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SUMMARY

Under the well known prediction approach of Basu (1971), we introduce a new class of estimators for the finite population
mean availing information on two auxiliary variables in a two-stage sampling.
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1. INTRODUCTION

Consider a finite population U, partitioned into N
first stage units (fsu) denoted by Uy, U,,..., Uy such that
the number of second stage units (ssu) in U;is M; and

N
M = ZM i . Let y; and x;; denote values of the study
i=1
variable y and an auxiliary variable x respectively, for
the M ssuof U;(j=1,2,..,M;i=1,2, .., N). Define

M.
_ 1 ] o 1 L
i 20 X =—2X,-j as the means of U;
M; < M; <
Jj= Jj=
o1y - 1 N
and Y=N2u,-Y,-, X :NZL{,-X,- as the overall

1

i

population means, where u; = NM/M. To estimate Y ,
assume that a sample s of # fsus is drawn from U and
then a sample s; of m; ssus from the selected U, is drawn
according to the design simple random sampling

§i=*2)’ij,
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without
ml jESi

replacement. Let
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i = xij’ y= uyp, X=-— Ui X; and
mi Jesl ies niEY
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T=— ul-Xl-.
n

When X is known accurately, Srivastava’s (1980)

class of estimators is defined by ¢, = y(y,x), where
y(y,x)is a function of y and x, such that
y(Y,X)=Y and satisfies certain regularity conditions
in R,, a 2-dimensional real space containing the point
(Y,X). But, in a two-stage sampling plan it is usually

felt that efficiency of an estimator depends on how well
the auxiliary information can be utilized at different

stages. With this spirit, using known values of X ;s for

the selected fsus, Sahoo and Panda (1997) considered
a class of estimators defined by

1 SR
ty = .U(;Zui:ui(yi’xi)’x)

iEes



176 |

L.N. Sahoo et al. / Journal of the Indian Society of Agricultural Statistics 63(2) 2009 175-180

such that #(Y,X)=Y, p,(Y;.X;)=Y, i € s and the
functions u(.,.) and y(.,.) admit Srivastava’s (1980)
regularity conditions in R,.

In certain practical situations we get information
on another strong auxiliary variable z, taking value z;
for the j™ ssu of U; in such a way that the overall

population mean Z is unknown, but the population

means for the selected fsus ie., Z;, i € s, are known.

In this context, using both auxiliary variables, Sahoo
and Sahoo (2005) composed a class of estimators
defined by

1 — =\ —
Iy = O‘(_Z“io‘i(}’i’zi),x)

ies

1 . .
where z; = — 2 z;; and the functions ¢r and ¢; satisfy

. i jes;. . . .
regularity conditions in R,. The basic assumption

behind the construction of t is that X;,Z;,i€s and

X are known but Z is unknown. However, guided by
these assumptions, here we develop a general class of
estimators for ¥ motivated by the predictive approach
of Basu (1971, p. 212, example 3).

As an example of this type of situation, we may
refer to a crop survey conducted in a district with block
(cluster of villages) as the fsu and village as the ssu.
If y, x and z represent respectively yield, cultivated area
and area under wheat, then information on the average
area under cultivation per village in the i™ block,
ie., X; fori € s, can be obtained at a low cost from
the block records and average area under cultivation for

the district i.e., X can be known from the district

records. Information on Z; i.e., average area under

wheat for the i selected block can also be easily
available from the block level records.

2. PREDICTION CRITERION IN
TWO-STAGE SAMPLING

Let 5 denote the set of (N — n) fsus of U which

are not included in s and 5;, the set of (M; — m;) ssus

of U; which are not included in s;, i € s. Under the usual
predictive set-up, it is possible to express

- 1 —
V= X X vyt Xy 2 ME ()

ies | jes; JES; ies
Writing (N —n) }7r = 2 ui,-
ies
and (M; — m;) Yir = 2 Y;j » we have
J€s;

= 1 — = N-n
Yzﬁ{g;{miyi+(Mi_mi)Y;‘r}:|+ N Y, (2

To estimate Y , we, therefore have to predict the

quantities ¥, and Y, from the sample data because the

first component of the right hand side of (2) is already
known. Using T; and T as their predictors, a predictor

Y of Y of may be defined by the equation

?=${2{mi§i+(Mi—mi)7}}}+N];nT )

i€s

Note that if m;=M;and n=N; Y = Y the target
of our prediction.

Corresponding to various suitable choices of the
predictors 7; (i € s) and T, equation (3) generates a class
of estimators. But, we achieve this objective by defining

these predictors in terms of two auxiliary variables i.e.,
x and z.

3. THE CLASS OF PREDICTIVE ESTIMATORS

For given s; and s, let
el = (§[7 E[’ E[’ X”-, Z”-) (S R5

and e:(y’x,’yr)eR:ﬁ’

where (M; —m;)X;, = 2 X, (M;—m)Z;, = 2 Zjjs
jes; jesi
(N-n)X, = Zui}?i , Rs and R; are 5- and
LES

3-dimensional real spaces containing the points
E=.,X,Z,X»Z) i e sand E= (Y, X, X)
respectively. Further, let he;) and h(e) be some known
functions of e; and e respectively such that 4,(E;) = Z,
i €s,and WE) = Y . Let us assume that
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(a) the functions /; and & are continuous in Rs and R;
respectively, and

(b) the first and second order partial derivatives of
these functions with respect to their arguments
exist and are also continuous in their respective
range spaces.

Thus, based on information available on s; and s,
h (e,) and h(e) clearly define classes of estimators for
Y i€s, and Y respectively. Using h;(e;) and h(e) as
predictors in places of T; and T in our predictive
equation (3), we now define a class of predictive
estimators for ¥ by

1
= D Amyi+(M;—mp)hi(e)}
ies
Many estimators may turn out as special cases of
t, corresponding to various selections of h; and h.
Let us consider the following simple cases:

(i) If the information on x is completely ignored,
i.e,if h;=y;, and h = y then 1, becomes y , the

simple expansion estimator of Y .

v X,
(ii) When h; = ’_’i ir and h = —,,then
X;Z;
)?
w_ yE2_Ly,
t, >tg = )_C nz iYi X

les

{< f)—f[_fj[_fﬂ

. . n m
a ratio-type estimator, where f =N and f; =—-

(iii)) When h; = iti%i and h = , then
irZir Xr
f
= £ = DU X
ies
YiXiZ;

Vi + (= f.)? —= =
Jiyi+A=1) (X; = fix)Z; — fi7)

+ (- f)Xif_,

a product-type estimator.

@iv)

v)

(vi)

When h; = Vi~ ﬁiyx (x; =

h= y_ﬁbyx(},_ir)

h
t, — t;gG)

}?ir) - ﬂiyz (7 - Zir) and

= 5L Y By - X+ B - 20)

ies

_ﬁbyx (x - X)

a regression-type estimator, where

ﬁiyz Styx/ S
ﬂiyz SlyZ/ Stz > ﬂbyz = Sbyx/ szx such that
1 % _ _
Siyx = —Z(yij_Yi)(xij_X,')
LA
Sbyx N — Z(M,Y, —Y)(u,-X,- — X)

[9%]
¥
|
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If the estimation procedure is carried out with the

involvement of x only, then ; = d;(¥;,X;, X;,) 50

d .. .
that 7 —>t,(1 ), a class of predictive estimators
defined by

1 B o
. H[Z{miyi +(M; _mi)di(yi’xi’Xir)}:|

ies

As a specific case of #,, we may also consider
another subclass of predictive estimators defined
by

1 _ _ —
- ﬁ[z{miyi +(M; _mi)ki(yi’zi’zir)}:|

ies

on considering k; = k; (3:,%:,Z;,) -
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4. ASYMPTOTIC VARIANCE OF ¢,

Expanding h/e;) and around the points E; and E
respectively in a first order Taylor’s series and then
neglecting the remainder term, we get
=) +hy (5 - X))

hi(e)) = h(E) + hjp(y;

+ (3 X))+ hy(Zy — 7))

“)

~Z)+h3(X;, —

and

h(e)= h(E) + hg(F=Y) + (X =X)+ hy(X, — X)
&)
where hy, h;y, by, h;3, and by, are respectively the values
of first order partial derivatives of h;(e;) with respect
to y;, X, X;, and Z; at E; and hy, hy and h, are
respectively the values of first order partial derivatives

ir

of h(e) with respect to ;, ¥ and X . at E.

NOting that hiO = 1, hil = _hi3’ hi2 = _hi4’
- MX -m%x - MZ -m7
X;, = it T Z, =—— ™% \we have after
M[' —m; i m;

1

a considerable simplification

th=§+izui[hil()_€i ~ X)) +hi(Z = Z)1+ Iy (T - X)
Ies (6)

Hence, after a few tedious algebraic steps
(suppressed to save space), the asymptotic variance of
t;, is obtained as

1-f
n

N — f.
L e %)

nN 5 m;

V(th) =

2 2a2
(Sby +h1 be + 2h1Sbyx)

where V; = SlV +f h,lS,x +f h,leZ +2 fh;1Siyy

+2fh12Sl)Z +2f hll ZSsz

Minimizing V(t,) over h;;, h; and h; we get

lﬁtyx ﬁ[)‘,ﬁl”x_ *
AR A

i1 =

h,’g _ _l ﬂiyz _ﬁiyxﬁixz _ hl*z (say)
f 1- ﬂizxﬂixz

and h] = _ﬁbyx
where B, = S/ SZ. B = Si. / S Use of these
optimum values in (7) yields the minimum asymptotic

variance of the class (may be called as the asymptotic
minimum variance bound (MVB) of the class) is given

by
) 1-
min V() = ~—L52 1= p,.)
1 &
nN 5
where Oy = Spyx / SpySpy and

2 2
0 = \/piyx + piyz - 2piyxpiyzpixz
i 2
1_pixz

the multiple correlation coefficient of y on x and z in
U;such that g, = S,/ S;, S, etc. An estimator attaining
this bound is called as an MVB estimator. In the present
context our MVB estimator is a regression-type
estimator of the form

0 —
g = Y~

O WALTCEP AT ACE A

Mies
_:Bhyx (' - )?)

The parametric functions h,-*l, h,-*z and /3, can be
replaced by their consistent estimates computed from
the sample itself. But, the asymptotic variance of the
resulting estimator remains unchanged and is given

by (8).
5. PRECISION OF ¢,

In an effort to study the efficiency aspect of the
predictive method of estimation developed in this work
in relation to the classical method, our first attempt is
to compare the efficiency of #, with that of #,. The
asymptotic variance of #; obtained through Taylor
linearization is given by
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1 —
Vi(ty) = Tf(Slgy + J/lzslgx + 27/1Sbyx)
1 ¥ ,1-7
b s st e 2,0 ©)

i=1 i
where 7 is the first order partial derivative of y(y, x)

with respect to x when evaluated at (17, X ).

From (7) and (9), it follows that V(z,) < V() i.e.,
an estimator of #, is more precise than an estimator
of ¢, if

‘YI +ﬂbyx‘ 2 ‘hl +ﬂbyx‘

and va |:(J/1 + ﬁiyx)2 - (fhil + ﬁiyx )2i|

2 fh'lsé (fh2 +2ﬂiyz +2fhi1ﬂixz) Vi (10)

These sufficient conditions basically depend on the
choices of different functions for composing ¢, and ¢,.
However, they give some indication that there is enough
scope for improving upon the estimators through our
predictive method over classical method. But, these
conditions can not lead to any straight forward
conclusions if the characteristics of the functions are
unknown. However, for simplicity, if we accept MVB
as an intrinsic measure of precision of a class, the
problem of precision comparison seems to be easier and
our attention will be concentrated on the MVB
estimators only.

The minimum asymptotic variance of f; is

minV(1) = —=5j, (1= p*)

I-f
n

+—Zu f’S,)(l—) (11)

and the corresponding MVB estimator is

thg = ¥—B(E-X)

where p is the correlation coefficient between y and

X and f is the regression coefficient of y on x.
Hence, we see that

minV(#,) < minV(z,)

tRG is more efficient than t 1f

P < Phyy and p} Vi (12)

Turning our attention to study the precision of #,
compared to other classes of classical and predictive

(d) (k)

estimators viz., ty, t,, f, ~ and f, on the ground of

MVB criterion, we see that
I-f
n

minV(1,,) = — S5, (1- pj)

1 —fia2
lSlVI lVX 1
+ nN; —~ (1-pi) (13)

1

f

) 1-
minV(t,) = Sb_) (I- byx)

1
F LS mf’ Sy1=pre) (14)

nN 5

rmnV(z(d)) = minV(z,)

man(z(k ) ) = minV(z)

The MVB estimators of g, or t,(,d)

are also respectively given by

and ¢, or t,(l )

() = T B (G~ X) = By (T — )

nlES

[I(???) - Zuﬂly”(zl Z) ﬂbyx(x X)

lES

From (8), (13) and (14) we have

min V(1) < min V() = V(igg) < VERE)

and min V(1) < min Vt) = V()< V)
Hence, we may conclude that ¢, is superior to f,,,

(d)

ty 1 and l,(ik) on the ground of MVB criterion.
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6. NUMERICAL STUDY

To study precision of the suggested methodology
numerically, we consider data of two populations as
described below.

Population 1. Consists of 198 blocks (ssu) divided into
N =27 wards of Berhampur city of Orissa. The number
of blocks (M;) of 27 wards are 6, 6, 12, 5, 6, 6, 10, 5,
6,6,6,6,6,12,6,7,7,7, 10,6, 6,7, 10, 11, 9, 8 and
6. The three variables viz., number of educated females,
female population and number of households are used
as y, x and z respectively, data on which are available
in Census of India (1971) document. We have taken
n=9%andm;=2,2,4,2,2,2,3,2,2,2,2,2,2,4,2,2,
2,2,3,2,2,2,3,4, 3,3 and 2 respectively.
Population 2. MU284 population available in Sarndal
et al. (1992, p. 660, Appendix C). It consists of 284
municipalities (ssu) divided into 50 clusters (fsu) with
three variables viz., Revenue from the 1985 municipal
taxation as y, 1975 population as x and 1985 population
as z. We consider n = 12, and m; = 2 for every i.

Relative precision of different MVB estimators
compared to the simple expansion estimator y , are

compiled in Table 1. The estimator t%G attains the

maximum precision for both populations. Thus, our
numerical study shows that the new methodology

Table 1. Relative precision of different estimators

Pop. Estimators

No.| ¥ | e | %G| e | e
1 100 148 184 175 195
2 100 947 3579 3366 3725

developed here to create predictive estimators may be
useful for many practical situations.
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