21/30), v20
= 1(21/30), v22 = 2(0), v23 = 0(20), v25 = 0(25), v26
= 0(20), v27 = 0(20), v28 = 3(10) and v35 = 1(1). PE
for variable v22 = 2 is zero, hence variable v22 = 2
describes this cluster with no error.

Let us consider another example of Cluster3
(Table 3) which has ten entities corresponding to
disease rhizoctonia-root-rot. After the removal of
MPCR variables (Table 4) (v1, v5, v6, v8, v9, v10, v12,
v20, v25, v35) from this cluster, remaining variables
(v3, v4, v7, v21, v22, v23, v24, v26, v27 and v28) are
having same value for all of its instances. PE for these
remaining variables are v3 = 2(23/37), v4 = 0(7/37),
v7 = 1(19/37), v21 = 1(8/37), v22 = 1(6/37), v23 =
0(27/37), v24 = 1(16/37), v26 = 0(27/37), v27 = 027/
37) and v28 = 3(17/37). There is no variable with PE
zero, therefore as per proposed approach combine
together the variables with less PE, v22 with PE 6/
37and v4 with PE 7/37. Description P: v22 = 1 and v4
= 0 describes this cluster with zero error. Similarly for
Cluster2 variables v3 = 0, v21 =0, v22 = 3, v26 = 2
and v27 = 1 have zero PE, hence any of these variables
can describe the cluster completely. Clusterl have
variables v21 = 3 and v23 = 1 with zero PE, hence
either of these variables can describe the cluster without
error. Results of cluster description on soybean disease
clusters are summarizes in Table 5 (combining together
name of the variables from Table 2):

5.2 Zoo Dataset

Zoo dataset consist of 101 instances of animals
with 17 variables and 7 output classes (UCI). There are
15 boolean attributes, with value one and zero
corresponding to the presence and absence of hair,
feathers, eggs, milk, backbone, fins, tail, airborne,
aquatic, predator, toothed, breathes, venomous,
domestic and catsize. The attribute number of legs
{0, 2, 4, 5, 6, 8}correspond to character variable.
Variables animal name and class are not considered for
clustering.

EM clustering algorithm learnt four clusters from
the data instead of seven classes that is known in the
dataset. Table 6 shows EM clustering results on Zoo
dataset. Previous studies on clustering for zoo dataset
and cluster validity indices also indicated better
partitioning at two, four and seven clusters (Mitra
et al. (2002)).
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Table 6. EM clustering results on zoo dataset
Cluster Name | Cluster 0 | Cluster 1 | Cluster 2 | Cluster 3
No. of objects 21 40 20 20

Unsupervised reduct is computed for individual
clusters and then MPCR is computed from them.
Table 7 shows MPCR variables in different clusters.
Table 8 shows the results of cluster description for
animal clusters.

Table 7. MPCR variables in individual clusters

Cluster Reduct

Cluster O | hair, airborne, predator, toothed, venomous,
legs, domestic, backbone, breathes

Cluster 1 | eggs, airborne, aquatic, predator, toothed, legs,
tail, domestic, catsize

Cluster 2 | airborne, aquatic, predator, domestic, catsize

Cluster 3 | eggs, milk, aquatic, predator, breathes,

venomous, legs, domestic, catsize

Table 8. Cluster description for animal clusters

Cluster | Number of elements Pattern PE
in Cluster

Cluster 0 20 tail=0"milk=0| O

Cluster 1 40 milk =1 Mhair=1] 0

Cluster 2 20 feathers = 1 0

Cluster 3 20 fins = 1 0.024

6. CONCLUSION

Clustering provides unsupervised grouping of
objects in the form of clusters which needs to be
analyzed and understood. In this paper, we presented
reduct driven approach for selection of significant
variables from individual clusters. Ranking of
significant variables on precision error resulted in
formulation of meaningful and concise cluster pattern.
With the application of proposed approach on soybean
and zoo datasets, it is observed that obtained patterns
distinctively described the clusters with no or minimum
errors. In future, RCD approach will be experimented
with other datasets from different domains to study the
effectiveness of this approach in generating cluster
pattern.
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SUMMARY

Discrete values have important roles in data mining and knowledge discovery. They are about intervals of numbers which
are more concise to represent and specity, easier to use and comprehend as they are closer to the knowledge level representation
than continuous ones. Discretization is the process of quantizing continuous attributes. It has been used for decision tree classifier.
The success of discretization can significantly extend the borders of many learning algorithms. Support Vector Machines (SVM)
are the new generation learning system based on the latest advances in statistical learning theory. SVM is the recent addition
to the toolbox of data mining practitioners and are gaining popularity due to many attractive features, and promising empirical
performance. In this paper, a new approach to classify data using SVM classifier, after discretization is looked into. The
classification results achieved after discretization based SVM are much better than the classification results using simple SVM
in terms of accuracy. To acquire the better accuracy, discretization has been instrumental This is an attempt to extend the
boundaries of discretization and to evaluate its effect on other machine learning techniques for classification namely, support
vector machines.

Keywords: Support vector machines, Discretization, Radial basis function, Confusion matrix, Boolean reasoning based method,
Entropy based method.

1. INTRODUCTION

Support vector machine (SVM) is a novel learning
method based on statistical learning theory. SVM is a
powerful tool for solving classification problems with
small samples, nonlinearities and local minima, and is
of excellent performance. To address the discretization
process of continuous-valued features in an efficient
and proper manner has always been an important issue
for any machine learning technique. SVM is a widely
used method for classification in variety of applications.
The results of the experiment conducted in this study
clearly show that the classification results using SVM
are better when discretization process is undertaken
before the classification. However, various methods of
discretization affect the classification accuracy.

* Corresponding author : Anshu Bharadwaj
E-mail addresses : anshu@iasri.res.in, ans_dix@yahoo.com

Therefore, it is important to decide a method to improve
the performance of the SVM model. The points in the
dataset that fall on the bounding planes of the
hyperplane in a SVM are called support vectors. They
play an important role in the theory as well as in the
classification task at the prediction stage. Vapnik (1974,
1979, 1998) has shown that if the training vectors are
separated without errors by an optimal hyperplane, the
expected error rate on a test sample is bounded by the
ratio of the expectation of the support vectors to the
number of training vectors. Since this ratio is
independent of the dimension of the problem, and, if
one can find a good set of support vectors, good
generalization is guaranteed. We aim at a good
generalization from the classification task that we have
carried out using SVM after discretization. Even though
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SVMs can handle continuous attributes, its performance
can be significantly improved by replacing a continuous
attribute with its discretized values. Data discretization
is defined as a process of concerting continuous data
attribute values into a finite set of intervals and
associating with each interval some specific data value.
There are no restrictions on discrete values associated
with a given data interval except that these values must
induce some ordering on the discretized attribute
domain. Discretization significantly improves the
quality of discovered knowledge (Catlett 1991),
(Pfahringer 1995) and also reduces the running time of
various data mining tasks such as association rule
discovery, classification, and prediction. In this study,
we have also used two spatial datasets. These datasets
have been used to examine the performance of the
classification technique used for classical data mining
task on it. Spatial datasets differ from non-spatial
datasets as they have spatial aspects involved in them.
Here the spatial datasets used are in the vector format.
The spatial attributes in the spatial datasets used, are
latitudes and longitudes. The datasets have been
considered just to experiment with it using
discretization based SVM classifier. In this paper, we
describe discretization methods and compare them
according to accuracy of the classification results. We
focus our work to find out the significance of
discretization before classification using SVM.

Section 2 of this paper gives the overview about
the data preprocessing step of data mining along with
the need of discretization and detailed description of
the applied discretization methods. Section 3 deals with
the basic concepts of support vector machines and its
parameters in detail. Section 4 describes the confusion
matrix as the performance evaluation measure for the
classifier. Section 5 gives the detail about the
experimental setup, summary of the data used and its
analysis. Section 6 contains the results and Section 7
draws the conclusions.

2. DATA PREPROCESSING

Data preprocessing describes any type of
processing performed on raw data to prepare it for
another processing procedure. Commonly used as a
preliminary data mining practice, data preprocessing
transforms the data into a format that will be more
easily and effectively processed for the purpose of the
user. It is the most critical step in data mining process

that includes the preparation and transformation of the
initial dataset. Raw data are seldom used for data
mining. Many transformations may be needed to
produce more useful features for selected data mining
methods such as prediction or classification.
Discretization of numerical attributes is one of the
important data preprocessing techniques. In this paper
we have discretized the data before classifying it using
SVM, as the preprocessing step.

2.1 Why Discretization?

There are many advantages of using discrete
values over continuous one. Discrete features are closer
to knowledge level representation (Simon 1981) than
continuous ones. Data is reduced and simplified using
discretization. For both users and experts, discrete
features are easier to understand, use and explain. As
reported by Doughterty et al. (1995), discretization
makes learning more accurate and faster. In general,
obtained results using discrete features are usually more
compact, shorter and more accurate than using
continuous ones; hence the results can be more closely
examined, compared, used and reused. In addition to
the many advantages of having discrete data over
continuous one, a suite of classification learning
algorithms can only deal with discrete data.

2.2 Discretization Methods

A large number of machine learning and statistical
techniques can only be applied to datasets composed
entirely of nominal variables. However, a very large
proportion of real datasets include continuous variables,
that is variables measured at intervals or ratio level. One
solution to this problem is to partition numeric variables
into sub-ranges and treat each such sub-range as a
category. This process of partitioning continuous
variables into categories is usually termed as
discretization. Transformation of a continuous attribute
to a categorical attribute involves two subtasks,
deciding how many categories to have and determining
how to map the values of the continuous attribute. They
are then divided into n intervals specifying n — 1 split
points. In the second, rather trivial step, all the values
in one interval are mapped to the same categorical
value. Therefore, the problem of discretization is one
of deciding how many split points to choose and where
to place them. The result can be represented either as
a set of intervals {(xy, x1), (x1, X2),..., (X;_1, X,,)}, Where
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xp and x, may be + o or — o respectively, or
equivalently, as a series of inequalities
X0 < X £ Xqyeery X1 < X < X,,. A variety of discretization
methods have been developed along different lines due
to different needs: supervised vs. unsupervised;
dynamic vs. static; global vs. local; splitting (top-down)
vs. merging (bottom-up), and direct vs. incremental.

2.2.1Supervised and unsupervised discretization
methods

Data can be supervised or unsupervised depending
on whether it has class information. Likewise,
supervised discretization considers class information
while unsupervised discretization does not;
unsupervised discretization is seen in earlier methods
like equal-width and equal-frequency. In unsupervised
methods, continuous ranges are divided into sub ranges
by the user specified width (range of values) or
frequency (number of instances in each interval). This
may not give good results in cases where the
distribution of the continuous values is not uniform.
Furthermore, it is vulnerable to outliers as they affect
the ranges significantly (Catlett 1991). To overcome this
shortcoming, supervised discretization methods were
introduced and class information is used to find the
proper intervals by cut-points. In this study, we have
used both the unsupervised and supervised methods of
discretization to discretize the datasets before applying
SVM. We have selected two of the most popular and
widely used methods of supervised discretization and
similarly one unsupervised method of discretization is
also selected. The supervised discretization methods
used are described briefly for a better understanding of
the methods.

The methods used are

1. Unsupervised : Equal-frequency

2. Supervised: Entropy based and Boolean reasoning
based methods

2.2.1.1 Entropy-based discretization method

Entropy based discretization method uses a
minimal entropy heuristic for discretization of
continuous attributes. This method tries to find a binary
cut for each attribute. Following a method introduced
by Fayyad and Irani (1993), the minimal entropy
criteria can also be used to find multi-level cuts for each
attribute. The algorithm uses the class information

entropy of candidate partitions to select binary
boundaries for discretization.

2.2.1.2 Boolean reasoning/rough set based
discretization method

The method that we have discussed (entropy
based) discretize only one attribute at a time. It may
therefore introduce more cuts than is absolutely
necessary for discerning between the decision classes.
Nguyen and Nguyen (1996), and Nguyen and Skowron
(1995, 1997) have introduced a supervised method that
considers all of the attributes simultaneously and creates
consequently fewer cuts. Their method is developed
with basis in rough sets methods and Boolean
reasoning.

3. SUPPORT VECTOR MACHINE

The foundations of SVM based on statistical
learning theory were developed by Vapnik (1998) and
Burges (1998) to solve the classification problem. The
SVM is the recent addition to the toolbox of data
mining practitioners and are gaining popularity due to
many attractive features, and promising empirical
performance. They are a new generation learning
system based on the latest advances in statistical
learning theory. The formulation embodies the
Structural Risk Minimization (SRM) principle, which
has been shown to be superior (Gunn et al. 1997), to
traditional Empirical Risk Minimization (ERM)
principle, employed by conventional neural networks.
SRM minimizes an upper bound on the expected risk,
as opposed to ERM that minimizes the error on the
training data. It is this difference which equips SVM
with a greater ability to generalize, which is the goal
in statistical learning. SVM belongs to the class of
supervised learning algorithms in which the learning
machine is given a set of examples (or inputs) with the
associated labels (or output values). Like in decision
trees, the examples are in the form of attribute vectors,
so that the input space is a subset of R". SVMs create
a hyperplane that separates two classes (this can be
extended to multi class problems). While doing so,
SVM algorithm tries to achieve maximum separation
between the classes. Separating the classes with a large
margin minimizes a bound on the expected
generalization error. By “minimum generalization
error”’, it means that when new examples (data points
with unknown class values) arrive for classification, the
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chance of making error in the prediction (of the class
to which it belongs) based on the learned classifier
(hyperplane) should be minimum. Intuitively, such a
classifier is one which achieves maximum
separation-margin between the classes. The two planes
parallel to the plane are called bounding planes. The
distance between these bounding planes is called
margin and by SVM “learning”, i.e. finding hyperplane
which maximizes this margin. The points (in the
dataset) falling on the bounding planes are called the
support vectors. “Machine” in Support Vector Machine
is nothing but the algorithm (Soman et al. 2006). SVM
was designed initially as binary classifier i.e. it
classifies the data into two classes but researchers have
extended its boundaries to be a multi-class classifier.
SVM was first introduced as a training algorithm
(Boser et al. 1992) that automatically tunes the capacity
of the classification function maximizing the margin
between the training patterns and the decision boundary
(Cristianini and Shaw-Taylor 2000). This algorithm
operates with large class of decision functions that are
linear in their parameters but not restricted to linear
dependences in the input components. For the
computational considerations, SVM works well on two
important practical considerations of classification
algorithms i.e. speed and convergence.

3.1 SVM and its Parameter

To construct an optimal hyperplane, SVM
employees an iterative training algorithm, which is used
to minimize an error function. According to the form
of the error function, SVM models can be classified into
two distinct groups

1. SVM for classification

2. SVM for regression

In this study we are dealing with classification
problem, so the SVM for classification is described
here.

For SVM, training involves the minimization of
the error function

1 N
—wlw+ CZ &
2 i=1
subject to the constraints
ywox)+b)21-Eand £20, i=1,...,N

where C is the capacity constant or the model
complexity, w is the vector of coefficients, b a constant

and & are parameters for handling non-separable data
(inputs). The index i labels the N training cases. Note
that ye =1 is the class label and x; is the independent
variable. The kernel ¢ is used to transform data from
the input (independent) to the feature space. It should
be noted that larger the C, the more the error is
penalized. Thus, C should be chosen with care to avoid
over fitting.

3.2 Radial Basis Function

There are a number of kernels that can be used for
support vector machine models. These include Linear,
Polynomial, Radial Basis and Sigmoid.

A radial basis function (RBF) is a real-valued
function whose value depends only on the distance from
the origin, so that ¢ (x) = ¢ (llxll); or alternatively on
the distance from some other point ¢, called a center,
so that ¢ (x, ¢) = @ (llx — cll). Any function ¢ that
satisfies the property ¢ (x) = ¢ (llxll) is a radial function.
The norm is usually to use RBF, although other distance
functions are also possible. The following expression
describes the RBF kernel for SVM

¢=exp{-ylx - cl*}, where y>0

where ¥ is called the RBF kernel parameter. The RBF
kernel is the most popular kernel type due to its
localized and finite response across the entire range of
real x-axis.

4. PERFORMANCE EVALUATION MEASURE:
CONFUSION MATRIX

Evaluation of the performance of the classification
model is based on the counts of the test records
correctly or incorrectly predicted by the model. These
counts are tabulated in a table called Confusion Matrix.
Table 1 depicts the confusion matrix for a binary
classification model. Each entry f; in this table denotes
the number of records from class i predicted to be of
class j. For instance fy; is the number of records from

Table 1. Confusion Matrix

Predicted Class
Class = 1 Class =0
Actual Class = 1 S fio
Class Class = 0 Jor Joo
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class 0 incorrectly predicted as of class 1. Based on the
entries in the table the total number of correct prediction
made by the model is (f};+ foo) and the total number of
incorrect predictions is (fig + fo1)-

5. EXPERIMENT AND ANALYSIS

Using the discretization methods before applying
SVM, we clearly see that discretization simplifies data
(continuous values are quantized into intervals) without
sacrificing data consistency much (only a few
inconsistencies occur after discretization). We have to
evaluate the ultimate objective of discretization of the
datasets before applying SVM—whether discretization
helps improve the performance of learning and
understanding of learning results. The kernel used for
training is RBF. The improvement is measured in terms
of the classification accuracy. The evaluation of the
performance of the classification model is done using
Confusion Matrix. As a general approach of solving
classification problems, each dataset is split into two
datasets training sample dataset and test sample dataset.
Training dataset consists of the records having class
labels and is used to build the classification model
whereas the test dataset contains records without class
labels and is used to validate the model, built by training
dataset. Though discretization is usually a needless
preprocess step for SVM, which can deal with
continuous and hybrid attributes directly, it has been
still attractive to use discretized datasets because it has
improved the classification performance and reduced
the training time.

5.1 Data Description

Four datasets are selected from various sources,
with all numeric features and varying data sizes. The
datasets used in the study are Boston2, CIMMYT and
Hurricane. Boston2 and Hurricane datasets are from
public domain i.e. UCI repository available online and
the CIMMYT dataset is a live dataset. The live dataset
used for this comparative study is Rice dataset. This
dataset is in vector data format of spatial databases.
Spatial attributes in the datasets are latitudes and
longitudes. The data is obtained from Resource
Conservation Technologies from Rice-Wheat
Consortium, CIMMYT, India. Here only a small part
of data with 50 observations has been used for
illustration purpose. There are 4 classes in which the

data has to be classified. Number of attributes in the
dataset is 10 that includes the latitudes and longitudes
being spatial attributes of the dataset. The CIMMYT
dataset is modified as two different datasets, first by
considering all the variables (latitudes and longitudes)
as CIMMYT]1, and secondly by ignoring the spatial
variables, i.e. dropping the variables containing the
spatial information, as CIMMYT2. The results may be
different and the conclusions drawn here may change
with the full set of data. The sample dataset is from
different districts of Western Uttar Pradesh and contains
different treatments (i.e. different types of seed
cultivation), the spatial aspect of the location
(longitudes and latitudes) with various biometrical
characters of the rice plant. The task is to classify the
varieties in different classes.

The second dataset is Boston2. This example
illustrates an analysis of the Boston house price data
(Harrison and Rubinfeld 1978) that was reported by
(Lim et al. 1997). Median prices of housing tracts were
classified as Low, Medium, or High on the dependent
variable price. There was one categorical predictor,
Catl, and 12 ordered predictors, Ord1 through Ord12.
The complete data set contains a total of 1012 cases.

The third data used in this study is the Hurricane
data. This data was originally obtained from Atlantic
tropical cyclone “best” track and intensity records
managed by the Tropical Prediction Center (Formerly
the National Hurricane Center, Jarvinen et al. 1984),
where “best” refers to an accurate assessment of storm
location based on a post analysis of available data. The
dataset extends back to 1886 and includes all tropical
cyclones, that reached tropical storm strength. A storm
has latitude and longitude coordinates and maximum
sustained winds every 6 hours during the storm’s
existence. Data are most reliable after 1944 when the
US Air force began aircraft reconnaissance missions to
investigate individual storm. The dataset has six
independent and one dependent variable. Each storm
contains the Julian day, the latitude and the longitude
for initial depression and initial hurricane stages, that
is the day and position for which the storm was first
reported as a tropical depression and a hurricane,
respectively. Day D and day H are the Julian days on
which the storm first reached depression and hurricane
strengths respectively, long D and long H are the initial
depression and hurricane longitudes, respectively, lat D
and long H are the initial depression and hurricane
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latitudes, respectively; TROP and BARO are tropical
only and baroclinically influenced hurricanes,

respectively. Summary of datasets can be found in
Table 2.

Table 2. Summary of datasets

S.No. Dataset Total Number Number source
number of of of of data
instances features classes

1. CIMMYT 50 10 4 CIMMYT,
INDIA

2. CIMMYT1 50 8 4 CIMMYT,
INDIA

3. BOSTON2 1012 13 3 STATISTICA

4. HURRICANE 209 6 2 STATISTICA

5.2 Experimental Set-up

A total of three discretization methods (equal-
frequency (unsupervised), entropy and Boolean
reasoning (supervised)), have been used to study the
effect of discretization on classification results.
Experimental design is given in Table 3.

The datasets are split into train and test datasets,
then the discretization algorithms (entropy based,
Boolean reasoning and equal-frequency) are used to
discretize the train dataset one by one. Once the train
dataset is discretized using any of the algorithms, the
same cuts points (Liu et al. 2002) or intervals generated
for the train dataset using the particular discretization
algorithm are saved in a file and the same cuts points
are then used to discretize the test dataset, for test
dataset the class labels are not used during
discretization. Once the data has been split (into train
and test datasets) and discretized, the original dataset
(i.e. the undiscretized data) has not been used anywhere
in the study. The experiment was conducted with 8 runs
each for each dataset. Each run means, to classify the
data at split of different seed value. Seed values used
for splits are 1000, 900, 800, 750, 600, 500, 350, 100.
The seed values were randomly selected. Classification
using SVM was carried out on the discretized datasets
so that the results can be compared and the effect of
the discretization on SVM can be studied. CIMMYT
and Hurricane datasets are spatial datasets in vector
format with latitude and longitude as spatial attributes.

Table 3. Experimental design

S.No.

Experimental Steps

is carried out using simple random sampling

using class labels, for all datasets)

of train and test datasets is compared separately.

1. | Split each dataset into Training (70%) and Test Sample (30%) datasets of each complete data. Split of the dataset

2. | Discretize the train and test datasets separately. (Use all the three methods, i.e. equal-
boolean reasoning for discretizing the train dataset and then use the same cuts to discretize the test dataset without

3. | Apply SVM for classification on the datasets (both train and test separately) using 10x10 fold cross-validation.

4. | Compare the classification results with the SVM classification results without discretization. Classification accuracy

frequency, entropy and

Table 4. Hurricane training data sample after discretization

Attribute Continuous values Intervals after discretization
DAYDEPR 224, 239, 285, 231, 266, 257, 237, 243, 245, 364 [*, 270), [279, 287), [288, *)
LONDEPR 45.7, 25.6, 78.2, 19, 62.2, 61.7, 74.9, 67.7, 56.4, 50.9 [*, 58.2), [78.1, 80.6), [62.1, 62.7),
[60, 61.8), [70.4, 77.3), [66.8, 67.8)
LATDEPR 12.2, 12.3, 14.3, 14.6, 14.4, 16, 24, 19.3, 11.2, 22.1 [*, 14.2), [14.4, 14.9), [15.4, 16.5),
[22.7, 24.1), [19.2, 19.8), [21.5, 22.3)
DAYHUR 228, 245, 287, 240, 269, 258, 239, 244, 250, 365 [*, 270), [282, 290), (292, *)
LONHURR 62.5, 58.8, 82.1, 64.7, 73.8, 67, 76.2, 69.5, 70.8, 55.2 [62.3, 62.9), [58.5, 59.3), [80.5, 82.2), [62.9,
65.0), [73.7, 74.0), [66.7, 67.5), [75.5, 76.4),
[69.2, 69.7), [70.4, 70.9), [54.6, 55.3)
LATHURR 15.4, 14.1, 18.5, 21.9, 24.5, 20.9, 28.9, 24.8, 22.2, 20.6 [*, 24.7), [28.9, 29.0),[24.7, 25.2)
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A sample (10 data points) of Hurricane dataset
after discretization is given in Table 4 for better
understanding. The table shows the discretized training
data sample using Entropy method, it includes original
continuous values and the intervals into which the data
has been divided after discretization.

6. RESULTS AND DISCUSSION

The results are shown in Table 5. Each result
consists of the classification accuracy of the SVM
learning technique with and without discretization of
the datasets.

SVM classification using discretization shows that
the results obtained are improved and better
classification accuracy is attained. The parameter of
SVM decision function i.e. capacity or model
complexity does not get affected by discretization as
discretization process works on the dataset rather than
the model. Similarly, the parameter of the RBF kernel
i.e. yalso remain unaffected by the discretization of the
datasets before applying SVM.

It is also observed from the results given in the
above table that the supervised discretization algorithms
are better than the unsupervised discretization algorithm
as the classification accuracies using the supervised

discretization algorithms are better than the
unsupervised discretization algorithm. Out of the
supervised discretization algorithms, Boolean reasoning
based algorithm is performing better in attaining better
classification accuracy. It is known that supervised
discretization is better than the unsupervised
discretization but we have used one method of
unsupervised discretization to compare the difference
it brings to the classification accuracy if the data is
classified after unsupervised discretization as compared
to the supervised discretization. It is observed that for
one of the datasets, Boston2, the classification accuracy
attained after discretization using unsupervised method
(equal frequency) is higher than the classification
accuracy attained after supervised classification using
entropy based method. Although this accuracy is less
than the accuracy attained using the other supervised
discretization method i.e. Boolean Reasoning.

Discretization yields the reduction in unique tuples
by assigning the discretized value of the attribute to the
objects whose numeric value lies in the corresponding
discrete interval. Thus, we could observe that there had
been a reduction in the number of support vectors per
class during classification of the discretized dataset. The
number of support vectors was reduced to give better
classification accuracy.

Table 5. Results of classification using SVM

Dataset SVM with discretization Without
discretization
Entropy Boolean reasoning Equal frequency Original
Train Test Train Test Train Test Train Test
Boston2 90.25 89.27 98.16 98.94 94.18 94.86 79.85 79.01
Hurricane 91.37 88.88 97.26 85.18 88.12 88.88 89.72 87.93
CIMMYT 84.57 80.00 92.14 53.15 76.57 69.00 61.85 76.85
CIMMYT1 78.23 56.89 85.71 60.00 68.73 63.00 57.33 74.00
Table 6. Comparison of classifiers in terms of classification accuracy
Dataset ANN SVM Discretization based SVM
Entropy Boolean reasoning | Equal frequency
Train Test Train Test Train Test Train Test Train Test
Boston2 75.43 78.78 | 79.85 79.01 90.25 89.27 98.16 98.94 94.18 94.86
Hurricane 80.91 83.89 | 89.72 87.93 91.37 88.88 97.26 85.18 88.12 88.88
CIMMYT 36.13 55.44 | 61.85 76.85 84.57 80.00 92.14 53.15 76.57 69.00
CIMMYT 1 35.65 42.06 | 57.33 74.00 78.23 56.89 85.71 60.00 68.73 63.00
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Hurricane dataset has earlier been classified using
a method explained in (Elsner ef al. 1996). The method
used is Partially Adaptive Classification Trees (PACT)
algorithm (Shih 1993) based on linear discriminant
analysis (Mardia and Bibby 1979) and tree structured
classification method (Brieman et al. 1984). This
algorithm gives a classification accuracy of around 90%
which is less than the accuracy attained by
discretization based SVM classification. The
classification accuracy attained by supervised
discretization method based SVM for hurricane dataset
are 91.37 and 97.14 respectively for entropy based
method and Boolean reasoning based method. Similarly
in Minz and Dixit (2007), these four datasets have been
classified using Artificial Neural Network and SVM
and it is seen that result obtained by using discretization
based SVM are much better than the results obtained
by the earlier two methods. Comparative results are
shown in Table 6.

7. CONCLUSION

The study was undertaken with an aim to explore
the effects of discretization on support vector machines.
Although data discretization has been a step for
applying machine learning technique of classification
such as decision tree but it has not been tried for
support vector machines classifier, the reason being its
ability to handle continuous and hybrid data unlike the
decision tree algorithm ID3, which can handle only
discrete datasets for classification. Therefore, we tried
to explore the effect of discretization of the datasets
before applying SVM classifier. This was done with the
aim of attaining better classification accuracy without
disturbing or distorting the parameters (C and Gamma)
of SVM. The results clearly indicate that the accuracies
of discretization based SVM are better as compared to
the classification accuracy without SVM of the same
datasets when they were classified without getting
discretized. We have also observed that the supervised
discretization algorithm works better than the
unsupervised discretization algorithm. Among
supervised discretization algorithm also, Boolean
Reasoning based method performs best. This study
establishes that discretization can be used for SVM
classifiers also.
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