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1. INTRODUCTION

With the advent of computers, the development of
accurate forewarning systems for incidence of crop
diseases has been increasingly emphasized. Crop
diseases are one of the major causes of reduction in crop
yield and hence timely application of remedial measures
may combat the yield loss to a great extent. Forewarning
systems can help in providing prior knowledge of the
time and severity of the outbreak of such diseases. Crop
diseases are influenced by interaction of various factors
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SUMMARY

With the advent of computers, the development of accurate forewarning systems for incidence of
crop diseases has been increasingly emphasized. Timely forewarning of crop diseases will not only
reduce yield losses but also alert the stakeholders to take effective preventive measures. Traditionally,
Logistic Regression (LR) and discriminant analysis methods have been used in forewarning systems.
Recently, several machine learning techniques such as decision tree (DT) induction, Rough Sets (RS),
soft computing techniques, neural networks, genetic algorithms etc. are gaining popularity for predictive
modelling. This paper presents the potential of three machine learning techniques viz. DT induction
using C4.5, RS and hybridized rough set based decision tree induction (RDT) in comparison to standard
LR method. RS offers mathematical tools to discover hidden patterns in data and therefore its application
in forewarning models needs to be investigated. A DT is a classification scheme which generates a tree
and a set of rules representing the model of different classes from a given dataset. A java implementation
of C4.5 (CJP) is used for DT induction. A variant of RDT called RJP, combines merits of both RS and
DT induction algorithms. Powdery mildew of Mango (PWM) is a devastating disease and has assumed
a serious threat to mango production in India resulting in yield losses of 22.3% to 90.4%. As a case
study, prediction models for forewarning PWM disease using variables viz. temperature and humidity
have been developed. The results obtained from machine learning techniques viz. RS, CJP and RJP are
compared with the prediction model developed using LR technique. The techniques RJP and CJP have
shown better performance over LR approach.
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with the most significant of them being weather.
Normally data on crop disease status and information
on related variables (including weather) over years are
utilized for developing models/rules for forewarning of
diseases. Developing forewarning systems for crop
diseases is now made relatively easier by increasingly
research efforts in the application of advanced and
complicated statistical computing concepts which
include inter alia soft computing techniques such as
neural networks, fuzzy theory, rough sets etc. Timely
forewarning of crop diseases will not only reduce yield
losses but also alert the stakeholders to take effective
preventive measures. Forewarning consists of examining
the features of a newly presented case and assigning it
to a predefined class. In general it can be treated as task

1 School of Computer Science, Jawaharlal Nehru University,
New Delhi 110067

2 Indian Agricultural Statistics Research Institute,
New Delhi 110012.



98 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

of classification which is characterized by the well-
defined classes, and a training set consisting of pre-
classified examples. The task is to build a model called
classifier that can be applied to unclassified data in order
to classify it. Machine Learning offers many techniques
like decision tree induction algorithms, neural networks,
genetic algorithms, rough sets, fuzzy sets as well as many
hybridized strategies for the classification (Han and
Kamber, 2001; Pujari, 2000; Komorowski et al., 1999;
Witten and Frank, 1999). On the other hand, traditional
statistical techniques such as Logistic Regression (LR)
and discriminant analysis may be employed for the task
of classification. The potential of three machine learning
techniques viz. DT induction using C4.5, RS and
hybridized rough set based decision tree induction (RDT)
has been compared with the standard LR method. As a
case study, prediction models for forewarning Powdery
mildeW of Mango (PWM) disease using causal variables
viz. temperature and humidity have been developed.
While developing the models, the study also identifies
best set of variables and the suitable algorithms for
forewarning of PWM disease.

The purpose of this study has arisen out the need
for developing crop disease forewarning systems which
are evolved upon reliable, robust and improved soft
computing methods. Various approaches are in vogue
to build such early warning systems. Every approach
has its own advantages and limitations. Soft computing
techniques can be advantageously used in certain
situations to convert abstract knowledge and heuristics
into easily comprehensible rules. The expected gain in
accuracy by using soft computing concepts such as rough
sets or its hybridized model may justify the effort
involved in using them in preference to the conventional
models.

The rest of the paper is organised as follows.
Section 2 deals with the preliminaries. Section 3
describes a case study. Section 4 presents the
methodology used followed by results and discussion
in Section 5. Finally, the conclusions are presented in
the Section 6.

2. PRELIMINARIES

2.1 Logistic Regression

 Let class variables are of 0-1 type. To handle the
task of classification (Hastie et al. 2001) in Logistic
Regression (LR) approach, the probability of

membership in the first group, p1(x), is modelled directly
as in equation (1) for the two categories problem where

α  and β  are the parameters.
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2.2 Decision Tree

Decision tree induction represents a simple and
powerful method of classification which generates a tree
and a set of rules, representing the model of different
classes, from a given dataset (Winston 1992). Decision
Tree (DT) is a flow chart like tree structure, where each
internal node denotes a test on an attribute, each branch
represents an outcome of the test and each leaf node
represents the class (Hans and Kamber 2001). The top
most node in a tree is the root node. For DT induction,
ID3 algorithm and its successor C4.5 algorithm by
Quinlan (1993) are widely used. Algorithm CJP (java
implementation of C4.5) is used in this paper for DT
induction. One of the strengths of decision trees
compared to other methods of induction is the ease with
which they can be used for numeric as well as non-
numeric domains. Another advantage of decision tree is
that it can be easily mapped to rules. The classical DT
induction algorithm i.e. C4.5 by Quinlan (1993) is
presented below for better understanding to the readers.

2.2.1 C4.5 algorithm

Let the training data is a set S = s1, s2, ... of already
classified samples. Each sample si = x1, x2, ... is a vector
where x1, x2, ... represent attributes or features of the
sample. The training data is augmented with a vector C
= c1, c2,... where c1, c2,... represent the class that each
sample belongs to. C4.5 uses the fact that each attribute
of the data can be used to make a decision that splits the
data into smaller subsets. C4.5 examines the normalized
Information Gain (difference in entropy) that results
from choosing an attribute for splitting the data.
Entropy(S) can be thought of as a measure of how
random the class distribution is in S. Information gain is
a measure given to an attribute a. Attribute a can separate
S into subsets Sa1, Sa2, Sa3, ..., San. The information gain
of a is then Entropy(S) – Entropy(Sa1) – Entropy(Sa2) –
... – Entropy(San). Information gain is then normalized
by multiplying the entropy of each attribute choice by
the proportion of attribute values that have that choice.
The attribute with the highest normalized information
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gain is the one used to make the decision. The algorithm
then recurs on the smaller sub lists. The pseudo code of
the algorithm is as follows:

1. Check for base cases

2. For each attribute a

2.1 Find the normalized information gain from
splitting on a

3. Let a-best be the attribute with the highest
normalized information gain

4. Create a decision node dnode that splits on a-best

5. Recur on the sub lists obtained by splitting on
a-best and add those nodes as children of dnode

2.3 Rough Set Theory

RS theory was introduced in early 1980s by Z.
Pawlak, a Polish mathematician and has been widely
explored for pattern discovery since then. RS emerged
as an important mathematical tool for managing
uncertainty that arises in the indiscernibility between
objects in a set, and has proved to be useful in a variety
of knowledge discovery processes (Pawlak 1991,
Komorowski 1977). Some of the basic terms and
concepts pertaining to RS are discussed below.

2.3.1 Information system and decision table

In RS, knowledge is a collection of facts expressed
in terms of the values of attributes that describe the
objects. These facts are represented in the form of a data
table. Entries in a row represent an object.

A data table described as above is called an
information system. Formally, an information system S
is a 4-tuple, S = (U, Q, V, f) where, U a nonempty, finite
set of objects is called the universe; Q a finite set of
attributes; V= ∪Vq, ∀ q ∈ Q and Vq being the domain
of attribute q; and f : U × Q � V, f be the information
function assigning values from the universe U to each
of the attributes q for every object in the set of examples.

2.3.2 Indiscernibility relation

For a subset P ⊆ Q of attributes of an information
system S, a relation called indiscernibility relation
denoted by IND is defined in equation (2).

INDs (P) = { (x, y) ∈ U × U : f (x, a) = f (y, a) ∀ a ∈ P}

(2)

The function f (x, a) assigns the value of the
attribute a for an object x. If (x, y) ∈ INDs(P) then objects
x and y are called indiscernible with respect to P. The
subscript s may be omitted if information system is
implied from the context. IND(P) is an equivalence
relation that partitions universe U into equivalence
classes, the sets of objects indiscernible with respect to
P. Set of such partitions are denoted by U/IND(P).

2.3.3 Approximation of sets

Let X ⊆  U be a subset of the universe. A description
of X is desired that can determine the membership status
of each object in U with respect to X. Indiscernibility
relation is used for this purpose. If a partition defined
by IND(P) (denoted by Y in Equation 3) partially
overlaps with the set X, the objects in such an
equivalence class can not be determined without
ambiguity. The description of such a set X is defined in

terms of P-lower approximation (denoted as P ) and

P-upper approximation (denoted as P ) where for
P ⊆  Q:

{ / IND( ) : }

{Y / IND( ) : }

PX Y U P Y X

PX U P Y X

= ∪ ∈ ⊆

= ∪ ∈ ∩ ≠ ∅ (3)

A set X for which PX PX=  is called an exact set
otherwise it is called rough set with respect to P.

2.3.4 Dependency of attributes

RS introduces a measure of dependency of two
subsets of attributes P, R ⊆  Q. The measure is called a
degree of dependency of P on R, denoted by � R(P). It is
defined as
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The set POSR(P), positive region, is the set of all
the elements of U that can be uniquely classified into
partitions U/IND(P) by R. Here, Card refers to the
cardinality of the set included in the parenthesis. Thus,
numerator and denominator are the number of objects
in the positive region denoted by POSR(P) and the
universe U respectively. Coefficient �R (P) represents
the fraction of the number of objects in the universe
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which can be properly classified. If P totally depends
on R then �R (P) = 1, else �R (P) < 1.

2.3.5 Reduct

The minimum set of attributes that preserves the
indiscernibility relation is called a reduct. The relative
reduct of the attribute set P, P ⊆ Q, with respect to the
dependency �P (Q) is defined as a subset RED(P, Q) ⊆
P such that:

1. �
RED(P, Q)

 (Q) = �
P
(Q), i.e. relative reduct preserves

the degree of inter attribute dependency

2. For any attribute RED( , ),a P Q∈ RED( , ) { }P Q a−γ
( ) ( )PQ Q< γ  i.e. the relative reduct is a minimal
subset with respect to property 1.

Computation of a minimal optimum reduct is a NP
hard problem. However a single relative reduct can be
computed using efficient heuristics. Johnson’s algorithm
is one such method which is available in Rosetta software
(http://www.idi.ntnu.no/~aleks/rosetta/).

2.3.6 Rule discovery

Rules can be perceived as data patterns that
represent the relationships between attribute values. RS
theory provides mechanism to generate rules directly
from the dataset by reading the values of the attributes
present in reduct from the given decision table.

2.4 Proposed Model – Rough Set based Decision
Tree (RDT)

RDT model as proposed by Minz and Jain (2003a)
combines merits of both RS and DT induction algorithm.
It aims to improve efficiency, simplicity and
generalization capability of both the base algorithms as
shown by Minz and Jain (2003b). In the present study, a
variant of RDT called RJP (Table 3) is used as a
representative of RDT approach. Algorithm RJP for the
induction of rough decision tree is presented below (Jain
and Minz 2003).

Algorithm RJP

1. Input the training dataset say T1.

2. Discretize the continuous attributes if any, and
label the modified dataset as T2.

3. Obtain the minimal decision relative reduct of T2,
say R.

4. Reduce T2 based on reduct R and label the reduced
dataset as T3.

5. Apply C4.5 algorithm on T3 to induce decision
tree.

6. Convert the decision tree to rules (if needed) by
traversing all the possible paths from root to each
leaf node.

 The training data-T1 is a collection of examples
used for supervised learning to develop the classification
model. In step 2, continuous attributes of the dataset (if
any) are discretized. The next step involves computation
of a reduct R. The reduct helps in reducing the training
data, which is finally used for decision tree induction.
Algorithms like Boolean reasoning algorithm, Johnson’s
algorithm or Genetic Algorithms can be used for the
computation of the optimal reduct. In this paper,
Johnson’s algorithm based on efficient heuristics
(implemented in Rosetta software), is used for the
computation of a single reduct. More details pertaining
to RDT model are available in Minz and Jain (2005).

3. CASE STUDY

 Powdery Mildew of Mango (PWM) caused by
Oidium mangiferae Berthet is responsible for foliar as
well as inflorescence infection in mango. Generally,
PWM epidemic occurs in the third and fourth week of
March when the inflorescences are of the age of 6-7
weeks. The spread of the disease is greatly manifested
by factors such as temperature, humidity, wind velocity,
dews, wind direction etc. because it is an airborne
disease.

 The PWM dataset for the study has been taken
from the project “Epidemiology and forecasting of
PWM” undertaken at Central Institute for Subtropical
Horticulture, Uttar Pradesh. From the original data, the
attributes relative humidity and maximum temperature
are selected because of the prior information available
about contribution of these factors to the occurrence of
PWM (Misra et al. 2004). As repeated life cycles of
PWM are around 4-7 days, periods from 8th of March
up to 14th of March i.e. one day a prior to the start of
possible occurrence of epidemic (3rd week of March)
were taken for developing forewarning models. Moving
averages of maximum temperature and relative humidity
are computed for March 8th –11th , 8th –12th , 8th –13th

and 8th –14th and are referred by the set of corresponding
pair of variables as{(T811, H811), (T812, H812), (T813,
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Table 1. Pre-processed dataset for Powdery Mildew of mango

Year T811 H811 T812 H812 T813 H813 T814 H814 STATUS

1987 28.20 91.25 28.48 88.60 29.50 85.50 30.14 82.86 1

1988 32.05 75.75 31.64 80.60 31.27 77.83 30.66 79.57 0

1989 26.60 86.25 26.28 87.20 26.47 87.33 26.31 89.14 0

1990 27.50 91.25 28.12 91.20 28.17 92.00 28.43 91.00 1

1991 28.43 87.00 28.70 86.20 29.00 83.50 29.57 80.57 0

1992 30.12 69.23 30.45 68.58 30.80 68.31 31.25 67.82 1

1993 30.50 61.75 30.48 61.13 30.37 60.56 30.33 61.76 0

1994 30.45 89.25 30.56 85.80 30.63 83.17 30.71 81.14 1

1995 28.63 61.38 29.10 61.20 29.58 61.17 30.71 61.57 0

1996 31.63 60.33 31.90 60.87 32.67 60.89 33.07 59.76 1

1997 32.13 71.00 32.20 69.40 31.67 69.00 31.50 68.29 0

2000 29.00 78.33 29.23 78.60 29.36 78.83 29.52 79.14 0

H813), (T814, H814)} in Table 1. Data is partitioned
into train and test pairs as shown in Table 2. For example,
the entry 1987-94 under the first column called MODEL
means the data for the years 1987-94 is used for learning
the model while the data for the years 1995-97 and 2000
is used for the model validation.

4. METHODOLOGY

 All the eight independent variables as shown in
Table 1 along with STATUS as dependent variable were
used as input for the machine learning algorithms.
However in case of LR, only two variables can be taken
at a time as the number of observations in the dataset
(Table 1) is less. Machine learning algorithms as well
as traditional logistic regression method are employed
using the training and test data pairs as identified in Table
2. The algorithms and the corresponding software that
are used in this paper for forewarning of PWM disease
are presented in Table 3. The Logistic Regression (LR)
model has already been applied to the dataset by Misra
et al. (2004). The redundant variables (if any) are filtered
using concepts of information theory in CJP algorithm
and using concept of reducts in RS and RJP algorithm.
In this section, we demonstrate the characteristics of the
output from each of the algorithms (Table 3) with the
help of an example using the train data for the years1987-
97 and the test data for the year 2000 (Table 2). The

overall mean accuracy of the models for each algorithm
is presented and discussed in Section 5.

 Table 2. Train and test data pairs for different models

Model Train Data Test Data

1987-94 1987-94 1995, 1996, 1997, 2000

1987-95 1987-95 1996, 1997, 2000

1987-96 1987-96 1997, 2000

1987-97 1987-97 2000

Id Algo Description Software Model

1 LR Logistic SAS Coeffi-
Regression cients

2 RS Rough Set reducts Rosetta Rules
(decision relative
full discernibility
global)

3 CJP Java Implementation Weka DT
of C4.5 Pruned

4 RJP Rough set based DT Rosetta, Weka, DT
induction embedding C++ programs
J4.8 for DT induction
with Pruned tree

 Table 3. Learning algorithms used for PWM dataset
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4.1 LR

Consider the LR model given in equation (1) noting
that for the two variables case, the expression � + ��x
would be a + bT(.) + cH(.). Table 4 shows estimates of
parameters a, b and c for the model using the attribute
pairs i.e. (T811, H811), (T812, H812), (T813, H813) or
(T814, H814) separately for the train data 1987-97
(Table 2). Using these parameter estimates, the outcomes
for the training set and the test set can be predicted by
plugging in the corresponding parameter estimates from
Table 4 in equation (1).

To decide whether the status of the disease is of
epidemic nature, it is necessary to have a cut off value
beyond which the probability value lies. It is fairly
realistic to keep as a thumb rule the cut off value of
probability as 0.5. Then if probability is less than this
value then the event that epidemic will occur will be
minimal, otherwise there is more chance of occurrence
of disease in epidemic proportions. It is emphasized here
that there is no objective procedure to be considered as
a general rule. If one wants to be more stringent, then
the cut off value can be increased as per requirement.
Statistically speaking, depending upon the problem
under consideration there is always a possibility of error
because we deal with sample data for model
development. Thus, the consideration of 0.5 as a cut off
value in the present study is to a greater extent
appropriate.

 For the test data 2000, using (T811, H811), (T812,
H812), (T813, H813) or (T814, H814), the corresponding
p(x) values as defined in equation (1) are 0.44, 0.44,
0.39 and 0.29. All these probabilities being less than 0.5
imply that the predicted STATUS is 0 which is same as
the observed STATUS (Misra et al. 2004).

4.2 RS

 Employing RS approach for the different train data
(Table 2), the set {H811, T814} is a computed reduct
(Section 2.3.5). By using the discretized train data of
the years 1987-97, the following three rules are
generated. The rules are simple to comprehend for
applying to the unseen dataset.

1. If (H811> = 88.2) AND (T814 <31.0) => then
STATUS =1

2. If (H811 < 88.2)) AND (T814<31.0) => then
STATUS = 0

3. If (H811<88.2)) AND (T814> = 31.0) => then
STATUS = 1

 The rules when applied to the test data i.e. the year
2000, correct prediction is obtained as illustrated in the
following example.

Example 1: For the year 2000, H811 = 78.33 and
T 814 = 30.71. Observing the three rules, we can identify
that the Rule 2 is applicable to this dataset. Therefore,
predicted value of the STATUS is 0. This is verified by
the observed value of the STATUS (Table 1).

4.3 CJP

 The prediction model which is obtained by
employing the CJP algorithm using data of 1987-97 as
the train data, is represented as decision tree in Figure
1. The corresponding rules are obtained by following
the path from the root of the decision tree towards its
leaf (Fig. 1).

Example 2: For the year 2000, we observe from
Table 1 that H811 = 78.33 and T814 = 30.71. Consider
the decision tree (output of CJP) in Figure 1. Starting
from the root node and following the tree as per matching
of the conditions in each branch, we reach the final node,
also called leaf, having value 0. Therefore the predicted
STATUS = 0 which is same as the observed value of the
STATUS (Table 1). The prediction method using the
rules from the decision tree is similar to Example 1.

4.4 RJP

 Like CJP, the model obtained from RJP algorithm
is a decision tree which can be mapped to rules (Fig. 2).
However, it is observed that the branches representing
the conditions are different from the branches of the
decision tree from CJP algorithm.

 Table 4. Parameters of the LR model developed for the
PWM prediction

Model Years 1987-97

a –10.79
8th to 11th day b 0.19

c 0.06
a –13.97

8th to 12th day b 0.3
c 0.06
a –36.95

8th to 13th day b 0.88
c 0.13
a –70.43

8th to14th day b 1.73
c 0.24
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4.5 Performance Evaluation

 Considering the costs associated with the wrong
prediction of the PWM disease, accuracy is considered
as the most important evaluation measure. In order to
estimate the average accuracy initially the models are
developed using the algorithms listed in Table 3. The
average accuracy of the corresponding models was
computed for each algorithm using training data and test
data pairs (Table 2) and by considering each of the
attribute sets - {T811, H811}, {T812, H812}, {T813,
H813}, {T814, H814}. To determine average accuracy
using all variables attribute set {T811, H811, T812,
H812, T813, H813, T814, H814} is used for each
algorithm. STATUS is used as the decision variable for
each run of the algorithm. The superset of all the
attributes, for example {T811, H811, T812, H812, T813,
H813, T814, H814}, has not been used for LR because
of its limitation in handling datasets when the order of
the number of attributes is same as the number of
observations. However, all the variables along with the
pairs of variables are used for the RS, CJP and RJP
algorithms to investigate whether the accuracy estimates
improve by including all the variables for the training.
Inclusion of all variables helps to identify the best set of
input attributes for learning the model.

5. RESULTS AND DISCUSSION

 The comparative discussion of the algorithms is
done using the Fig. 3 and Fig. 4. Fig. 3(i) shows the
overall mean accuracy of the models using two variables
at a time. For example, mean accuracy of RJP algorithm
in Fig. 3 (i) is computed using the formula:

Accuracy
Mean Accuracy =

∑∑ vm
v m

n
(5)

where each v i.e. variable pair in {{T811, H811}, {T812,
H812},{T813, H 813},{T814, H814}}; each m in
{1987-94, 1987-95, 1987-96, 1987-97}; and n = number
of observations.

Further, part (ii) of Fig. 3 presents the estimated
mean accuracy using the variable set (T811, H811, T812,
H812, T813, H813, T814, H814). As LR does not permit
use of all variable pairs together, the results are not
shown for LR in this figure.

Fig. 1. The Prediction model for PWM Epidemic as obtained
using CJP Algorithm on 1987-97 data as the training dataset

Fig. 2: The Prediction model for PWM Epidemic as obtained
using RJP Algorithm on 1987-97 data as the training dataset
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Fig. 4 helps in comparing and selecting the
appropriate pair of variables for disease prediction.
Using the results for the test data, the variables T811,
H811 can be selected for better predicting capabilities

in all machine learning algorithms. Although the results
for the training data exhibited different scenario, yet the
average accuracy estimates for the test data are
considered more realistic. The behaviour of each of the
algorithm as observed from the Fig. 3 and Fig. 4 is
discussed separately.

5.1 LR

 Trends pertaining to the mean of computed
accuracies are shown in Fig. 3(i). Training accuracy is
observed to be lesser as compared to test accuracy (75%)
for this method. For the purpose of identifying the best
pair of variables, mean accuracies are presented for each
set of the variables in Fig.4. When the attributes
corresponding to the moving averages of more number
of days are used the test accuracy estimate worsens
except for the T814 and H814 (Fig. 4). It is in contrast
to the general opinion that more data, either in terms of
the size of the training data or in terms of more days in
computing the moving averages would result in
improved performance of the model (Fig. 4). As per the
test data estimates, it is suggested to use T811, H811
variables for forewarning of PWM disease using LR
algorithm because this results in forewarning well ahead
in time without much loss of accuracy as compared to
T814, H814 variables.

5.2 RS

 Attribute pairs used for LR were also used for RS
for the sake of comparison between the two. The mean
accuracy on the training set is observed as 100 per cent
for each case irrespective of the size of the training data
or the set of attributes (Fig. 3(i) and Fig. 3(ii)). Mean
test accuracy for RS is observed to be much less as
compared to training accuracy for paired variables as
well as while using all the 8 variables together. When
performance of RS is compared with LR, it is observed
that RS performs well on training data while LR is better
for test data (Fig. 3). To identify the best pair of variables,
it is observed from Figure 4 that with addition of one
day in computation of moving averages, test accuracy
deteriorates from 79.2 per cent for the variables (T811,
H811) to 66.7 per cent for the variables (T814, H814).
Thus, the pair (T811, H811) is recommended for
forewarning of PWM disease using RS algorithm.
However, use of all the 8 attributes as input to the RS
algorithm has resulted in identification of H811 and T814
as relevant attributes with mean accuracy shown in
Fig. 3(ii).

(i)The Mean of accuracy with two variables at a time

(ii) The Mean of accuracy from with all variables at a
time. As LR does not allow using all variables,

the bar is not shown for LR in this graph

Fig. 4. Comparison of accuracy estimated by using data over the
same set of variables

Note: LR gives its best performance on the test data using moving
averages of max. temperature and humidity covering 8-14 days while
other algorithms can give best accuracy estimates using 8-11 days of
temperature and humidity information.

Fig. 3.
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5.3 CJP

 Comparison of overall mean accuracies of CJP
with LR and RS shows that CJP performs well on the
test data unlike training data (Fig. 3). As the aim of any
forewarning model is to have better prediction for the
test cases which are unseen as well, CJP is preferable in
comparison to LR and RS approaches for disease
prediction. Figure 4 shows that increasing one day at a
time for computation of moving averages of attributes
does not affect the test accuracy except for the case of
T814, H814 showing little decrease in test accuracy. Thus
for the reasons mentioned as above for LR algorithm,
T811, H811 is recommended for predicting PWM
disease. Parallel use of all attributes results in the
selection of the attribute set {H811} or {H811, T814}
as the most relevant attributes. However, it has not
resulted in improvement of the test accuracy over the
pair of attributes.

5.4 RJP

 Test accuracy is improved for RJP algorithm as
per expectations even though it does not show 100 per
cent accuracy on the training data unlike RS (Fig. 3).
Like CJP, increasing the number of days in computation
of attributes does not show any impact on test accuracy
but decrease the test accuracy for the case of T814, H814
(Fig. 4). Hence variables T811, H811 are recommended
as best set of variables for predicting PWM. Here, we
would also like to mention that slight decrease in test
accuracy on adding an extra day for computing moving
average is not a strange behaviour because biological
cycle of a pathogen depends more on the weather
conditions as compared to the exact date of a calendar
month. Use of all variables as input to RJP identifies
H811 and T814 as the most significant attributes.
However, it has not resulted in improvement of the test
accuracy over the pair of attributes.

 In Fig. 3, we observe that for three algorithms
namely LR, CJP and RJP, test accuracy is more than the
training set accuracy. Although this behaviour is not
commonly observed, yet it is not unusual. There have
been a number of published reported results (Table 5)
in the literature on different datasets using different
models and algorithms where the training set accuracy
is observed to be lesser as compared to the test set
accuracy [Clark et al ( 1989), Mitra et al. (1997), Duch
(2001)].

A special mention is also needed regarding 100 per
cent accuracy of prediction in some cases (Fig. 3). It is
emphasised that100 per cent accuracy for the training
data may occur due to over fitting. But, whether the high
accuracy over the training data holds good for future
prediction will be substantiated if similar performance
is observed for the test data as well. For example, in the
present analysis, RS exhibits 100 per cent accuracy over
the training data. But this can not be substantiated
because RS performs badly over the test data. Thus,
performance of RS on the training data is attributed to
over fitting as is evident from its relatively worse
performance on the test data.

 As training set accuracy is not considerably
important for the purpose of final comparison of
algorithms, mean accuracies of the test data as obtained
from all the algorithms is compared in Table 6. It is
evident that test performance of CJP and RJP are
comparable. Hence, among the algorithms CJP and RJP
are recommended for prediction of PWM.

Table 5. Some reported cases where training set accuracy is
less than test set accuracy

S.No. Model Training Test Dataset References

1 NN 76.9 80.4 Hepatobiary Duch et al.
disorder 2001

2 AN 87.5 88.69 Vowel data Mitra et al.
1997

3 SN 98.11 100 Hepato Mitra et al.
1997

4 C4.5 89.0 89.8 Quadrant-200 Klaus et al.
1995

5 Default 54 56 Lymphography Clark et al.
Rule 1989

6 Default 70 71 Breast Cancer Clark et al.
Rule 1989

7 Default 23 26 Primary Clark et al.
Rule Tumor 1989

Table 6. Comparison of average of test accuracy
(in per cent) of various algorithms

Variables used LR RS CJP RJP

Pairwise 75 74 83 84

All * 62 74 74

Note: ‘*’ indicates all variables were not used together in LR because
of its limitation in handling all 8 variables together.
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5.5 Differential Behaviour of Various Techniques
and Contribution of the Study

The behaviour of the various techniques on training
data and test data and their pair wise comparison can be
explained by putting them into four categories
(Table 7). For example, If we compare any two
algorithms say A1 and A2 using the training and the test
data, then the behaviour of the algorithm A1 over the
algorithm A2 would belong to one of the four categories
say 1, 2, 3 or 4 (see column Catg in Table 7). In this
table, the entry ‘worse’ under the column ‘Training Data’
means that algorithm A1 (the first in the pair (A1,A2))
is shown to perform worse than the algorithm A2 for
the training data. Similarly the entry ‘better’ under the
column ‘Test Data’ means that algorithm A1 is shown
to perform better than or equal to the algorithm A2 for
the test data. The overall preference of the algorithm for
the corresponding category is known by the comment
on the overall performance of algorithm A1 over
algorithm A2 (Table 7).

accuracy over training but worse for test when compared
with LR, CJP or RJP algorithms (Table 7, Fig.3,). The
good performance over the training data is not important
but test data performance is certainly important while
comparing the algorithms. Hence in this category,
algorithm 2 is considered better over algorithm 1.
Comparisons of (RS, LR), (LR, CJP), (RS, CJP), (RS,
RJP) fall under category 2. Here, it is observed that LR
performs better than RS and CJP performs better than
LR. This implies CJP is better than RS as well as LR.
Further, (RS, RJP) implies that RJP is better than RS.

Category 3 includes the situation where algorithm
A1 is worse than the algorithm A2 on training data but
better than the algorithm A2 on the test data. In such
cases algorithm A1 is to be selected for forewarning
because they have shown better performance on the test
data due to their least tendency towards over fitting
during model learning. The cases of (LR, RS), (CJP, RS)
and (CJP, RJP) and (RJP, RS) were observed to belong
into this category (Table 7, Fig. 4). Here, the algorithms
LR, CJP and RJP emerge better in pair wise comparison,
but LR is being rejected in its comparison with other
algorithms falling under category 4.

Category 4 includes the behaviour where the
algorithm A1 performs better over algorithm A2 on
training data as well as test data. Whenever any algorithm
is able to achieve this, it means the model is perfect,
model has truly captured the causing agents of the
disease. Naturally, algorithm A1 is considered better over
A2 in this category. The cases of (CJP, LR), (RJP, LR)
and (RJP, CJP) were observed to belong into this
category (Table 7, Fig.3). Consequently, CJP and RJP
are recommended for prediction of the PWM disease.

 Based on the discussion in this section,
contributions of this study in predicting PWM disease
are

1. CJP and RJP model are recommended for
forewarning PWM because of better predicting
accuracy over conventional method namely LR.

2. Temperature and humidity values pertaining to
8-11 days is found more appropriate for predicting
PWM disease.

3. The underlying assumption regarding normal
distribution of the values of the variables is not
necessary to have better prediction.

Table 7. The categories of different behaviour on pair wise
comparison of prediction accuracy of an algorithm A1 with

algorithm A2

(LR, RJP) worse worse 1 worse

(LR, CJP), (RS, LR), better worse 2 worse
(RS, CJP), (RS, RJP)

(LR, RS), (CJP, RS), worse better 3 better
(CJP, RJP), (RJP, RS)

(CJP, LR), (RJP, LR), better better 4 better
(RJP, CJP)

 (Algo A1, Algo A2)
Accuracy of
algo A1 over
algo A2 on

CatG Comment
on

Performance
of A1 with
respect to

A2

Training
data

Test
data

 Category 1 includes the situation where algorithm
A1 performs worse than the algorithm A2 over training
as well as test data. Under this situation A2 is
recommended over A1 for prediction. Comparison of
LR with RJP denoted by (LR, RJP) belongs to this
category (Table 7, Fig. 3). Thus, RJP emerges as the
better performer than LR in this comparison.

 Category 2 includes the behaviour that perform
exclusively better for training data but contrastingly
worse for the test data e.g. RS approach gives better
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4. The resulting model i.e. rules and DT are easy to
interpret as well as easy to apply in comparison to
classical method of LR.

6. CONCLUSIONS

 Powdery Mildew of Mango (PWM) is a
devastating disease and a prediction model to forewarn
the epidemic outbreak of PWM using data from
historical years is required. Predictive models are
developed using the algorithms LR, RS, CJP and RJP
by using different training-test pairs and attributes
representing weather parameters. The results support the
recommendation of CJP and RJP for prediction in crop
diseases as it performs better than LR and RS in terms
of performance parameters. The resulting models are
easy to understand and implement without much
technical expertise. The temperature and humidity
variables relating to 8th-11th days of month of March
are recommended for predicting PWM disease.
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