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SUMMARY

Modelling and forecasting of India’s spices export data set, which exhibits a volatile behaviour, is first attempted through
the Box-Jenkins Autoregressive integrated moving average (ARIMA) approach. Subsequently, Generalized autoregressive
conditional heteroscedastic (GARCH) nonlinear time-series model along with its estimation procedures are thoroughly studied.
Lagrange multiplier test for testing presence of Autoregressive conditional heteroscedastic (ARCH) effects is also discussed.
The GARCH model is employed for modelling and forecasting of the data. Comparative study of the fitted ARIMA and GARCH
models is carried out from the viewpoint of dynamic one-step ahead forecast error variance along with Mean square prediction
error (MSPE), Mean absolute prediction error (MAPE) and Relative mean absolute prediction error (RMAPE). The SAS and
EViews, Ver. 4 software packages along with computer programs in C are used for data analysis. Superiority of GARCH model
over ARIMA approach is demonstrated for the data under consideration. Possible use of more accurate forecasts obtained by
GARCH methodology vis-a-vis ARIMA approach is briefly discussed.

Keywords: ARIMA, EViews software package, Generalized autoregressive conditional heteroscedastic model, Monthly export
data of spices, SAS software package, Volatility.

1. INTRODUCTION target set by Government of India is to increase the
spices export by ten-folds in the next ten years. To
achieve such an ambitious target, the twin goals of
spice sector should be to enhance the annual
growth rate from 13% to 20% and share of export
of value-added spice products from 58% to 75%. As
emphasized by Jaffee (2005), volatility seems to be the
norm rather than the exception in international markets
for spices due to the structure of the trade, climatic
conditions, and the rapidity with which producers can
respond to price changes. Proper monitoring and
appropriate policy measures require efficient modelling
and forecasting of spices time-series data.

Spices are the most important commercial crops of
our country. The important spices extensively grown in
India are cardamom, pepper, chillies, turmeric, and
ginger. With respect to production, consumption and
export of spices, India ranks first in the World. The total
area in India under these spices is over one million
hectares, and these accounted for an annual export of
about Rs. 3330 crores during the year 2006-07. In short,
India commands a formidable position in the World
spices trade with 47% share in volume and 40% in
value. More than 150 value-added products of spices
are currently available for export. The most important

among these are spice oils and oleoresins. More than
70% of their total World supply is from India. The
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The most widely used technique for analysis of
time-series data is, undoubtedly, the Box Jenkins
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Autoregressive integrated moving average (ARIMA)
methodology. However, it is based on some crucial
assumptions, like linearity, stationarity, and
homoscedastic errors. Further, time-series data quite
often exhibit features which can not be explained by
ARIMA model, which is “linear”. As an example, the
famous time-series of average monthly sunspot numbers
exhibits a cyclical behaviour in such a way that the
series generally increases at a faster rate than it
decreases. Similarly, asymmetric phenomenon arises
with economic series, which tend to behave differently
when the economy is moving into recession rather
than when coming out of it. Many financial time-series
show periods of stability, followed by unstable periods
with high volatility. The loss in continuing to use the
age-old ARIMA methodology is that this type of
behaviour can not be explained satisfactorily, and so
“nonlinear time-series models” are usually needed to
describe data sets in which variance changes through
time. The search for an appropriate model of this type
would lead to a greater insight into the underlying
mechanism. An excellent description of these and other
related issues is given in Chatfield (2001).

During last two decades or so, the area of
Nonlinear time-series modelling has been rapidly
developing. The most promising parametric nonlinear
time-series model has been the Autoregressive
conditional heteroscedastic (ARCH) model, which was
introduced by Engle (1982), and for which he was
awarded the prestigious Nobel Prize in Economics in
2003. This entails a completely different class of
models which is concerned with modelling volatility.
The objective is not to give better point forecasts but
rather to give better estimates of the variance which,
in turn, allows more reliable forecast intervals leading
to a better assessment of risk (Chatfield 2001). The
ARCH model allows the conditional variance to change
over time as a function of squared past errors leaving
the unconditional variance constant. The presence of
ARCH-type effects in financial and macro-economic
time series is a well established fact. The combination
of ARCH specification for conditional variance and
the Autoregressive (AR) specification for conditional
mean has many appealing features, including a better
specification of the forecast error variance. Ghosh and
Prajneshu (2003) employed AR(p)-ARCH(g)-in-Mean
model for carrying out modelling and forecasting of
volatile monthly onion price data. The AR-ARCH

model has also been used as the basic “building
blocks” for Markov switching and mixture models
(See e.g. Lanne and Saikkonen 2003, and Wong and
Li 2001). Various aspects of the family of mixtures
of ARCH models have been thoroughly investigated
by Ghosh et al. (2005, 2006).

However, ARCH model has some drawbacks.
Firstly, when the order of ARCH model is very large,
estimation of a large number of parameters is required.
Secondly, conditional variance of ARCH(g) model has
the property that unconditional autocorrelation function
(Acf) of squared residuals, if it exists, decays very
rapidly compared to what is typically observed, unless
maximum lag ¢ is large. To overcome these difficulties,
Bollerslev (1986) proposed the Generalized ARCH
(GARCH) model in which conditional variance is also
a linear function of its own lags. This model is also a
weighted average of past squared residuals, but it has
declining weights that never go completely to zero. It
gives parsimonious models that are easy to estimate
and, even in its simplest form, has proven surprisingly
successful in predicting conditional variances.
Angelidis et al. (2004) used GARCH model for
describing Value-at-Risk.

In this paper, our purpose is to thoroughly study
the GARCH model and its estimation procedures.
Subsequently, this model along with the Box Jenkins
ARIMA model is applied to describe the volatility of
monthly export of spices from India during the period
April 2000 to August 2006. Finally, the performance of
one-step ahead forecasting for three months, i.e. from
September 2006 to November 2006 by both the models
is examined.

2. DESCRIPTION OF MODELS

2.1 The ARIMA Model

The Autoregressive moving average (ARMA)
model, denoted as ARMA(p, g), is given by

VW= OVt QYo tot Oy, + & — 61&

- 6&,-.— 0,5, (2.1)
or equivalently by
PB)y, = AB)g, (2.2)

where

@B)=1- B~ @B —.~ 9, B’
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and
&B)=1- 0B - &B* —.— 6,B

In the above, B is the backshift operator defined
by By, = y,.;. A generalization of ARMA models, which
incorporates a wide class of nonstationary time-series,
is obtained by introducing “differencing” in the model.
The simplest example of a nonstationary process which
reduces to a stationary one after differencing is

“Random Walk”. A process { y,} is said to follow
Autoregressive integrated moving average (ARIMA),
denoted by ARIMA(p, d, ¢), if V¢y, = (1 - B)? g is
ARMA(p, g). The model is written as

@B)(1 - By, = AB)s, (2.3)
where ¢, are identically and independently
distributed as N(0, o). The integration parameter

d is a nonnegative integer. When d = 0, the
ARIMA(p, d, g) model reduces to ARMA(p, g) model.

2.2 The GARCH Model

The ARCH(g) model for the series {&} is given
by
&y ~ NQ, hy) (2.4)

Here i, ; denotes information available up to time ¢ —
1, and

q
2
hy= o+ Y 2.5)
i=1

where ag > 0, a; = 0 for all i and zq:ai <1 are required
i=1

to be satisfied to ensure nonnegativity and finite

unconditional variance of stationary {&} series.

Bollerslev (1986) proposed the Generalized ARCH
(GARCH) model in which conditional variance is also
a linear function of its own lags and has the following
form

q )4
2
h = ag+ Zaiet_i + Zb b (2.6)
i=1 j=1

A sufficient condition for the conditional variance to
be positive is
ay>0,a,20,i=1, 2, ...,q;ijO, j=12,..,p

The GARCH (p, g) process is weakly stationary

q p

if and only if Zai +ij <1. The most popular
i=1 j=1

GARCH model in applications is the GARCH(1, 1)

model. To express GARCH model in terms of ARMA

model, denote 77, = 83 —h, . Then from eq. (2.6)

5 Max(p.q) 5 p
g =ay+ Y (a,-+b,-)€;_,-+77,+zbﬂ7,_j
i=1 =
2.7

Thus a GARCH model can be regarded as an extension

of the ARMA approach to squared series { € tz }.

2.3 Estimation of Parameters

Estimation of parameters for ARIMA model is
generally done through Nonlinear least squares method.
Fortunately, several software packages are available for
fitting of ARIMA models. In this paper, SAS, Ver. 9.1
software package is used. The Akaike information
criterion (AIC) and Bayesian information criterion
(BIC) values for ARIMA model are computed by

AIC = Tlog(A) +2(p + g + 1) (2.8)
and
BIC = Tlog(®) + (p + g + DlogT”  (2.9)

where T~ denotes the number of observations used for
estimation of parameters and o denotes the Mean
square error.

In order to estimate the parameters of GARCH
model, Method of maximum likelihood is used. The
loglikelihood function of a sample of T observations,
apart from constant, is

T
L&) = TY (logh, + &1

t=1

where

q p
h, = ag +Zaiyt2_i +ij ht_j
i=1 j=1
If f(.) denotes the probability density function of
&, generally, maximum likelihood estimators are
derived by minimizing
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L0 = T_li(log\/i— log f(s,/\/hff))

where Er is the truncated version of /4, (Fan and Yao

2003). For heavy tailed error distribution, Peng and Yao
(2003) proposed Least absolute deviations estimation
T
(LADE), which minimizes Y| logz; ~log ()], where
t=vy
v=p+1,ifg=0andv>p+1, if g > 0. Fan and Yao
(2003) and Straumann (2005) have given a good
description of various estimation procedures for
conditionally heteroscedastic time-series models.

The Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values for
GARCH model with Gaussian distributed errors are
computed by

T
AIC= Y (logh +&7 ) +2(p + g + 1) (2.10)
t=1
and
T ~ ~
BIC = " (loghy + /A |+ 2(p + g + 1) log(T v + 1)
=1
' 2.11)

where T is the total number of observations.

Evidently, the likelihood equations are extremely
complicated. Fortunately, the estimates can be obtained by
using a software package, like EViews, SAS, SPLUS
GARCH, GAUSS, TSP, MATLAB, and RATS. In the
present investigation, the Gaussian maximum likelihood
estimation procedure available in EViews software
package, Ver. 4 is used for data analysis. Further, AIC and
BIC values for ARIMA and GARCH models are
computed separately by writing computer programs in C.

2.4 Testing for ARCH Effects

Let & = y;, — ¢y,_; be the residual series. The

Lagrange multiplier (LM) test for squared series { gf }

may be wused to check for conditional
heteroscedasticity. The test is equivalent to usual F-
statistic for testing Hy: a; =0, i =1, 2, ..., g in the
linear regression

2 2 2
& = ayptaE t.ta g e t=q+1,..,T
(2.12)

where e, denotes the error term, ¢ is the prespecified
positive integer, and T is the sample size. Let

T 2 T
SSR, = 2 (Etz—a)) , Where w= z E,Z/T is
t=qg+1 t=g+1

T
sample mean of { ¢ 12 } ,and SSR, = Z élz , where ¢,
t=q+1

is the least square residual of eq. (2.12). Then, under
H,, the ARCH-LM test statistic, viz.

_ (SSRy—SSR,)/q
OSSR /(T -g-1)

(2.13)

follows asymptotically the chi-squared distribution with
q degrees of freedom.

3. MODELLING OF INDIA’S SPICES
EXPORT DATA

All-India data of monthly export of spices during the
period April 2000 to November 2006 are obtained from
Indiastat (www.indiastat.com) available at I.A.S.R.I., New
Delhi and the same are exhibited in Fig. 1. From the total
80 data points, first 77 data points corresponding to the
period April 2000 to August 2006 are used for building
the model and remaining are used for validation
purpose. A perusal of the data shows that, during the
period from April 2004 to February 2006, these varied
between Rs 143 crores and Rs 189 crores. Then the
spices export suddenly jumped almost 80% to the level
of Rs 345 crores in March 2006, which was followed
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Fig. 1. Data of monthly spices export from India
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by a sudden dip to as low as Rs 188 crores in the very
next month. All this clearly shows that volatility was
present during March 2006. Similar type of presence
of volatility was noticed at several other time-epochs,
like May 2001, August 2001, and June 2002.

3.1 Fitting of ARIMA Model

A perusal of estimated autocorrelation functions
(acf) of original series, reported in Table 1, shows that
it decays very slowly, implying thereby that this series

Table 1. Sample autocorrelation functions (acf) and partial
autocorrelation functions (pacf) of the original and
differenced series

Lag acf of the pacf of the acf of the pacf of the
series series differenced | differenced
series series
1 0.550 0.550 -0.498 —0.498
2 0.525 0.319 —0.048 -0.393
3 0.539 0.267 0.188 —0.065
4 0.405 -0.022 -0.197 -0.181
5 0.457 0.147 0.079 -0.110
6 0.303 —0.148 0.042 -0.040
7 0.274 -0.023 -0.009 0.069
8 0.251 -0.039 —0.008 0.049
9 0.211 0.053 0.000 0.040
10 0.202 0.001 —0.058 -0.064
11 0.214 0.121 -0.007 -0.120
12 0.239 0.102 0.105 0.014
13 0.182 -0.031 -0.078 —-0.009
14 0.196 —0.006 0.044 0.033
15 0.175 —-0.035 -0.014 0.000
16 0.165 -0.013 -0.018 0.034
17 0.162 -0.020 —0.001 —-0.007
18 0.138 0.031 0.040 0.047
19 0.109 -0.038 0.005 0.059
20 0.089 —-0.009 -0.035 0.016
21 0.095 0.022 0.018 —0.005
22 0.083 0.019 —0.009 0.007
23 0.089 0.016 -0.113 -0.175
24 0.163 0.161 0.306 0.222

may be differenced. Analytically, this issue may be
resolved by applying the unit root test, proposed by
Dickey and Fuller (1979) for parameter p in the
auxiliary regression

Ay, =py+ oAy + & (3.1)
which is derived from the AR(2) model, viz.
(- L- gLy =g (32)

by expressing the associated autoregressive polynomial
in L as

l-@L-@l’=10-¢ - @)L+ - L)1~ ol

(3.3)

where ;= — ¢,. Using (3.3) in (3.2), we get
(1-L)(A-al)y, = ply, + & 3.4
where p = ¢; + ¢, — 1. Now, presence of unit root, i.e.
L =1 in the autoregressive polynomial implies that the
condition for nonstationarity is 1 — ¢; — ¢, = 0, i.e.
¢, + @, = 1. Further, region of stationarity is

¢, + @ < 1. Thus, the unit root test reduces to testing
Hy: p=0 against H;: p< 0. In the present situation,

p is computed as 0.005. Since calculated value of

t-statistic, i.e. 0.212 is found to be greater than the
tabulated value of #-statistic at 5% level of significance,
i.e. —1.95 (Franses, 1998, Page 82), therefore H,is not
rejected at 5% level and so p = 0. Thus, there is
presence of one unit root and so differencing is required
until the acf shows an interpretable pattern with only a
few significant autocorrelations. On taking the first
difference of the original series, it is seen that only a
few autocorrelations, reported in Table 1, are high
making it easier to select the order of the model. On
differencing the original series twice, it is seen that the
sum of the autocorrelations of double differenced series
is —0.507, which implies that the series is
overdifferenced (Franses, 1998, Page 50). This suggests
that only one differencing would be more appropriate.

The appropriate ARIMA model is chosen on the
basis of minimum Akaike information criterion (AIC)
and Bayesian information criterion (BIC) values. Using
egs. (2.8) and (2.9), the AIC and BIC values, which are
respectively computed as 521.29 and 532.95, the
ARIMA(1, 1, 1) model is selected for modelling and
forecasting of India’s spices export data. The estimates
of parameters of above model are reported in Table 2.

Further, the residual error variance for the fitted
ARIMA model is computed as 867.762. The graph
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Table 2. Estimates of parameters along with their standard
errors for fitted ARIMA(1, 1, 1) model

Parameter Estimate Standard error
ARI1 —-0.100 0.159
MAI1 0.696 0.119
Constant 1.468 0.966

Using eqs. (2.10) and (2.11), the AIC and BIC
values for fitted AR(1)- GARCH(1,1) model are
respectively computed as 479.77 and 521.97.

Table 3. Sample autocorrelation functions (acf) and partial

autocorrelation functions (pacf) of the squared residuals of
the ARIMA (1, 1, 1) series

of fitted model along with data points is exhibited in
Fig. 2. Evidently, the fitted ARIMA(I1, 1, 1) model is
not able to capture successfully the volatility present at
various time-epochs, like October 2001; May 2002;
March 2004; and March 2006.
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Fig. 2. Fitted ARIMA(1, 1, 1) model along with data points
3.2 Fitting of GARCH Model

On investigating autocorrelations of squared
residuals of the fitted ARIMA(1,1,1) model, reported
in Table 3, it is found that the autocorrelation is
highest at lag 24, which is 0.265. The ARCH-LM test
statistic at lag 24 computed using equations (2.12) and
(2.13) is 37.48, which is significant at 5% level. But
it is not reasonable to apply ARCH model of order 24
in view of the enormously large number of parameters.
Therefore, the parsimonious GARCH model is
applied. The AR(1)-GARCH(1, 1) model is selected on
the basis of minimum AIC and BIC values. The
estimates of parameters of the above model along with
their corresponding standard errors in brackets () using
Method of maximum likelihood with Gaussian
distributed error terms are

y,=157.99 + 0.829 y, ,+&,
(33.692) (0.087)

where g, =h,1/2nt, and h, satisfies the variance
equation

h, = 1427.855 + 0.354 €2, +0.509 h, ,
(237.058) (0.277)  (0.206)

Lag acf of the squared pacf of the squared
residuals series residuals series
1 -0.015 -0.015
2 -0.045 -0.045
3 -0.030 -0.031
4 —0.041 -0.044
5 0.009 0.005
6 -0.023 —-0.027
7 —-0.007 -0.010
8 -0.022 -0.027
9 -0.025 -0.027
10 -0.025 -0.031
11 -0.029 -0.035
12 0.028 0.020
13 -0.021 -0.028
14 -0.023 -0.028
15 -0.014 -0.020
16 -0.029 -0.035
17 -0.005 -0.016
18 -0.030 -0.039
19 -0.015 -0.026
20 -0.021 -0.033
21 -0.024 -0.035
22 -0.001 -0.015
23 -0.022 -0.034
24 0.265 0.254

To study the appropriateness of fitted GARCH
model, autocorrelation functions of standardized
residuals and squared standardized residuals are
computed and the same are reported in Table 4. It is
found that, in both situations, the autocorrelation
functions are insignificant at 5% level, thereby
confirming that the mean and variance equations are
correctly specified. Conditional standard deviation for
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Table 4. Autocorrelation functions of the standardized residuals and squared standardized residuals
for fitted GARCH(1,1) model
Lag acf of standardized Q-Statistic Probability acf of squared Q-Statistic Probability
residuals standardized
residuals

1 —0.093 0.672 --- 0.157 1.906 ---

2 0.017 0.694 0.405 -0.009 1.913 0.167

3 0.222 4.589 0.101 0.018 1.937 0.380

4 -0.014 4.604 0.203 -0.113 2.957 0.398

5 -0.014 4.621 0.328 -0.041 3.093 0.542

6 0.083 5.192 0.393 0.152 4.995 0.416

7 0.138 6.784 0.341 0.092 5.707 0.457

8 0.009 6.791 0.451 -0.050 5.924 0.549

9 —-0.030 6.867 0.551 -0.069 6.336 0.610
10 -0.025 6.922 0.645 -0.135 7.927 0.541
11 0.064 7.288 0.698 -0.109 8.995 0.533
12 0.019 7.321 0.773 0.048 9.202 0.603
13 -0.002 7.321 0.836 0.009 9.210 0.685
14 0.218 11.784 0.545 -0.054 9.482 0.736
15 0.052 12.039 0.603 -0.028 9.558 0.794
16 0.021 12.084 0.673 -0.127 11.116 0.744

fitted model is plotted in Fig. 3. Further, graph of fitted
model along with data points is exhibited in Fig. 4.
Obviously, the fitted GARCH model is able to capture
the volatility present in the data set.
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Fig. 3 Conditional standard deviation of fitted
AR(1)-GARCH(1,1) model

4. FORECASTING OF INDIA’S SPICES
EXPORT DATA

One-step ahead forecasts of export of spices along
with their corresponding standard errors inside the
brackets ( ) for the months of September 2006 to
November 2006 in respect of above fitted models are
reported in Table 5. In view of the assumption of
homoscedasticity of error terms in ARIMA approach,
the one-step ahead forecast error variance remains
constant. A perusal indicates that, for fitted GARCH
model, all the observed values lie within one standard
error of their forecasts. However, this attractive feature

Table 5. One-step ahead forecasts of export of spices
(in Rs. Crores) for fitted models

Months | Observed Forecasts by

values | ARIMA (1, 1, 1)| AR(1)-GARCH (1, 1)
Sep. '06 | 27091 235.67 (29.61) 247.14 (40.93)
Oct. 06 | 232.59 | 240.27 (29.61) 231.89 (48.17)
Nov. 06 | 286.21 241.50 (29.61) 265.68 (33.31)
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Fig. 4 Fitted AR(1) — GARCH (1,1) model along with
data points

does not hold for fitted ARIMA model. Further, for
GARCH model, it may be noted that the magnitude of
one-step ahead forecast error at a time-epoch is also
reflected in the magnitude of corresponding forecast
error variance at next time-epoch. For example, when
one-step ahead forecast error (i.e. 23.77, being the
difference of observed value 270.91 and forecast value
247.14) and corresponding forecast error variance
during September 2006 (i.e. 40.93) are large, one-step
ahead forecast error variance for October 2006 (i.e.
48.17) is also large. But when one-step ahead forecast
error during October 2006 (i.e. 0.70, being the
difference of observed value 232.59 and forecast value
231.89) is small, corresponding forecast error variance
for November 2006 (i.e. 33.31) is also relatively small.
It may be noticed that while periods of strong
turbulence caused large fluctuations in Indian spices
export, these were often followed by relative calm and
slight fluctuations. Further, while most volatility is
embedded in the random error, its variance depends on
previously realized random errors with large errors
being followed by large errors and small by small. Thus,
the fitted GARCH model is capable of explaining
volatility in the underlying phenomenon. This is in
contrast to the ARIMA model wherein the random error
is assumed to be constant over time.

The Mean square prediction error (MSPE) values
and Mean absolute prediction error (MAPE) values for
fitted GARCH model are respectively computed as
18.14 and 15.00, which are found to be lower than the
corresponding ones for fitted ARIMA model, viz. 33.17
and 29.02 respectively. Further, a comparative study of
forecasts of monthly spices export by above discussed
two models is carried out on the basis of their Relative

mean absolute prediction error (RMAPE) values
defined as

1< .
RMAPE = gz{‘)’zﬂ‘ _yt+i‘/yt+i}><100
i=1

The RMAPE values for fitted ARIMA (1,1,1) and
AR(1)-GARCH(1,1) models are respectively computed
as 32.46 and 10.82. The lower values of all the three
statistics, viz. MSPE, MAPE, and RMAPE reflect
superiority of GARCH approach for forecasting
purposes also.

The more realistic forecast intervals for India’s
spices export data obtained through GARCH approach
could be of immense help to planners in formulating
appropriate strategies. This type of information would
go a long way in arriving at the appropriate decisions
on several issues, like Quantities of spices in future to
be exported and quantities to be earmarked for domestic
consumption, Whether to impose ban on exports at
various points of time, and Whether or not to impose
export duty and how much in case export of spices is
allowed. This would enable the planners to take
appropriate policy decisions from time to time well in
advance in order to meet the targets set for Indian spices
export. These, in turn, would also benefit the farmers
in production of optimum quantities of spices. All this
would ultimately result in efficient management of
India’s spices sector export scenario on a sound
statistical basis.

S. CONCLUDING REMARKS

It has been shown that for Indian spices export
time-series data, the wusual assumption of
homoscedasticity of error terms is not satisfied. For
modelling as well as forecasting of this data, the
GARCH nonlinear time-series model has performed
better than the well-known Box-Jenkins ARIMA model.
Therefore, for data sets exhibiting volatility, ARIMA
approach should be abandoned in favour of GARCH
methodology in order to obtain more accurate forecasts
and changing forecast interval lengths. The
methodology advocated in this paper can also be used
for forecasting other volatile data sets.
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