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SUMMARY

Research on cattle growth is one of the important studies in the animal sciences. In the present study data on body weight
were taken from birth to an age of 36 months for double cross Friesian x Sahiwal (FxS) and tripple cross Friesian x Sahiwal
x Hariana (FxSxH) cattle. The data is found to contain heteroscedasticity of error variance and autocorrelation. The data in
the study were unequal spaced which made impossible to use convention autocorrelation technique and hence a technique has
been developed for finding out autocorrelation for unequal spaced data. Two nonlinear models, Logistic and Gompertz models
are fitted to estimate growth rate and other parameters. Models are modified incorporating heterogeneity of error variance
along with autocorrelation. Both the models were fitted under homoscedastic error structure and heteroscedastic error structure
along with autocorrelation for comparison. It is found that parameters estimated under heteroscedastic error structure along
with autocorrelation are better than the models fitted under homoscedastic error structure. Growth rate was found to be better
for FxSxH breed than FxS breed. Maturity weight was found to be more for FxS breed than FxSxH breed. The results shows
that Gompertz model outperformed Logistic model and correcting the models under homoscedastic error structure to
heteroscedastic error structure has greatly improved the estimates.

Keywords: Homoscedastic, Heteroscedastic, Autocorrelation, Crossbred, Non-linear model, cattle growth, Logistic model,
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1. INTRODUCTION in the literature. But data of cattle growth generally
violate assumption of homoscedasticity, i.e., error have

Growth is a complex biological process that must  common variance. Therefore, the purpose of this study

be evaluated carefully if a profitable combination of is to compare the growth pattern under homoscedastic

growth and efficiency is to be realized. Knowledge and heteroscedastic error structure along with
relating to birth weight, mature weight, maturing rate autocorrelation.

and the point of inflection of the growth curve in
various breeds and crosses is useful for cattle growth
in various breeds so that producers can select breed
combinations that will produce the most efficient
growth pattern for their operations.

Growth models are used to predict rates and
change in the shape of the organism. They can be
applied in determining the food requirements so as to
get a desired growth. The estimated parameters of
growth function can evaluate various growth

The growth pattern of cattle has been mainly characteristics of animal. Comparison of nonlinear
studied under homoscedastic error structure, reported models for weight age data in cattle has been done
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under homoscedastic error structure ((Brown et al.
(1972), Brown et al. (1976) and Kolluru et al. (2003)).
A number of such nonlinear models are available, but
comparisons of models are needed to find most
appropriate one. Such comparisons were made among
weight—age models for animals. Kolluru (2000) studied
only Logistic model under heteroscedastic error
condition for cattle growth. Therefore, there is a need
to study other models also. Two models are taken for
the present study; these are Logistic and Gompertz
models. When heterogeneity of variance is evident,
ordinary least square estimate of parameters may be
inefficient as well as when weights are collected over
time for each cattle, serial correlation is often present.
In the present study Logistic and Gompertz models are
fitted incorporating heteroscedasticity of variance along
with autocorrelation.

2. MATERIAL AND METHODS

2.1 Data Description

Data used in the study were collected from history
sheets of cattle from birth to 36 months of age from
military dairy farms at Dehradun for Friesian x Sahiwal
breed for 40 cattle. For Friesian x Sahiwal x Hariana
breed data for 35 cattle were taken for comparing the
growth pattern.

Let us consider the following model

yi=fX;, P +e (2.1
where y; is the j’h observation, X;is covariate vector, /3
is parameter vector, e; is the error term and f is a
non-linear function. In the present study two non-linear
models have been considered viz. Logistic and
Gompertz Models. The functional forms of these
models are as follows

By
1+ Brexp(—p5 1)

(i) Gompertz model: f (¢, B) = B, exp(—ﬁze_ﬁ 3ty

(i) Logistic model: f (¢, f) =

Here in f(X; /), the covariate vector X is replaced
by ¢, which is the only covariate in the model.
Usually, it is assumed that (i) the errors e; have zero
means, (ii) the errors e; are uncorrelated, (iii) the errors
ej have common variance and (iv) the errors e; are
normally distributed. In case of the animal growth data,
many a times, the above assumption are violated; errors
are generally correlated and do not have common

variance. In the present study we, therefore, fitted these
models considering non-constant and correlated error
variances. However, for the sake of comparison, models
are also fitted under homoscedastic error variance.

2.2 Models with Heteroscedastic Error Structure
along with Autocorrelation

2.2.1 Heteroscedastic error structure

In the present study data revealed
heteroscedasticity of error variance. Heteroscedasticity
of variance is tested by Rank correlation test

R,=1-{6Zd’ | (n (n* - 1))}

where, d; = difference between the ranks of
corresponding value of y; and e;. A high rank correlation
suggests the presence of heteroscedasticity.

Let us consider the model as given in (2.1). As
mentioned earlier assumption of constant
intra-individual response variance is violated frequently
for growth data. Generally, growth data often exhibit
constant coefficient of variation rather than constant
variance (Davidian and Giltinan 1995); that is, variance
is proportional to the squares of the mean response. In
this case, a more appropriate assumption is

EG) = fiX;, B). Vo) = & fX, O 22
where, o a scale parameter, is the coefficient of
variation. Under such situation, where variance is
nonconstant across the response range, it is assumed
that the variances of y; are known up to a constant of
proportionality, (Davidian and Giltinan 1995), that is,

V(y) = olw (2.3)
for some constants wj, j = 1, ...., n. This type of setting
might arise in the case where the responses y; are
themselves averages of w; uncorrelated replicate
measurements, with all such measurements having
common variance ¢*. Under this model, except for the
multiplicative constant 0%, variance is known up to the
value of the regression parameter £, which appears
through the mean response. An obvious approach is thus
to take advantage of the functional form for a variance
to construct estimated weights, replacing S by a suitable
estimate, and to apply the weighted least squares idea.

The OLS estimator f3, ¢ is a natural choice to use

for construction of estimated weights. An estimator for
[ that takes into account the assumed mean-variance
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relationship may be obtained by forming estimated
weights (Davidian and Giltinan 1995)

N 1

W, =—————— 2.4)
! fz(Xj’ Bors)

2.2.2 Auto-correlated structure

In the present study, the presence of
autocorrelation in the data was checked by
Durbin—Watson test. The Durbin—Watson statistic is
given by

n n
d= Z (eu _eu—l)z/z4eu2

u=2 u=1
which ranges between O and 4. Value of d near 2
indicates no autocorrelation, a value towards 0 indicates
positive autocorrelation, while the value towards
4 indicates negative autocorrelation. When there is
evidence for the presence of autocorrelation, we find
the value of auto correlation and model is fitted
accordingly.

Correlation among observations on a given
individual (cattle) is more likely to be present in this
context (weight). In many cases, a systematic pattern
of correlation is evident, which may be characterized
accurately by a relatively simple model. To
accommodate intra-individual correlation, a description
of the assumed correlation pattern among the elements
of e (error vector) is made. This assumption will be
simple if the observations are taken at equal intervals.
But the situation is quite complex when the unequally
spaced observations are considered in the present study.
Suppose that

Corr () = I'(@) (2.5)

where the correlation matrix 7 () is a function of a
vector of correlation parameters «. The choice of a
suitable correlation matrix depends on the nature of the
repeated measurement factor. As a special case where
the repeated observations are taken over time, standard
models for serial correlation patterns are available, i.e,
the autoregressive (AR) model of order one. For
definiteness, the observations are assumed to be
indexed in the order in which they were collected. In
the simplest case where the n repeated measurements
are equally spaced in time, if the correlation between

two adjacent observation is ¢, then the correlation
between any two measurements j; and j, is given by

Corr (ejl s ejZ ) OC|]1 _]2| (26)

The AR(1) correlation pattern may be generalized
to accommodate situations where the observations are
not equally spaced (see, Liang and Zeger (1986) and
Chi and Reinsel (1989)) . If j; and j, are measurements
taken at times 7; and ?j, respectively where j; #j,
then

lt; —t; |

Corr (ejl ’ejz) = o 2 2.7
This may be expressed by the correlation matrix
as
[ g2 B ) ]
1 o372 . gl
o=
a(tn ~tn—1)
i 1

(2.8)
The method of estimation of ¢ is described in the
next sub-section.

2.2.3Auto-correlation for unequally spaced
observations

When observations are taken on subjects at
arbitrary time points, there must be an underlying
continuous time process (Jones 1981, Diggle 1988, Chi
and Reinsel 1989). For equally spaced observations,
there may or may not be an underlying continuous time
process. Unequally spaced observations differ from
equally spaced observations with some missing
observations in that there is no basic sampling interval.
The mathematical model for a continuous time AR(1)
process, denoted as CAR(1), (Jones and Boadi-Boateng
1991), is given by

%g(x)+0¢8(t) = G (29)

where G is a constant, G is variance per unit time, 7(¢)
is continuous time ‘white noise’, Z(7) is error at t" time
and « is the correlation between two adjacent
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observations. A model for 77 (¢) is a differential equation
given by

d
n@ = Ew(t) (2.10)

where @(f) is Brownian motion or a Wiener process.

Combining equations (2.9) and (2.10), we get
de (1) + ce (n)dt = Gdw(¥) (2.11)
This equation is solved by integration. A solution
of (2.11) with the random input removed is given by
(see, Jones 1993)
d
ae(r) +oae) =0 (2.12)

If (2.12) is integrated from time #; to time t,, the
solution is a prediction

€ () =exp {~a(n, — n)}e (1)) (2.13)

The solution, (2.13) is now in the form of a

discrete time AR(1) process with an auto regression

coefficient . The equation (2.13) can be generalized
as

£ (ty) = exp {—a (t, — )} (t,1)  (2.14)
Fitting equation (2.14) by nonlinear modeling
techniques, one can estimate .

2.2.4 Computational aspects
Once the weights are calculated by (2.4) by using

OLS estimator ﬁOLS, they form the weight matrix for
all observations. Let us denote this matrix as W, a
diagonal matrix whose diagonal elements are the
weights estimated through (2.4). Then the
variance-covariance for y under heteroscedastic model
is

Cov(y) = W (2.15)

For the model with heteroscedastic error variance

along with auto-correlation, the variance-covariance
matrix of y becomes

Cov(y) = & W2 [Ta) W2 = X (say) (2.16)

where /() is as given in (2.8). After estimating « by
the model (2.14), it is incorporated in (2.16).

Now applying Generalized Least Squares
principle, the one-step ahead estimates of parameters
can be obtained by minimizing

O~f X Bors)) T 0~ f X, Bors)  (2.17)

After getting new estimates of /3, weights are again
estimated and another set of parameters are estimated
through (2.17). The process is continued till the values
of B converges. Final value of estimates of f is
represented as Sy

2.3 Measure of Model Adequacy

The empirical comparison of models can be made
using with goodness of fit statistics such as RMSE and
RMAPE. Lower the values of RMSE and RMAPE
better are the models. It is concluded that the model
which has minimum RMSE and RMAPE gives better
parameters of the fitted model. For calculating the
RMSE and RMAPE following formulas are used.

Root mean squared error (RMSE)
a2

Y. —¥ )
—_— (2.18)

——x100 (2.19)

where Y; is original value, Yi is predicted values or
estimated value and n is the total number of
observations, p is the number of parameters.

3. RESULTS AND DISCUSSION

Models are first fitted under homoscedastic error
structure. For this purpose SAS package Version 9.1 has
been used. In the present study the data revealed
heteroscedasticity of error variance as rank correlation
is found to be 0.6920 for FxSxH breed and 0.6210 for
FxS breed. In the present study data also have auto-
correlation, when checked using Durbin—Watson test.
The Durbin—Watson statistic (d) is found to be 0.8120

Table 1. Auto-correlation of different breed by
different model

Name of Breed Model Auto-correlation
FxS Logistic 0.1254
FxS Gompertz 0.1330
FxSxH Logistic 0.4448
FxSxH Gompertz 0.4319
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Table 2. Parameter estimates of models under homoscedastic error variance and heteroscedastic error variance

along with auto-correlation of Friesian x Sahiwal breed at Dehradun station

Parameters Under Under heteroscedastic error variance
homoscedastic error variance along with autocorrelation
Logistic model Gompertz model Logistic model Gompertz model
B 354.4000 382.5000 299.9152 328.5822
(15.6193) (15.7104) (3.3298) (1.7363)
B> 6.6555 2.3190 9.4134 2.5333
(0.8399) (0.0966) (0.1504) (0.0064)
B3 0.1534 0.0927 0.2643 0.1377
(0.0142) (0.0072) (0.0035) (0.0009)
Goodness of fit statistics
RMSE 16.7320 11.3109 0.1210 0.0908
RMAPE 21.4587 13.4961 12.9276 8.1148
Autocorrelation - 0.1254 0.1330

Note: Figures in the brackets indicate standard errors.

for FxSxH breed and 0.8394 for FxS breed. o was
estimated by fitting equation (2.14) by nonlinear
modeling technique. The value of « (auto-correlation)
is obtained through NLIN option of SAS procedure.
The estimated values of autocorrelation for different
breeds are given in Table 1.

For fitting models under heteroscedastic error
structure along with autocorrelation, program is written
in SAS/IML language.

It can be observed from Table 2 that for FxS breed
at Dehradun farm RMSE (11.3109) is less for Gompertz
model than RMSE (16.7320) by Logistic model and
similarly RMAPE(13.4961) is Less for Gompertz
model than RMAPE(21.4587) by Logistic model, this
shows that results of Gompertz model are better than
logistic model under homoscedastic error condition.
The data of the breed are having heteroscedasticity of
variance and autocorrelation which was tested by
Durbin Watson test. Auto correlation for this breed is
found to be 0.1254 and 0.1330 of Logistic and
Gompertz models respectively.When the results under
homoscedastic error structure and heteroscedastic error
structure along with autocorrelation are compared it is
found that RMSE and RMAPE under heteroscedastic

error structure with auto correlation are found less than
homoscedastic error structure for both models, this
shows that results for heteroscedastic error structure are
better than homoscedastic error structure.

From Table 3 it is observed that for FxSxH breed
RMSE (23.9571) by Gompertz model is less than
RMSE (24.3640) by logistic model under
homoscedastic error structure and RMAPE (7.1689) by
Gompertz model is less than RMAPE (13.3725) by
Logistic model, so results of Gompertz model are better
than Logistic model under homoscedastic error
structure. RMSE (0.2942) and RMAPE (7.2071) of
Logistic model and RMSE (0.2975) and RMAPE
(4.3462) of Gompertz model under heteroscedastic error
structure along with auto correlation are less than
RMSE and RMAPE under homoscedastic error
structure. This shows that results under heteroscedastic
error structure with autocorrelations are better than
homoscedastic error structure. Mature weight is found
to be more for F x S breed than mature weight of F x
S x H breed under homoscedastic error structure where
as mature weight found more for F x S x H breed than
F x S breed under heteroscedastic error structure along
with autocorrelation. Growth rate was found to be better
for F x S x H than F x S breed.
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Table 3. Parameter estimates of different models under homoscedastic error variance and heteroscedastic error
variance along with auto-correlation of Friesian x Sahiwal x Hariana breed at Dehradun station

Parameters Under Under heteroscedastic error variance
homoscedastic error variance along with autocorrelation
Logistic model Gompertz model Logistic model Gompertz model
By 327.8000 349.2000 362.7186 475.8925
(17.2990) (23.9764) (8.6022) (5.2318)
B> 8.5121 2.5636 13.3927 2.9731
(1.9712) (0.2814) (1.4666) (0.1243)
Bs 0.1949 0.1156 0.2429 0.0941
(0.0262) (0.0176) (0.0179) (0.0100)
Goodness of fit statistics
RMSE 24.3640 23.9571 0.2942 0.2975
RMAPE 13.3725 7.1689 7.2071 4.3462
Autocorrelation - - 0.4448 0.4319

Note: Figures in the brackets indicate standard errors.
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