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1. INTRODUCTION

The concept of ranked set sampling was first
introduced by McIntyre (1952) as a process of improving
the precision of the sample mean as an estimator of the
population mean. This is applicable whenever ranking
of a set of sampling units can be done easily by a
judgement method see, Chen et al. (2004). Ranking by
judgement method is not recommendable if the
judgement method is not mathematically much relevant
with the problem of study. In certain situations, one may
prefer exact measurement of some easily measurable
variable associated with the study variable rather than
making ranking by a crude judgement method. Suppose
the variable of interest say Y, is difficult or much
expensive to measure, but an auxiliary variable X
correlated with Y is readily measurable and can be
ordered exactly. In biological studies, such as in the root
zone analysis of bamboo plants (Bambusa arundinacea),
the shoot height of the plant is a correlated character
with root weight. Clearly shoot height can be measured
very easily whereas root weight measurement requires
uprooting of the sampled plants. Hence, in such
situations, we can choose the most desired plants with
respect to their shoot length value and on which we

 Estimation of Parameters of Morgenstern Type Bivariate Logistic Distribution by
Ranked Set Sampling

 Manoj Chacko and P. Yageen Thomas
University of Kerala, Trivandrum 695 581

(Received: February 2006,  Revised: December 2008,  Accepted: January 2009)

SUMMARY

Ranked set sampling is applicable whenever ranking of a set of sampling units can be done easily
by a judgement method or based on the measurement of an auxiliary variable on the units selected. In
this work, we derive different estimators of the parameters associated with the distribution of the study
variate Y, based on ranked set sample obtained by using an auxiliary variable X correlated with Y for
ranking the sample units, when (X, Y) follows a Morgenstern type bivariate logistic distribution. The
theory developed in this paper is illustarted using a real data. Efficiency comparison among these
estimators are also made.

Key words: Ranked set sample, Morgenstern type bivariate logistic distribution, Best linear
unbiased estimator, Concomitants of order statistics.

measure the root weight for further analysis as presented
in any ranked set sampling (RSS). Thus, as an alternative
to McIntyre (1952) method of ranked set sampling,
Stokes (1977) used an auxiliary variable for ranking of
the sampling units, which is as follows: Choose n
independent bivariate samples, each of size n. In the
first sample, the Y variate associated with smallest ordered
X is measured, in the second sample, the Y variate
associated with the second smallest, X is measured. This
process is continued until theY variate associated with
the largest is measured.

Stokes (1977) suggested the ranked set sample mean
as an estimator for the mean of the study variate Y, when
an auxiliary variable X is used for ranking the sample
units, under the assumption that (X, Y) follows a bivariate
normal distribution. Barnett and Moore (1977) improved
it by deriving the Best Linear Unbiased Estimator
(BLUE) of the mean of the study variate Y, based on
ranked set sample obtained on the study variate Y. Chacko
and Thomas (2007) obtained the BLUE of the parameter
involved in the study variate Y, under the assumption
that (X, Y) follows bivariate Pareto distribution.
Unbalanced RSS arising from Morgentern type bivariate
exponential distribution have been considered by Chacko
and Thomas (2008).
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Chacko and Thomas (2006) used the concomitants
of record values arising from a Morgenstern type
bivariate logistic distribution to estimate some of its
parameters. Sampling to get a given number of record
values will require several selection (uncertain number)
of units and moreover the obtained concomitants of
record values are correlated, which makes one to
determine the variance and covariance of concomitants
of record values to use them for inference problem.
However, in case of Stokes method of ranked set
sampling, the number of units to be selected is definite
and there exists no correlation between one observation
to another as they are drawn from independent samples
so that handling the observations in a ranked set sample
for inference problem will be very easy.

In this work, we consider the case when (X, Y)
follows Morgenstern type bivariate logistic distribution
(MTBLD) with cumulative distribution function (cdf)
defined by (Kotz et al. 2000):
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In Section 2, we derive unbiased estimators of the

parameters 2θ  and 2σ  involved in MTBLD defined by
(1.1) based on a ranked set sample. In Section 3, we

derive the BLUE of 2θ  and 2σ  involved in MTBLD
based on the ranked set sample and have made an
efficiency comparison with corresponding unbiased
estimators developed in Section 2. In Section 4, we
illustrate the methods developed in Section 2 and
Section 3 using real data.

2. UNBIASED ESTIMATORS OF 2θ  AND 2σ

Let (X, Y) be a bivariate random variable which
follows a MTBLD with cdf defined by (1.1). Suppose n
sampling units each of size n are taken. Let X(r)r be the
rth order statistic of the auxiliary variate X in the rth
sample and let Y[r]r be the measurement made on the

variate associated with X(r)r, r = 1, 2, ..., n. By using the
approach of Scaria and Nair (1999) for obtaining means
and variances of concomitants of order statistics arising
from Morgenstern family of distributions, we get the mean
and variance of Y[r]r for 1 r n≤ ≤  as
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Since Y[r]r and Y[s]s for r � s are drawn from two
independent samples, we have

[ ] [ ]Cov[ , ] = 0,r r s sY Y r s≠ (2.3)
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then from (2.1) and (2.2), we can write
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 2
[ ] 2Var[ ] =r r rY δ σ (2.7)

In the following theorem, we propose estimators

*
2θ and *

2σ  of 2θ  and 2σ  involved in (1.1) and prove

that they are unbiased estimators for 2θ  and 2σ .

Theorem 2.1. Let Y[r]r, r = 1, 2, ..., n be the ranked set
sample observations on a study variate Y obtained out
of ranking made on an auxiliary variate Y, when (X, Y)
follows MTBLD as defined in (1.1). Then the ranked
set sample mean given by

*
2 [ ]

=1

1
=

n

r r
r

Y
n

θ ∑ (2.8)

is an unbiased estimator of 2θ and
[ /2]

*
2 [ /2]

=1

=1

1
=

n

rn
r

r
r

Tσ

ξ
∑

∑ (2.9)



ESTIMATION OF PARAMETERS OF MORGENSTERN TYPE BIVARIATE LOGISTIC DISTRIBUTION 79

is an unbiased estimator of �2, where

[ ] [ 1] 1
( ) / 2r r r n r n r

T Y Y
− + − += −  and [.] is the usual greatest

integer function. The variances of the above estimators
are given by
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Applying (2.13) in (2.12), we get

*
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Thus *
2θ  is an unbiased estimator of 2θ . The

variance of *
2θ is given by
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On using (2.1) in the above equation and simplifying,
we get
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The variance of *
2σ  is given by
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On using (2.2) in the above equation and
simplifying, we get
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Thus the theorem is proved.

We compare the variance of *
2θ  with the Cramer

Rao Lower Bound 2 2
2/(3 )nπ σ  of any unbiased estimator

of 2θ  involved in the marginal distribution of Y in (1.1).
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Since
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sampling. It is to be noted that *
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3. BEST LINEAR UNBIASED ESTIMATORS

OF 2θ  AND 2σ

In this section we provide better estimators *
2θ than

and *
2σ  of 2θ and 2σ  respectively by deriving the BLUE
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parameter α  is known. Suppose n sampling units each
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Table 3.1. Variances and efficiences of the estimators

n α *
2Var( )θ 2

ˆVar( )θ *
2Var( )σ 2

ˆVar( )σ 1e 2e

2  0.25  1.641  1.641  236.370  236.371  1.000  1.000

 0.50  1.631  1.631  58.718  58.718  1.000  1.000

 0.75  1.614  1.614  25.819  25.819  1.000  1.000

 1.00  1.589  1.589  14.304  14.304  1.000  1.000

 4  0.25  0.819  0.819  81.934  65.387  1.00001  1.253

 0.50  0.810  0.810  20.249  16.038  1.0002  1.263

 0.75  0.794  0.794  8.826  6.899  1.001  1.280

 1.00  0.772  0.770  4.828  3.699  1.003  1.305

 6  0.25  0.546  0.546  47.548  36.558  1.00002  1.301

 0.50  0.538  0.538  11.725  8.922  1.0002  1.314

 0.75  0.526  0.525  5.091  3.802  1.001  1.339

 1.00  0.509  0.506  2.769  2.009  1.005  1.379

 8  0.25  0.409  0.409  33.146  25.158  1.00002  1.317

 0.50  0.403  0.403  8.163  6.123  1.0003  1.333

 0.75  0.393  0.392  3.537  2.597  1.002  1.362

 1.00  0.379  0.377  1.918  1.360  1.006  1.410

 10  0.25  0.327  0.327  25.345  19.123  1.00002  1.325

 0.50  0.322  0.322  6.237  4.646  1.0004  1.342

 0.75  0.314  0.313  2.699  1.964  1.002  1.374

 1.00  0.302  0.300  1.460  1.024  1.007  1.427

 12  0.25  0.273  0.273  20.482  15.403  1.00002  1.330

 0.50  0.268  0.268  5.038  3.738  1.0004  1.348

 0.75  0.261  0.260  2.178  1.577  1.002  1.381

 1.00  0.251  0.249  1.177  0.819  1.007  1.437

 14  0.25  0.234  0.234  17.170  12.887  1.00002  1.332

 0.50  0.230  0.230  4.221  3.125  1.0004  1.351

 0.75  0.223  0.223  1.824  1.316  1.002  1.385

 1.00  0.214  0.213  0.984  0.682  1.008  1.444

 16  0.25  0.204  0.204  14.773  11.073  1.00003  1.334

 0.50  0.201  0.201  3.631  2.684  1.0004  1.353

 0.75  0.195  0.195  1.568  1.129  1.002  1.389

 1.00  0.187  0.186  0.845  0.583  1.008  1.449

 18  0.25  0.182  0.182  12.959  9.705  1.00003  1.335

 0.50  0.179  0.179  3.184  2.351  1.0004  1.355

 0.75  0.173  0.173  1.374  0.988  1.002  1.391

 1.00  0.166  0.165  0.741  0.510  1.008  1.453

 20  0.25  0.164  0.164  11.540  8.637  1.00003  1.336

 0.50  0.161  0.161  2.835  2.091  1.0004  1.356

 0.75  0.156  0.156  1.223  0.878  1.002  1.393

 1.00  0.149  0.148  0.659  0.453  1.009  1.456
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The variances given by (3.5) and (3.6) can also be
simplified as
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We have computed *
2Var( )θ , 2

ˆVar( )θ , efficiency

* *
2 2 2 2

ˆ ˆ( | ) = Var( ) Var( )e θ θ θ θ of 2θ̂  relative to *
2θ ,
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ˆ( | ) =e σ σ

*
2 2ˆVar( ) Var( )σ σ  of  2σ̂  relative to *

2σ  for

= 0.25(0.25)1α  and = 2(2)20n  and the same are given

in Table 3.1. From this table one can easily see that 2θ̂ is

relatively more efficient than *
2θ . Further, we observe

from the table that for fixed �, both *
2 2

ˆ( | )e θ θ  and

*
2 2

ˆ( | )e σ σ  increasing with n. Also from the table we

notice that the precision obtained for the BLUE 2σ̂  is

more than that obtained for 2θ̂ .

Remark 3.1. If we have a situation with α  unknown,
we introduce an estimator (moment type) for � as
follows. For MTBLD the correlation coefficient between

the two variables is given by 
2= 3 /ρ α π . If r is the

sample correlation coefficient between X(i)i and Y[i]i,
i = 1, 2, ..., n then the moment type estimator for α is
obtained by equating with the population correlation
coefficient ρ  and is obtained as
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r

r

π

α π

π

⎧− ≤ −
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(3.9)

4. AN ILLUSTRATION

In this section, as an application of theory developed
on RSS in the previous sections, we consider a bivariate
data set from Platt et al. (1969) relating to 396 Confir
(Pinus Palustrine) trees. In Chen et al. (2004) also, the
above bivariate data set is reproduced in which the first
component X of a bivariate observation represents the
diameter in centimetres of the Confir tree at breast height
and the second component Y represents height in feet of
the tree. Clearly X can be measured easily but it is
somewhat difficult to measure Y. Also observations, such
ar girth (function of diameter) or height follows normal
distribution. It is well known that logistic distribution is
having more or less similar properties of a normal
distribution (Malik 1985, p. 123) and hence it is known
as an alternative model to normal distribution. Assume
that (X, Y) follows Morgenstern type bivariate logistic
distribution. We select 10 random samples each of size
10 from the 396 tree data and rank the sampling units of
each sample according to the X variate values (diameter
of the tree). From the ith sample, we measure the Y variate
(height of the tree) corresponding to the ith order statistic
of the X variate. The obtained RSS observations are
reported in Table 4.1.

 Table 4.1. RSS observations

i X(i)i Y[i]i

1 6.3 11

2 10.1 28

3 3.8 6

4 4.5 10

5 6.0 16

6 15.9 28

7 38.6 42

8 17.8 38

9 41.4 177

10 51.7 219

The sample correlation between X and Y is 0.883.

Thus, from (3.9), an estimate of α  is taken as 1. We

have obtained the RSS estimators *
2θ  and 2σ̂  derived

in Section 2, the BLUEs 2θ̂  and 2σ̂  based on RSS;
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2 *
2 2( )Varσ θ− , 2

2 2
ˆ( )Varσ θ− , 2 *

2 2( )Varσ σ−  and

2
2 2ˆ( )Varσ σ−  and are given in the Table 4.2 .
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The usual traditional estimators of involved in
MTBLD is the sample mean Y  and its variance is

2 2
2 (3 )nπ σ . For n = 10, this variance is 2

20.3287σ ,

which is clearly larger than *
2Var( )θ  and 2

ˆVar( )θ . This

establishes the advantage of estimating the mean height
of trees more closely to the true value of the mean using
RSS.
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Table 4.2. Estimators and their variances

 Estimator Estimate variance / 2
2σ

 *
2θ 57.500 0.3017

 2θ̂ 60.745 0.2997

 *
2σ 95.062 1.9443

 2σ̂ 108.062 1.0236


