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1. INTRODUCTION

There are many problems of practical interest in
different fields of applied and environmental sciences
in which the various characters opt to change over time
with respect to different parameters. Hence, one is often
concerned with measuring the characteristics of a
population on several occasions to estimate the trend
in time of population means as a time series or the
current value of population mean or the value of
population mean over several points of time. For
example, an investigator or owner of the industry of
cold drinks may be interested in the following types of
problems: (a) The average or total sale of cold drink
for the current season; (b) The change in average sale
of cold drink for two different seasons; or
(c) Simultaneously to know both (a) and (b).

The follow-up of objective is carried out by means
of sampling on successive occasions (over years or
seasons or months) according to a specified rule, with
partial replacement of units, called successive (rotation)
sampling. Successive (rotation) sampling provides a
strong tool for generating the reliable estimates at
different occasions. Theory of rotation (successive)
sampling appears to have started with the work of
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Jessen (1942). He pioneered using the entire
information collected in the previous investigations
(occasions). This theory was extended by Patterson
(1950), Rao and Graham (1964), Gupta (1979), Das
(1982), among others. Sen (1971) developed estimators
for the population mean on the current occasion using
information on two auxiliary variates available on
previous occasion. Sen (1972, 1973) extended his work
for several auxiliary variates. Singh et al. (1991), and
Singh and Singh (2001) used the auxiliary information
on current occasion for estimating the current
population mean in two occasions successive sampling.
Singh (2003) extended their work for h-occasions
successive sampling. In many situations, information on
an auxiliary variate may be readily available on the first
as well as on the second occasion, for example tonnage
(or seat capacity) of each vehicle or ship is known in
survey sampling of transportation, number of polluting
industries and vehicles are known in environmental
survey. Many other situations in biological (life)
sciences could be explored to show the benefits of the
present study. Utilizing the auxiliary information on
both the occasions Feng and Zou (1997), Biradar and
Singh (2001), Singh (2005), Singh and Priyanka (2006,
2007) have proposed varieties of chain-type ratio and
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difference estimators for estimating the population mean
at current (second) occasion in two occasions successive
sampling.

Following the work of Singh and Priyanka (2007)
the objective of the present work is to propose
estimators for estimating population mean at current
occasion using several auxiliary variates. In order to
provide an in-depth presentation of the proposed work,
an illustrative scenario is provided. Consider the case
of public health and welfare of a state or country. In
that case several instances are available that can be
treated as auxiliary variates, such as the number of beds
in different hospitals may be known, number of doctors
and supporting staffs may be available, the amount of
funds available for medicine etc. may be known.
Likewise there are several informations available, which
if efficiently utilized can improve the precision of
estimates. Two estimators have been suggested and its
theoretical properties are discussed. Empirical results
indicate the dominance of proposed estimators over
other existing estimators.

2. FORMULATION OF ESTIMATORS

2.1 Notations

Let ( )1 2 NU = U , U , . . ., U  be the finite

population of N units, which has been sampled over two
occasions. The character under study is denoted by x (y)
on the first (second) occasions respectively. It is
assumed that information on p (non negative integer
constant) auxiliary variates zj, j = 1, 2, ..., p whose
population means are known, closely related (positively
correlated) to x and y on the first and second occasions
respectively, available on the first as well as on the
second occasion. For convenience, it is assumed that
the population under consideration is considerably large
enough. A simple random sample (without replacement)
of n units is taken on the first occasion. A random sub-
sample of m = n � units is retained (matched) for use
on the second occasion, while a fresh simple random
sample (without replacement) of u = (n – m) = n � units
are drawn on the second occasion from the remaining
(N – n) units of the population so that the sample size
on the second occasion is also n. � and � (� + � = 1)
are the fractions of matched and fresh samples
respectively at the second (current) occasion. The
following notations have been considered for the further
use.

X, Y : Population means of the study variate x and

y respectively.

jZ : Population mean of the jth (j = 1, 2, ..., p)

auxiliary variate.

n m u mx , x , y , y  : Sample means of the respective

variates of the sample sizes shown in suffices.

uj nj mjz , z , z  : Sample means of jth (j = 1, 2, ..., p)

auxiliary variate of sample sizes shown in
suffices.

yx xzj yzj zjzk� ��� ��� ��� : Correlation coefficients between

the variates shown in suffices, where
j � k = 1, 2, ..., p.

2 2 2
x y zjS , S , S : Population mean squares of x, y and zj

respectively, where j = 1, 2, ..., p.

2.2 Estimator based on Population Regression
Coefficients

To estimate the population mean on the second
occasion, utilizing information on p auxiliary variates,
two different estimators are suggested. One is a
difference estimator based on sample of size u = (n �)
drawn afresh on the second occasion and is given by

T1 = ( )
p

u yzj j uj
j = 1

y + � � ����∑ (1)

Second estimator is a chain-type difference to
difference estimator based on the sample of size
m (= n �) common with both the occasions and is
defined as

T2 = ( )* * *
m yx n m y + � � ���� (2)

where *
my = ( )

p

m yzj j mj
j = 1

y + � � �−∑

*
nx = ( )

p

n xzj j nj
j = 1

x + � � �−∑
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*
mx =  ( )

p

m xzj j mj
j = 1

x + � � ����∑

and �yx, �xzj and �yzj (j = 1, 2, ..., p) are known
population regression coefficients between the variates
shown in suffices.

Combining the estimators T1 and T2, we have the

final estimator of Y as

T = ( )1 2 	
 �� �� �	 
− (3)

where ϕ  is an unknown constant to be determined
under certain criterion.

2.3 Estimator based on Sample Regression
Coefficients

Replacing the unknown regression parameters by
their consistent estimates, we get the following working
version of the estimator defined in equation (3).

*T = ( )* *
1 2 �
 �� �  
− (4)

where *
1T = ( )( )

p

u yzj j uj
j = 1

y + b u Z z−∑

and *
2T = ( )( )** ** **

m yx n my + b m x  – x

**
my = ( )( )

p

m yzj j mj
j = 1

y + b m Z z−∑

**
nx = ( )( )

p

n xzj j nj
j = 1

 x + b n Z z−∑

**
mx =  ( )( )

p

m xzj j mj
j = 1

 x + b m Z z−∑

ψ is an unknown constant to be determined so that it

minimizes the mean square error of the estimator T*.

yzj yx yzj xzj xzjb (u), b (m), b (m), b (n)  and  b (m)  are the

sample regression coefficients between the variates
shown in suffices and based on the sample sizes
indicated in brackets.

Remark 2.1: If p = 1, estimators T and T* defined in
equations (3) and (4) respectively reduces to Singh and
Priyanka (2007) estimators.

3. BIAS AND VARIANCE (MEAN SQUARE
ERROR) OF PROPOSED ESTIMATORS

3.1 Bias and Variance of the Estimator T

Theorem 3.1.1. T is unbiased estimator of �  .

Proof. Since, T1 and T2 are respectively the difference

type estimators and they are unbiased for � . The final
estimator T is a convex linear combination of T1 and

T2, therefore T is also an unbiased estimator of Y .

Theorem 3.1.2. The variance of the estimator T is given
by

( )V T = ( ) ( ) ( )22
1 2 	 � 
 ��� ����	 � 
 (5)

V(T1) = 
2
y

1
A S

u
(6)

( )2V T =  
2
y

1 1 1
A + B  S

m m n

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(7)

where A = 
p p

2
yzj yzj yzk zjzk

j = 1 j   k = 1

1 � � � �� ��

≠
− ∑ ∑

and B = 
p p

2 2 2
yx yzj yx yzj

j = 1 j = 1

2 � � ���� �� � �
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑

( )
p

2
yx yx yzj jzk zjzk

j   k = 1

+ � ���� � �� ��

≠
∑

Proof. It is clear that the variance of T is given by



256 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

V(T) = ( ) ( ) ( )22
1 2	 � 
 ��� � 	 � 
−

   ( ) ( )1 2+ 2 	 � 	 ��� 
 ��
− (8)

Variance and covariance terms of equation (8) can
be derived as

V (T1) = 
2

1 E T Y⎡ ⎤−⎣ ⎦

= 
p1 1 21 � �yzju N j = 1

⎡⎛ ⎞ ⎢− − ∑⎜ ⎟⎝ ⎠ ⎢⎣

p
2�� � �� � �yzj yzk zjzk y

j k=1

⎤
⎥∑
⎥≠ ⎦

= 
2
y

1 1
A S

u N
⎛ ⎞−⎜ ⎟⎝ ⎠ (9)

V (T2) = 
2

2E T  - Y⎡ ⎤⎣ ⎦

= ( ) ( ) ( ){ } 2
* * *
m yx n mE y - Y + � � ��� ��� � ���⎡ ⎤

⎢ ⎥⎣ ⎦

Taking expectation we get the variance of T2 as

V (T2) =  * 2
y

1 1 1 1
 - A +  - B S

m N m n

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

(10)

where B* = 
p p

2 2
yx xzj yzj yx xzj

j = 1 j = 1

2 � � �� ���� �� �
⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑

                    ( )
p

2
yx yx xzj xzk zjzk

j   k = 1

+ � ���� � �� ��

≠
∑

Since, the estimators T1 and T2 are unbiased
estimators and based on two independent samples of
sizes u and m respectively, hence

Cov (T1, T2) = 0 (11)

Further, we consider the following assumptions:

(i) Population size is sufficiently large (i.e.,

� →∞ ), therefore finite population
corrections (fpc) are ignored.

(ii) “�xzj = �yzj”, ∀  j = 1, 2, ..., p. This is an
intutitive assumption, which has been
considered by Cochran (1977) and Feng and
Zou (1997).

In the light of above assumptions the equations (9)
and (10) take the following form

V(T1) = 
2
y

1
A S

u
(12)

V(T2) = 
2
y

1 1 1
A + B  S

m m n

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(13)

Now substituting the values of V(T1), V( T2 ) and
Cov (T1, T2) from equations (12), (13) and (11)
respectively in equation (8) we get V(T) as in equation
(5).

3.2 Bias and Mean Square Error of T*

Since, *
1T  and *

2T  are the simple linear regression

type and chain-type regression in regression estimators

respectively, they are biased for Y . Therefore, the
resulting estimator T* defined in equation (4) is also

biased estimator of Y . The bias B (.) and mean square
error M (.) up-to the first order of approximations and
for large population of size N ��� (ignoring fpc) are
derived under the following transformations and using
large sample approximations:

( )u 1y = Y 1 + e ( )m 2y = Y 1 + e

( )n 3x = X 1 + e ( )m 4x = X 1 + e

( ) ( )yx yx 5s m = S 1 + e ( ) ( )2 2
x x 6s m = S 1 + e

( ) ( )yzj yzj 7js u = S 1+ e ( ) ( )*
yzj yzj 7js m = S 1+ e

( ) ( )2 2
zj zj 8js u = S 1+ e ( ) ( )2 2 *

zj zj 8js m = S 1+ e

( ) ( )2 2 **
zj zj 8js n = S 1+ e ( ) ( )xzj xzj 9js n = S 1+ e



ON THE USE OF SEVERAL AUXILIARY VARIATES TO IMPROVE THE PRECISION OF ESTIMATES AT CURRENT OCCASION 257

( )uj j 10jz = Z 1+ e ( )mj j 11jz = Z 1+ e

( )nj j 12jz = Z 1+ e

such that ie  < 1 ; lje 1< , *
l  je < 1′  and **

8 je < 1 ,

∀  i  = 1, 2, 3, 4, 5, 6; j = 1, 2, ..., p; l = 7, 8, ..., 12 and
l� = 7, 8.

Under the above transformations *
1T  and *

2T  take
the following forms

*
1T = ( ) ( )( )

p 1
1 yzj j 10j 7j 8j

j=1

Y 1 + e � �� �� ���� ����
−⎡ ⎤

⎢ ⎥−
⎢ ⎥⎣ ⎦

∑

(14)

*
2T = ( ) ( )( )

p -1* *
2 yzj j 11j 7j 8j

j = 1

Y 1+ e  - � �� �� ����� �����∑

       ( )( ) 1
yx 5 6+ � ���� ����

− ( )3 4X e  - e
⎡
⎢
⎢⎣

) ( )( )
p -1* *

xzj j 11j 9j 8j
j = 1

+ � � � ����� ����� �
⎧
⎨
⎩

∑

( )( ) 1**
12j 9j 8j� ����� �����

− ⎤⎫⎥− ⎬
⎥⎭⎦

(15)

Thus, we have the following theorems.

Theorem 3.2.1. The bias of the estimator T* in

estimating the population mean Y , to the first order of
approximations is

( )*B T = ( ) ( ) ( )* *
1 2�� 
 � ��� � 
 (16)

where ( )*
1B T = 

p
012 003

yzj 2
yzjj = 1 zj

C C1
- � ���

u S S

⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦
∑ (17)

and ( )*
2B T =  

p
012 003

yzj 2
yzjj = 1 zj

C C1
�

m S S

⎡ ⎤
⎢ ⎥− −
⎢ ⎥⎣ ⎦

∑

          
300 210

yx 2
yxx

C C1 1
+ � �

m n SS

⎡ ⎧ ⎫⎪ ⎪⎛ ⎞ ⎢− −⎨ ⎬⎜ ⎟⎝ ⎠ ⎢ ⎪ ⎪⎩ ⎭⎣

p
201 003 102111

yx xzj 2 2
yx xzjj = 1 x zj

C C CC
+� � ��� ��� ���

S SS S

⎤⎧ ⎫⎪ ⎪⎥⎨ ⎬⎥⎪ ⎪⎩ ⎭⎦
∑

 (18)

where Crst = ( ) ( ) ( )tr s
i i ij jE x - X y - Y z - Z⎡ ⎤

⎢ ⎥⎣ ⎦
; � �≥ ,

� �≥ , � �≥ , j = 1, 2, ..., p.

Proof. ( )*B T  =  *E T Y⎡ ⎤−⎣ ⎦  = ( ) ( ) ( )* *
1 2�� 
 � ��� � 


where ( )*
1B T  = *

1E T Y⎡ ⎤−⎣ ⎦

= ( ) ( )( )
p -1

1 yzj j 10j 7j 8j
j = 1

E Y 1 + e  - � �� �� ���� ���� ���
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

Expanding the right hand side of the above
expression binomially, taking expectations and
collecting the terms upto the order o(n–1), we have

( )*
1B T  =  

p
012 003

yzj 2
yzjj = 1 zj

C C1 1
-  - � ���

u N S S

⎡ ⎤⎛ ⎞ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦
∑  (19)

Similarly

( )*
2B T = *

2E T - Y⎡ ⎤
⎣ ⎦

= ( ) ( )( )
p -1* *

2 yzj j 11j 7j 8j
j = 1

E Y 1+ e  - � �� �� ����� ����� �
⎡
⎢
⎢⎣

∑

      ( )( )–1
yx 5 6+ � ���� ����  ( )

p

3 4 xzj j
j = 1

X e  – e + � �
⎡
⎢
⎢⎣

∑

( )( )–1* *
11j 9j 8je 1 + e 1 + e

⎧
⎨
⎩

( )( )-1**
12j 9j 8j�� ����� ����� � ��

⎤⎤⎫ ⎥⎥− −⎬ ⎥⎥⎭⎦ ⎦
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Again expanding the right hand side of the above
expression binomially, taking expectations and retaining
the terms upto the first order of approximations we have

( )*
2B T  =  

p
012 003

yzj 2
yzjj = 1 zj

C C1 1
�

m N S S

⎡ ⎤⎛ ⎞ ⎢ ⎥− − −⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦
∑

          
300 210

yx 2
yxx

C C1 1
+ � �

m n SS

⎡ ⎧ ⎫⎪ ⎪⎛ ⎞ ⎢− −⎨ ⎬⎜ ⎟⎝ ⎠ ⎢ ⎪ ⎪⎩ ⎭⎣

p
201 003 102111

yx xzj 2 2
yx xzjj = 1 x zj

C C CC
� � ��� ��� ���

S SS S

⎤⎧ ⎫⎪ ⎪⎥+ ⎨ ⎬⎥⎪ ⎪⎩ ⎭⎦
∑

(20)

Applying N ��� in equations (19) and (20) we

get the expressions for the bias of the estimators T*, *
1T ,

and *
2T  upto the first order of approximations as shown

in equations (16), (17) and (18) respectively.

Theorem 3.2.2. The mean square error of the estimator

T* of the population mean Y , to the first order of
approximations, is given by

( )*M T = ( ) ( ) ( )22 * *
1 2 � 
 � ��� � 
 (21)

where ( )*
1M T =  2

y
1

A S
u

(22)

and ( )*
2M T = 2

y
1 1 1

A +   B S
m m n

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(23)

Proof. By the definition of mean square error we have

M(T*) = 
2*E T  Y⎡ ⎤−⎣ ⎦

= ( ) ( )( ) 2
* *
1 2E  
 ��� � ��� 
 ���⎡ ⎤

⎢ ⎥⎣ ⎦

= ( ) ( ) ( )22 * *
1 2 � 
 � ��� � 


( ) ( )( )* *
1 2+ 2� ���� � � ��� � ���⎡ ⎤

⎢ ⎥⎣ ⎦ (24)

where ( )*
1M T =

2*
1 E T - Y⎡ ⎤

⎣ ⎦

and ( )*
2M T = 

2*
2E T - Y⎡ ⎤

⎣ ⎦

Now, using the expressions given in equations (14)
and (15), expanding binomially, taking expectations,
retaining the terms upto the first order of
approximations we have the following results

( )*
1M T = 

2
y

1 1
  A S

u N
⎛ ⎞−⎜ ⎟⎝ ⎠  (25)

( )*
2M T = * 2

y
1 1 1 1

A + B S
m N m n

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
(26)

In the light of assumptions used in the proof of
Theorem 3.1.2, equations (25) and (26) take the
following forms

( )*
1M T =  

2
y

1
A S

u
 (27)

( )*
2M T = 

* 2
y

1 1 1
A + B S

m m n

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
(28)

Since, the estimators *
1T  and *

2T  are biased

estimators and based on two independent samples of
sizes u and m respectively, therefore for large
population (N ���) we have

( )( )* *
1 2E T - Y T - Y⎡ ⎤

⎣ ⎦  = 0 (29)

Substituting the values of ( )*
1M T , ( )*

2M T  and

( )( )* *
1 2E T Y T Y⎡ ⎤− −⎣ ⎦  from equations (27), (28) and

(29) into equation (24) we get the value of M(T*) as
shown in equation (21).

Remark 3.2.1. From equations (21)-(23), it is visible
that the mean square error upto the first order of
approximations of the estimator T* is exactly similar to
that of the variance of the estimator T in equations
(5)-(7). This is one of the positive aspects of the
estimator T*. The estimator T* is based on sample
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estimates and upto the first order of approximations, it
is equally precise as well as T.

4. MINIMUM VARIANCE (MEAN SQUARE
ERROR) OF PROPOSED ESTIMATOR

4.1 Minimum Variance of T

Since, the variance of T in equation (5) is a
function of unknown constant 	, therefore, it is
minimized with respect to 	 and subsequently the
optimum value of 	 is obtained as

	opt. = 
( )

( ) ( )
2

1 2

V T

V T + V T
(30)

Substituting the value of 	opt. in equation (5), we
get the optimum variance of T as

V(T)opt. = 
( ) ( )
( ) ( )

1 2

1 2

V T .V T

V T +V T
(31)

Further, substituting the values from equations (6)
and (7) in equations (30) and (31) respectively the
simplified values of 	opt. and V(T)opt. are shown in
Theorem 4.1.1.

Theorem 4.1.1.  
[ ]

opt. 2

� ������
	 ��

A + � �⎡ ⎤
⎣ ⎦

 (32)

and  V(Y)opt. =  
[ ] 2

y

2

SA A + ��

nA + � �⎡ ⎤
⎣ ⎦

 (33)

Corollary 4.1.1. If there is no matching, i.e., � = 1 then

( )opt.V T = 
2
y

A
S

n
(34)

Corollary 4.1.2. If there is complete matching, i.e.,
� = 0 then

( )opt.V T = 
2
y

A
S

n
(35)

In both the cases V(T)opt. has the same value,
which is the variance of the difference estimator under

the assumption N ���. This gives an implication that
there must be an optimum choice of �, other than
extreme values so that V(T)opt. will be smaller than the
quantity given in equations (34) or (35). Thus, for
making current estimate (neither the case of “complete
matching” nor the case of  “no matching”) better, it is
always preferable to replace the sample partially.

4.2 Minimum Mean Square Error of T*

Since, mean square error of T* derived in equation
(21) is a function of 
 , it could be minimized with
respect to 
 and we get the optimum value of 
�as


opt. =  
( )

( ) ( )
*
2

* *
1 2

M T

M T  + M T
(36)

Substituting 
opt. from equation (36) into equation
(21) we get

M(T*)opt. = 
( ) ( )
( ) ( )

* *
1 2

* *
1 2

M T .M T

M T  + M T
(37)

Again substituting the values from equations (22)
and (23) in equations (36) and (37) we get the optimum
values of 
�and mean square error of T* upto the first
order of approximations. Since, the mean square error

of the estimators *
1T  and *

2T  upto the first order of

approximations derived in equations (22) and (23) are
coinciding with the expressions of the variances of the
estimators T1 and T2 given in equations (6) and (7)
respectively, hence, upto the first order of
approximations, the values of 
opt. and M(T*)opt. in
equations (36) and (37) will be similar to the
expressions of  	opt. and V(T)opt. derived in equations
(32) and (33) respectively.

5. OPTIMUM REPLACEMENT POLICY

5.1 Optimum Replacement Policy for the
Estimator T

To determine the optimum value of � so that Y
may be estimated with maximum precision, we
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minimize V(T)opt. in equation (33) with respect to �,
which results in a quadratic equation in �, shown as

B �2 + 2 A � – A = 0 (38)

Solving equation (38) for �, the solutions are given as

�̂ = 
A ± A(A + B)

B

−
(39)

The real values of �̂  exists if (A + B) � 0. For
any combinations of correlations, which satisfies this

condition, two real values of �̂ are possible, hence to

choose a value of �̂ , it should be remembered that

ˆ0 � �≤ ≤ , all other values of �̂ are inadmissible.

Substituting the admissible value of �̂ say �0 from
equation (39) in equation (33) we have

V(T)opt. = 
[ ] 2

y0
2
0

SA A + � �
 

n[A + � ��
(40)

5.2 Optimum Replacement Policy for the
Estimator T*

Since, upto the first order of approximations, the
expression of M(T*)opt. given in equation (37) is
coinciding with the expression of V(T)opt. given in
equation (33). Therefore, the optimum replacement
policy of T* is similar to that of T discussed in
Section 5.1.

6. SPECIAL CASE

When the p-auxiliary variates are mutually

uncorrelated, i. e., zjzk� ��� �  ���������!!!��"= ∀ ≠  then the

expression for the optimum value of � and V(T)opt.
reduces to

�̂ =  
* * * **

**

–A  ± A (A  + B )
 

B
(41)

and V(T)opt.* = 

* * ** 2
0 y

* 2 **
0

A A  + � � S

n[A  + � � �

⎡ ⎤
⎣ ⎦

(42)

where A* = 
p

2
yzj

j = 1

 1  �− ∑

and  B** =  
p p

2 2 2
yx yzj yx yzj

j = 1 j = 1

2 � � � ��� �
⎛ ⎞

− ⎜ ⎟⎜ ⎟⎝ ⎠
∑ ∑

7. EFFICIENCY COMPARISON

The percent relative efficiencies of T with respect

to (i) ny , when there is no matching and

(ii) ( )* *
u mŶ= 	 # ��� � 	 #− ′ , when no additional

auxiliary information was used at any occasion, where

( )m m yx n m y = y + � � ��−′ , have been obtained for

different choices of the correlations involved. Since, ny

and Ŷ are unbiased estimators of Y , following on the

line of Sukhatme et al. (1984) the variance of ny and

the optimum variance of Ŷ for large N (i.e., N ���)

are respectively given by

( )nV y = 
2
yS

n
(43)

( ) *opt.

ˆV Y =  ( )
2
y2

yx
S

1 + 1 - �
2n

⎡ ⎤
⎢ ⎥⎣ ⎦

(44)

The percent relative efficiencies E1 and E2 of T

(under optimal condition) with respect to ny  and Ŷ
respectively are given by

E1 = 
( )

( )
n

*opt.

V y
 ×100

V T
 and E2 = 

( )
( )

*opt.

*opt.

ˆV Y

 ×100
V T

7.1 Empirical Study

The expressions of the optimum � (i.e. �0) and the
percent relative efficiencies E1 and E2 are in terms of
population correlation coefficients. Therefore, the values
of �0, E1 and E2 have been computed for different
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choices of positive correlations. For empirical studies,
cases of p = 1, 2 and 3 have been considered.

Case 1. For p = 1, the values of A and B takes the form

A = 2
yz1− ρ  and B = ( )2 2 2

yz yx yx yz2 � � � �����− , which

is the work of Singh and Priyanka (2007).

Case 2. For p = 2 and assuming that the two auxiliary

variates are correlated i.e., 2
z z1 2

0ρ ≠ . The values of A

and B are given by

A = 
2 2
yz1 yz2 yz1 yz2 z1z21 � � ���� � �− −  and

B = ( ) ( )2 2 2 2 2
yx yz1 yz2 yx yz1 yz22� � ��� ��� ���� ���

( ){ }2
yx yx yz1 yz2 z1z2+ 2 � ���� � � �

Substituting these values of A and B in equations (39)
and (40), we have the values of optimum �, V(T)opt.*,
E1 and E2. For different choices of correlations,

Tables 1-4 show the optimum values of � i.e., �0 and
percent relative efficiencies E1 and E2 of T (under

optimal condition) with respect to ny and Ŷ
respectively.

Case 3. For p = 2 and assuming that the two auxiliary
variates are uncorrelated i.e., �z1z2 = 0. The values of
A* and B** are given by

* 2 2
yz1 yz2A = 1 � �− −  and

( ) ( )** 2 2 2 2 2
yx yz1 yz2 yx yz1 yz2B = 2� � ��� �� ���� ���−

Hence, using these values in equations (41) and

(42), the values of optimum �, ( ) *opt.V T , E1 and E2

are shown in Table 5.

Case 4. For p = 3 and assuming that the auxiliary

variates are correlated i.e., zjzk� �� �  ���������$≠ ∀ ≠ .
In this case the values of A and B takes the following
form

Table 1. Optimum values of � and percent relative efficiencies of T with respect to ny  and Ŷ  for yx� =  0.3

yz2� 0.4 0.6 0.8

yz1� z1z2� �0 E1 E2 �0 E1 E2 �0 E1 E2

0.5 0.3 0.490 138.09 134.90 0.475 166.48 162.65 0.435 248.45 242.72

0.5 0.497 125.90 123.01 0.488 141.52 138.26 0.466 182.73 178.52

0.7 0.504 115.74 113.07 0.499 123.20 120.36 0.486 145.13 141.79

0.9 0.509 107.11 104.65 0.508 109.14 106.63 0.501 120.60 117.82

0.7 0.3 0.467 180.38 176.22 0.447 222.22 217.10 0.386 374.82 366.19

0.5 0.482 152.96 149.43 0.475 166.48 162.65 0.452 210.36 205.51

0.7 0.493 132.93 129.87 0.493 133.56 130.48 0.485 148.16 144.75

0.9 0.502 117.63 114.92 0.506 111.69 109.11 0.504 114.81 112.17

0.9 0.3 0.403 327.52 319.97 0.358 464.87 454.17 * - -

0.5 0.444 227.74 222.50 0.440 237.62 232.15 0.411 304.80 297.78

0.7 0.469 175.85 171.80 0.477 162.64 158.89 0.473 169.49 165.58

0.9 0.487 143.66 140.35 0.498 124.26 121.40 0.501 118.61 115.87

Note: * denotes �0 does not exist
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Table 2. Optimum values of � and percent relative efficiencies of T with respect to ny  and Ŷ  for �yx = 0.5

yz2� 0.4 0.6 0.8

yz1� z1z2� �
0

E
1

E
2

�
0

E
1

E
2

�
0

E
1

E
2

0.5 0.3 0.506 142.49 132.95 0.485 170.19 158.79 0.436 248.92 232.25

0.5 0.516 130.52 121.78 0.503 145.86 136.09 0.474 185.92 173.47

0.7 0.524 120.48 112.41 0.518 127.85 119.29 0.501 149.39 139.39

0.9 0.532 111.92 104.42 0.530 113.94 106.30 0.520 125.29 116.90

0.7 0.3 0.476 183.65 171.35 0.450 223.88 208.89 0.379 368.28 343.61

0.5 0.495 157.03 146.52 0.485 170.19 158.79 0.457 212.52 198.28

0.7 0.509 137.44 128.23 0.509 138.05 128.80 0.498 152.35 142.15

0.9 0.523 122.35 114.16 0.528 116.46 108.66 0.525 119.56 111.55

0.9 0.3 0.398 323.80 302.11 0.348 452.52 422.20 * - -

0.5 0.447 229.17 213.82 0.441 238.60 222.62 0.408 302.37 282.12

0.7 0.479 179.27 167.26 0.487 166.46 155.31 0.483 173.11 161.51

0.9 0.502 147.96 138.05 0.517 128.9 120.27 0.522 123.32 115.06

Note: * denotes �
0
 does not exists

Table 3. Optimum values of � and percent relative efficiencies of T with respect to ny  and Ŷ  for ysρ = 0.7

yz2� 0.4 0.6 0.8

yz1� z1z2� �
0

E
1

E
2

�
0

E
1

E
2

�
0

E
1

E
2

0.5 0.3 0.548 154.30 132.25 0.524 183.77 157.51 0.468 267.55 229.31

0.5 0.559 141.56 121.32 0.545 157.88 135.32 0.511 200.51 171.85

0.7 0.569 130.85 112.15 0.562 138.71 118.88 0.542 161.65 138.54

0.9 0.578 121.73 104.33 0.576 123.88 106.18 0.564 135.98 116.55

0.7 0.3 0.513 198.09 169.78 0.484 240.90 206.47 0.407 394.82 338.39

0.5 0.535 169.78 145.51 0.524 183.77 157.51 0.492 228.80 196.10

0.7 0.553 148.92 127.64 0.552 149.57 128.19 0.539 164.80 141.24

0.9 0.567 132.86 113.87 0.573 126.58 108.48 0.570 129.88 111.31

0.9 0.3 0.427 347.34 297.70 0.373 484.87 415.57 * - -

0.5 0.481 246.52 211.28 0.474 256.56 219.89 0.438 324.49 278.11

0.7 0.517 193.43 165.79 0.526 179.80 154.10 0.521 186.88 160.16

0.9 0.543 160.12 137.23 0.561 139.83 119.85 0.566 133.88 114.75

Note: * denotes �0 does not exist
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Table 4. Optimum values of � and percent relative efficiencies of T with respect to ny  and Ŷ  for ysρ = 0.9

yz2� 0.4 0.6 0.8

yz1� z1z2� �
0

E
1

E
2

�
0

E
1

E
2

�
0

E
1

E
2

0.5 0.3 0.661 186.14 133.64 0.637 223.37 160.37 0.580 331.44 237.96

0.5 0.672 170.17 122.17 0.658 190.64 136.87 0.624 244.72 175.70

0.7 0.682 156.84 112.60 0.675 166.62 119.62 0.655 195.37 140.27

0.9 0.691 145.53 104.48 0.689 148.19 106.39 0.677 163.22 117.18

0.7 0.3 0.626 241.63 173.48 0.597 296.74 213.05 0.515 500.42 359.28

0.5 0.648 205.64 147.64 0.636 223.38 160.37 0.604 281.09 201.81

0.7 0.666 179.39 128.79 0.665 180.20 129.37 0.652 199.35 143.12

0.9 0.680 159.33 114.39 0.686 151.53 108.79 0.683 155.63 111.73

0.9 0.3 0.537 436.81 313.61 0.479 622.66 447.03 * - -

0.5 0.593 304.04 218.28 0.587 317.10 227.66 0.549 406.42 291.79

0.7 0.629 235.68 169.21 0.640 218.34 156.75 0.634 227.33 163.21

0.9 0.656 193.45 138.89 0.674 168.02 120.63 0.680 160.60 115.31

Note: * denotes �0 does not exist.

Table 5. Optimum values of � and Percent relative efficiencies of T with respect to ny  and Ŷ

yx
� 0.3 0.7 0.9

yz2� yz1� �
0

E
1

E
2

�
0

E
1

E
2

�
0

E
1

E
2

0.5 0.4 0.477 161.71 157.98 0.528 178.34 153.28 0.641 217.11 155.87

0.6 0.444 227.74 222.50 0.481 246.52 211.28 0.593 304.04 218.28

0.8 0.325 591.16 577.55 0.336 610.76 523.47 0.438 796.37 571.74

0.9 * - - * - - * - -

0.7 0.3 0.435 248.45 242.73 0.468 267.55 229.31 0.580 331.44 237.96

0.5 0.355 473.85 462.94 0.370 493.83 423.25 0.476 634.92 455.84

0.7 * - - * - - * - -

0.9 * - - * - - * - -

0.9 0.3 0.208 1387.00 1355.00 0.210 1402.40 1202.00 0.289 1931.50 1386.70

0.5 * - - * - - * - -

0.7 * - - * - - * - -

0.9 * - - * - - * - -

Note: * denotes �0 does not exist.
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A = 2 2 2
yz1 yz2 yz3 yz1 yz2 z1z21 � �� � ��� � � �⎡− − − ⎣

2 yz1 yz3 z1z3 yz2 yz3 z2z3��� � � ��� � � ⎤⎦

B = ( )2 2 2
yx yz1 yz2 yz32� � ��� ��� �

( )2 2 2 2
yx yz1 yz2 yz3� �� ���� ��� ���−

( )2
yx yx yz1 yz2 z1z2+ 2 � ��� � � �⎡− ⎣

yz1 yz3 z1z3 yz2 yz3 z2z3��� � � ��� � � ⎤⎦

In this case there are seven different correlations.
For few sets of these seven correlations optimum values
of � i.e., �0 and percent relative efficiencies E1 and E2

of T (under optimal condition) with respect to ny  and

Ŷ  respectively have been computed and shown below:

Set 1: �yx = 0.3, �z1z2 = 0.3, �z1z3 = 0.6, �z2z3 = 0.4,
�yz1 = 0.5, �yz2 = 0.6, �yz3 = 0.7, �0 = 0.5010,
E1 = 119.85, E2 = 117.09

Set 2: �yx = 0.3, �z1z2 = 0.3, �z1z3 = 0.6, �z2z3 = 0.4,
�yz1 = 0.9, �yz2 = 0.6, �yz3 = 0.7, �0 = 0.4944,
E1 = 130.80, E2 = 127.79

Set 3: �yx = 0.3, �z1z2 = 0.3, �z1z3 = 0.6, �z2z3 = 0.4,
�yz1 = 0.9, �yz2 = 0.8, �yz3 = 0.7, �0 = 0.4888,
E1 = 140.47, E2 = 137.23

Set 4: �yx = 0.3, �z1z2 = 0.3, �z1z3 = 0.6, �z2z3 = 0.4,
�yz1 = 0.5, �yz2 = 0.8, �yz3 = 0.9, �0 = 0.4847,
E1 = 147.77, E2 = 144.37

Case 5: For p = 3 and assuming the auxiliary variates

are independent (uncorrelated) i.e., �zhk = 0, ∀ j � k =

1, 2, 3 In this case the values of A and B takes the
following form

2 2 2
yz1 yz2 yz3A = 1– � %�� %��

( ) ( )2 2 2 2 2 2 2
yx yz1 yz2 yz3 yx yz1 yz2 yz3B = 2� � �� �� � ��� �� ��−

For few sets of above four correlations, the values
of �0, E1 and E2 are shown below.

Set 1: �yx = 0.3, �yz1 = 0.5, �yz2 = 0.6, �yz3 = 0.5
�0 = 0.3487, E1 = 498.08, E2 = 486.61

Set 2: �yx = 0.5, �yz1 = 0.5, �yz2 = 0.6, �yz3 = 0.5

�0 = 0.3384, E1 = 483.47, E2 = 451.08

Set 3: �yx = 0.7, �yz1 = 0.5, �yz2 = 0.6, �yz3 = 0.5

�0 = 0.3626, E1 = 518.00, E2 = 443.97

Set 4: �yx = 0.9, �yz1 = 0.5, �yz2 = 0.8, �yz3 = 0.9

�0 = 0.4677, E1 = 668.09, E2 = 479.65

8. CONCLUSION

The following conclusions can be read-out from
the present study.

1. From Tables 1-4, it is vindicated that for fixed
values of �yx, �z1z2 and �yz1, the optimum values
of � decreases and E1 and E2 increases with
increasing values of �yz2. Similarly, for fixed values
of �yx, �z1z2 and �yz2, the optimum values of �
decreases and E1 and E2 increases with increasing
values of �yz1. These patterns indicate that smaller
fresh sample at current occasion is required, if
highly correlated auxiliary variates are available.

2. For fixed values of �z1z2, �yz1 and �yz2, the
optimum values of � and E1 increases with
increasing values of �yx while decreasing pattern
in E2 is observed. This behavior is in agreement
with Sukhatme et al. (1984) results, which explains
that more the value of �yx more the fraction of fresh
sample is required at current occasion.

3. For fixed values of �yx, �yz1 and �yz2 the optimum
values of � increases with increasing values of
�z1z2, while E1 and E2 are decreasing with
increasing trends in �z1z2, it means that auxiliary
variates are quite sensitive with respect to the
relation between them.

4. From Table 5 i.e., when auxiliary variates are
uncorrelated, it has been observed that for fixed
values of �yz1and �yz2 the optimum values of � and
E1 increases with the increasing values of �yx,
while no definite patterns are observed in E2.

5. For fixed values of �yz1 and �yx the optimum values
of � decreases, while E1 and E2 increases abruptly
with the increasing values of �yz2. Similar patterns
are visible for the case when the values of �yz2 and
�yx are fixed and increasing values of �yz1 are
observed.



ON THE USE OF SEVERAL AUXILIARY VARIATES TO IMPROVE THE PRECISION OF ESTIMATES AT CURRENT OCCASION 265

6. For p = 3 and when the three auxiliary variates are
mutually correlated then for fixed values of �yx,
�z1z3, �z2z3, �z1z2, �yz2 and �yz3 the values of
optimum � decrease, while E1 and E2 increase with
the increasing values of �yz1. Similar patterns are
observed if the case for the increasing values of
�yz2 or �yz3 is taken into account.

7. For p = 3 and when the three auxiliary variates are
mutually independent, we observed that no specific
pattern is seen and for so many combinations of
correlations the optimum values of � do not exist.
Hence, it is clear that the auxiliary variates are
sensitive with respect to the relation among
themselves.

8. The results obtained for p = 1 and p = 2 are quite
appreciable, while when the number of auxiliary
variates increases, we do not get an encouraging
results. Therefore, it is wise to use utmost two
auxiliary variates out of several available auxiliary
variates. The two auxiliary variates may be chosen,
which are highly correlated with the study variate.

Thus, it is clear that the use of the auxiliary variates
are highly rewarding in terms of the proposed
estimators. It is also clear that if highly correlated
auxiliary variates are used, relatively only a smaller
fraction of sample on the second (current) occasion is
desired to be replaced by a fresh sample reducing cost
of the survey. Hence, they can be recommended for
further use.
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