
J. Ind. Soc. Agril. Statist.
62(3), 2008 : 244-252

1. INTRODUCTION

The problem of estimation of the population total of
a sensitive quantitative variable is well known in survey
sampling. Warner (1965) was the first to suggest an
ingenuous method to estimate the proportion of sensitive
characters like induced abortions, drug used etc., through
a randomization device like a deck of cards, spinners
etc. such that the respondents’ privacy should be
protected. A rich growth of literature can be found in
Tracy and Mangat (1996). Mangat and Singh (1990)
proposed a two-stage randomized response model.
Leysieffer and Warner (1976), and Lanke (1975, 1976)
studied different randomized response procedures at
equal level of protection of the respondents, and later
Nayak (1994), Bhargava (1996), Zou (1997), Bhargava
and Singh (2001, 2002) and Moors (1997) found that
Mangat and Singh (1990) and Warner (1965) models
remain equally efficient at equal protection. Note that
this result is not true for all the randomized response
models. Bhargava (1996), the detail is available in Singh
(2003) on page no. 939-941, shows that Mangat (1994)

model remains more efficient than Warner (1965) model
at equal protection. Note that Mangat (1994) model is a
special case of Kuk (1990) model. Mangat (1994) model
is further improved and studied by Gjestvang and Singh
(2006). Eichorn and Hayre (1983) suggested a
multiplicative model to collect information on sensitive
quantitative variables like income, tax evasion, amount
of drug used etc. According to them, each respondent in
the sample is requested to report the scrambled response
Z

i
 = SY

i
, where Y

i
 is the real value of the sensitive

quantitative variable, and S is the scrambling variable
whose distribution is assumed to be known. In other
words, E

R
(S) = � and V

R
(S) = �2 are assumed to be known

and positive. Then an estimator of the population total
under the simple random and with replacement
(SRSWR) sampling is given by

EHŶ  = 
n i

i 1

ZN

n
∑
= θ  (1.1)

with variance

2 2
2 2 2 2

EH y y
N NˆV(Y ) C Y (1 C )
n n γ= σ + + (1.2)

where 2Cγ  = 2 2γ θ ,  Y Y N=  and y yC Y= σ
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We shall now discuss a randomized response model
recently studied by Bar-Lev, Bobovitch, and Boukai
(2004), which we say BBB model hereafter. In BBB
model, the distribution of the responses is given by

Z
i
 = 

i

i

Y S      with probability  (1-p)

Y         with probability  p

⎧
⎨
⎩

(1.3)

In other words, each respondent is requested to
rotate a spinner unobserved by the interviewer, and if
the spinner stops in the shaded area, then the respondent
is requested to report the real response on the sensitive
variable, say Y

i
; and if the spinner stops in the non-shaded

area, then the respondent is requested to report the
scrambled response, say Y

i
S, where S is any scrambling

variable and its distribution is assumed to be known.
Assume that E(S) = � and  V(S) = �2 are known. Let p be
the proportion of the shaded area of the spinner and

2. GENEPROPOSED GFQRR MODEL

Consider a population � consisting of N units. Let
Y

i
, i  = 1, 2, ..., N, be the value of the ith population unit

of the sensitive quantitative variable. Our aim is to

estimate the population total i
i

Y Y∑
∈Ω

= .  Let �
i
, i � �

be the probability of including the ith unit from the
population � in the sample  with probability design p(s).
The ith respondent selected in the sample is requested to
rotate a spinner having three statements

( i ) report the real value of the sensitive variable, Y
i
,

with probability p
1

( ii) report the scrambled response SY
i
, with probability

p
2

( iii) report the fixed response F, with probability p
3

where S is a scrambling variable and its distribution is
assumed to be known. In other words, if  E

R
 is the

expected value and V
R
 is the variance over the

randomization device used in a survey, then E
R
(S) = �

and V
R
(S) = �2 are assumed to be positive and known.

Conclusively, the distribution of the ith response is given
by

Z
i
 =  

i 1

i 2

3

Y with probability p

SY with probability p

F with probability p

⎧
⎪
⎨
⎪
⎩

(2.1)Fig. 1.1. BBB randomized response device

Fig. 2.1. GFQRR model

(1 – p) be the non-shaded area of the spinner as shown
in Fig. 1.1.

An unbiased estimator of population total Y is given
by

( )BBBŶ =  
n

i
i 1

N
Z

n{(1 p) p}
∑
=− θ + (1.4)

with variance under SRSWR sampling given by

ˆV[Y ](BBB) =  
2

2 2 2 2
y y s

N
Y [C (1 C )C (p)]

n
+ + (1.5)

where

2
sC (p) = 

2 2

2

(1 p) (1 C ) p
1

[(1 p) p]

γ− θ + +
−

− θ +
In the next section, we generalize the FQRR model

due to Gjestvang and Singh (2006) to a the generalized
forced quantitative randomized response (GFQRR)
model.

Consequently, we have the following theorem.
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Theorem 2.1. An unbiased estimator of the population
total is given by

pŶ = i 3
i

i s 1 2

Z p F
d

p p
∑
∈

⎛ ⎞−
⎜ ⎟+ θ⎝ ⎠

(2.2)

where d
i
 = 1

i
−π are called design weights.

Proof. Let  E
p
 and  E

R
 be the expected values over the

design p and the randomization device, say spinner, thus
we have

( )p
ˆE Y =  i 3

p R i
i s 1 2

Z p F
E E d

p p
∑
∈

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟+ θ⎝ ⎠⎣ ⎦

p i i
i s

E ( d Y ) Y∑
∈

= =

which proves the theorem.

Theorem 2.2. The minimum variance of the proposed

estimator pŶ  is given by

2
p ij i i j j

i j

1ˆmin.V(Y ) (d Y d Y )
2
∑ ∑
≠ ∈Ω

= Θ −

2 2 2 2
1 2 1 2 i i2 i1 2

1
[{p p ( ) (p p ) } d Y

(p p ) ∈Ω
+ + γ + θ − + θ Σ

+ θ
2 2

1 2 i i
i

3 i
i

(p p ) ( d Y )
]

(1 p )( d )
∈Ω

∈Ω

+ θ Σ
−

− Σ
(2.3)

where ijΘ  = i j ij( )π π − π .

Proof. Let V
R
 and V

p
 denote the variance over the

randomization device, say spinner, and over the design,
we have

^
pV(Y )

= i 3 i 3
P R i p R i

1 2 1 2i S i S

Z p F z p F
V E d E V d

p +p p +pθ θ∈ ∈

⎡ ⎤ ⎡ ⎤− −⎛ ⎞ ⎛ ⎞+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑

= 2 R i
p i i p i 2i s i s 1 2

V (Z )
V d Y E d

(p p )
∑ ∑
∈ ∈

⎛ ⎞⎡ ⎤ + ⎜ ⎟⎢ ⎥⎣ ⎦ + θ⎝ ⎠

= 
2

ij i i j j
i j

1
(d Y d Y )

2
∑ ∑
≠ ∈Ω

Θ −

2 2 2 2
1 2 1 2 i i2 i1 2

1
{p p (1 C ) (p p ) } d Y

(p p )
∑γ
∈Ω

⎡
+ + θ + − + θ⎢

+ θ ⎣

2
3 3 i 3 1 2 i i

i i
p (1 p )F d 2p F(p p ) d Y∑ ∑

∈Ω ∈Ω

⎤+ − − + θ ⎥⎦
(2.4)

On differentiating (2.4) with respect to  and setting
equal to zero, we have

F =  
1 2 i i

i

3 i
i

(p p ) d Y

(1 p ) d

∑
∈Ω
∑
∈Ω

+ θ

− (2.5)

On substituting (2.5) into (2.4) we get (2.3), it
proves the theorem.

In the next section, we show that the BBB model
and Eichhorn and Hayre (1983) are special cases of the
proposed GFQRR model.

2.1 Special Cases

Case I. If p
1
 = 0, p

2
 = 1, and p

3
 = 0, then the proposed

GFQRR model reduces to the Eichhorn and Hayre (1983)
model.

Case II. If p
1
 = p, p

2
 = (1 – p) and p

3
 = 0, then the proposed

GFQRR model reduces to the BBB model.

Case III. Note that a quantitative forced alternative
randomization device, due to Liu and Chow (1976a,
1976b), is valid only for estimating the proportion of a
sensitive attribute in population unlike the proposed
model, which estimates the average of a quantitative
sensitive variable. Interestingly, note that if X

i
 is a

qualitative variable, take 1 and 0 value for a sensitive
and non-sensitive attribute in the population, set  Z = 0
as forced “no” answer, and set  as forced “yes” answer,
then the present model is reduced to an optimized forced
alternative randomizing device proposed by Stem and
Steinhorst (1984).

2.2. Estimation of Variance

From (2.4), we suggest an approximate unbiased

estimator of the variance p
ˆV(Y ) as
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p
ˆv̂(Y )  = 

2 2 2
ij i i j j 3 i j

i j s
2 2

1 2

D [(d Z d Z ) p F (d d ) ]

2{p p ( )}

∑ ∑
≠ ∈

− − −

+ γ + θ

           
2 2 2

1 2 1 22
1 2

1
[{p p (1 C ) (p p ) }

(p p )
γ+ + θ + − + θ

+ θ

2 2
2 2 2i 3
1 3 3 i2 2i S i s1 2

Z p F
d p (1 p )F d

p p ( )
∑

∈ ∈

⎛ ⎞−
Σ + −⎜ ⎟

+ γ + θ⎝ ⎠

           
2 i 3

3 1 2 i
i s 1 2

Z p F
2p F(p p ) d ]

p p
∑
∈

⎛ ⎞−
− + θ ⎜ ⎟+ θ⎝ ⎠  (2.6)

where ij ij ijD = Θ π . Unfortunately, the estimator of
variance depends on the unknown value   which depends
on the value of the sensitive variable.

2.3  Relative Efficiency

Under simple random and without replacement
(SRSWOR) sampling, we have �

i
 = n/N and

�
ij
 = n(n – 1)/N(N – 1). Thus, the minimum variance of

the proposed estimator pŶ  is given by

 

2 2
2

p srswor y

2 2
s 1 2 y

3

N Y N(1 f )ˆmin.V(Y ) C
n (N 1)

1
C (p ,p )(1 C )

(1 p )

−⎡= ⎢ −⎣
⎤+ + − ⎥− ⎦

(2.3.1)

where

2
s 1 2C (p ,p )  =  

2 2
1 2

2
1 2

p p (1 C )
1

(p p )

γ+ θ +
−

+ θ
(2.3.2)

Additionally, the percent relative efficiency (RE)
of the proposed GFQRR model under SRSWOR
sampling with respect to the BBB model under SRSWR
sampling design is given by

p srswor
ˆRE(BBB,Y )

= 

2 2 2
y s

2 2 2
y s 1 2 y

3

C (1 C )C (p)
100%

N(1 f ) 1
C C (p ,p )(1 C )

(N 1) (1 p )

γ

⎡ ⎤
⎢ ⎥+ +
⎢ ⎥ ×−⎢ ⎥+ + −⎢ ⎥− −⎣ ⎦

(2.3.3)

We observe through simulation that the relative
efficiency is highly sensitive towards the mean value of
the scrambling variable �. If we consider a very large
value of �, then the relative efficiency

p srswor
ˆRE(BBB,Y )  of the proposed estimator with

respect to the BBB model converges to 100% as the value
of the scrambling variable’s coefficient of variation also
becomes large. Following Cochran (1977), the value of
the coefficient of variation should be around 10% for
any consistent and practicable data sets. Thus, we decided
to choose N = 10,000, n = 100 three values of p

1
 = p =

0.7, 0.8, 0.9, p
2 
= 2(1 – p

1
)/3,  and p

3
 = (1 – p

1
 – p

2
).

If � =10 and the values of the coefficient of
variations of the scrambling variable and sensitive
variable were kept same, that is,  C

y
 = C

�
 were chosen

between 0.01 and 0.60 with a step of 0.01. Then, the
percent relative efficiency of the GFQRR model with
respect to the BBB model is shown in the Fig. 2.2. If we

Fig. 2.3 RE of the proposed GFQRR model with respect to the
BBB model

Fig. 2.2 RE of the GFQRR model with respect to the BBB model



248 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

change ��= 1, and keep the other parameters at the same
level, then the results are presented in the Fig. 2.3.

Fig. 2.3 shows that if the mean value  of the
scrambling variable is less than one, then more gain is
expected from the proposed model at higher values of
the coefficient of variations of the scrambling variable
or sensitive variable.  Note that for higher value of �, the
proposed GFQRR model may perform pitiable than the
BBB model, thus the proposed model could be more
beneficial if it is used with a scrambling variable having
the mean value � close to one as used by Gupta
et al. (2000). The proposed model may perform better
for higher value of coefficient of variation of the
scrambling variable in a situation as shown in Fig 2.3.
Singh and Mathur (2005) have considered situations
where the values of the coefficient of variations of the
scrambling variable and the sensitive variable can be
between 0 and 6 with a step of 0.1.

Now, the estimator (2.2) depends upon F, which in
turn depends upon Y

i
 values, and hence it is not

practicable estimator. To overcome this difficulty, we
consider a new strategy discussed in the next section.

3. PRACTICAL GFQRR MODEL

In this case, we suggest to take two independent
random samples  s

1
 and s

2
 from the population ��using

the sampling design p(s
1
). In the first sample s

1
, each

respondent selected is requested to experience the spinner
as shown in Fig. 3.1.

Note that the value of  F
1
 has to be decided before

doing the survey based on the parameters to be used in
the second spinner used in the second independent
survey. Here, this proposed GFQRR model differs from
the existing randomization devises. In other words,
although both samples are independent, the devices are
dependent on each other.

Consequently, the distribution of the ith response in
the first sample s

1
 is given by

Z
1i
 = 

i 1

1 i 2

1 3

Y with probability p

S Y with probability p

F with probability p

⎧
⎪
⎨
⎪
⎩

 (3.1)

where S
1
 is a scrambling variable such that ( )R 1 1E S = θ ,

( ) 2
R 1 1V S = γ and 

1
2 2 2

1 1Cγ = γ θ are assumed to be known

and positive.

In the second independent random sample s
2
, each

respondent selected is requested to experience the spinner
as shown in Fig. 3.2.
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Fig. 3.1. GFQRR spinner for the first sample.
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Fig. 3.2. GFQRR spinner for the second sample.

In this case, the distribution of the ith response in
the second sample s

2
 is given by

2iZ  =  

i 4

2 i 5

2 6

Y with probability p

S Y with probability p

F with probability p

⎧
⎪
⎨
⎪
⎩

(3.2)

where 6 2 3 1p F p F= (3.3)
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and S
2
 is a scrambling variable such that

( )R 2 2E S = θ , ( ) 2
R 2 2V S = γ  and 

2
2 2 2

2 2Cγ = γ θ  are

assumed to be known and positive.

Then we have the following theorem:

Theorem 3.1. An unbiased estimator of the population
total  is given by

1 2
ff 1i 1i 2i 2i

i s i s

1
Ŷ d Z d Z∑ ∑

∈ ∈

⎡ ⎤
= −⎢ ⎥∆ ⎣ ⎦

(3.4)

where 1 4 2 1 5 2(p p ) (p p )∆ = − + θ − θ , and 1
1i 1id −= π ,

1
2i 2id −= π  are the design weights used in the first and

second sample respectively; and 1 R 1E (S )θ =  and

2 R 2E (S )θ =  are the known means of the scrambling

variables S
1
 and S

2
 used in the first and second sample,

respectively.

Proof. Taking expected value on both sides of (3.4) we
have

ff
ˆE(Y )  = 1 2

1i 1i 2i 2i
i s i s

d Z d Z

E

∑ ∑
∈ ∈

−⎡ ⎤
⎢ ⎥
⎢ ⎥∆
⎢ ⎥⎣ ⎦

=  1 2
1i 1i 2i 2i

i s i s
p R

1 4 2 1 5 2

d Z d Z

E E
(p p ) (p p )

∑ ∑
∈ ∈

−⎡ ⎤
⎢ ⎥
⎢ ⎥− + θ − θ
⎢ ⎥⎣ ⎦

= 1 2
1i R 1i 2i R 2i

i s i s
p

1 4 2 1 5 2

d E (Z ) d E (Z )

E
(p p ) (p p )

∑ ∑
∈ ∈

−⎡ ⎤
⎢ ⎥
⎢ ⎥− + θ − θ
⎢ ⎥⎣ ⎦

=  

1 1

2

1i 1 2 1 i 3 1 1i
i s i s

2i 4 5 2 i 5 2 2i
i s i s2

p
1 4 2 1 5 2

[ d (p p )Y p F d

d (p p )Y p F d ]

E
(p p ) (p p )

∑ ∑
∈ ∈

∑ ∑
∈ ∈

+ θ +⎡ ⎤
⎢ ⎥
⎢ ⎥− + θ −⎢ ⎥
⎢ ⎥

− + θ − θ⎢ ⎥⎣ ⎦

= 
1 2 1 i 3 1 4 5 2 i 5 2

i i

1 4 2 1 5 2

(p p )Y p F N (p p )Y p F N

(p p ) (p p )

∑ ∑
∈Ω ∈Ω

+ θ + − + θ −

− + θ − θ

= i
i

Y Y∑
∈Ω

=

which proves the theorem.

Theorem 3.2. The minimum variance of the proposed

estimator ffŶ is given by

ff
ˆMin.V(Y )

( )

( )

2
1 2 1 2

1ij 1i i 1j j2 i j

2
4 5 2 2

2ij 2i i 2 j j
i j

p p1
(d Y d Y )

2

p p
(d Y d Y )

2

∑ ∑
≠ ∈Ω

∑ ∑
≠ ∈Ω

⎡ + θ⎢= Θ −
⎢∆ ⎣

+ θ
+ Θ −

   
2

1 1 2 1 1i i
i

{ (p p )} d Y∑
∈Ω

+ Ψ − + θ

       
2

2 4 5 2 2i i
i

{ (p p )} d Y∑
∈Ω

+ Ψ − + θ

2
1 2 1 1i i

i

1ij 1i 1j 1i i 1j j
i j

3
4 5 2 2i i

i

1ij 1i 1j 1i i 1j j
i j

2
23

3 1i 1ij 1i 1j
i i j

3 6 6 2i
i

(p p ){ d Y

1
(d d )(d Y d Y )}

2
p

(p p ){ d Y

1
(d d )(d Y d Y )}

2

p
(1 p ) d (d d )

2

{p (1 p ) / p } d

∑

∑ ∑

∑

∑ ∑

∑ ∑ ∑

∑

∈Ω

≠ ∈Ω

∈Ω

≠ ∈Ω

∈Ω ≠ ∈Ω

∈Ω

+ θ⎧ ⎫
⎪ ⎪
⎪ ⎪

− Θ − −⎪ ⎪
⎪ ⎪
⎨ ⎬+ + θ⎪ ⎪
⎪ ⎪
⎪ ⎪− Θ − −⎪ ⎪⎩ ⎭−

− + Θ −

+ −

+ 26
2ij 2i 2 j

i j

p
(d d )

2
∑ ∑
≠ ∈Ω

⎤
⎥
⎥⎧ ⎫ ⎥⎦⎪ ⎪

⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪

Θ −⎪ ⎪
⎩ ⎭

(3.5)

where 1ij 1i 1j 1ij( )Θ = π π − π ,  2ij 2i 2 j 2ij( )Θ = π π − π ,

1
2 2

1 1 2 1{p p (1 C )}γΨ = + θ + and

2
2 2

2 4 5 2{p p (1 C )}γΨ = + θ + .

Proof. Let V
R
 and V

p
 denote the variance over the

randomization device and over the designs used in the
independent samples, then

ff
ˆV(Y )  =  

1 2
1i 1i 2i 2i2 i s i s

1
V d Z V d Z∑ ∑

∈ ∈

⎡ ⎤⎛ ⎞ ⎛ ⎞
+⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∆ ⎢ ⎥⎣ ⎦

(3.6)

Now we have

1
1i 1i

i s
V d Z∑

∈

⎛ ⎞
⎜ ⎟⎝ ⎠

= 
1 1

p R 1i 1i p R 1i 1i
i s i s

V E d Z E V d Z∑ ∑
∈ ∈

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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= 
1 1

p 1 2 1 1i i 3 1 1i
i s i s

V (p p ) d Y p F d∑ ∑
∈ ∈

⎛ ⎞
+ θ +⎜ ⎟⎝ ⎠

 
1

2
p 1i R 1i

i s
E d V (Z )∑

∈

⎛ ⎞
+ ⎜ ⎟⎝ ⎠

2 2 2 2
1 2 1 1ij 1i i 1j j 1 2 1 1

i j

1
(p p ) (d Y d Y ) {p p ( )

2
∑ ∑
≠ ∈Ω

⎧ ⎫
= + θ Θ − + + γ + θ⎨ ⎬

⎩ ⎭

  
2 2

1 2 1 1i i
i

(p p ) } d Y∑
∈Ω

− + θ

  
2 2 2

1 3 3 1i 3 1ij 1i 1j
i i j

1
F p (1 p ) d p (d d )

2
∑ ∑ ∑
∈Ω ≠ ∈Ω

⎧ ⎫
+ − + Θ −⎨ ⎬

⎩ ⎭

  3 1 1 2 1 1i i 1ij 1i 1j 1i i 1j j
i i j

1
2p F (p p ) d Y (d d )(d Y d Y )

2
∑ ∑ ∑
∈Ω ≠ ∈Ω

⎧ ⎫
− + θ − Θ − −⎨ ⎬

⎩ ⎭

(3.7)
Similarly,

2
2i 2i

i s
V d Z∑

∈

⎛ ⎞
⎜ ⎟⎝ ⎠

= 
2 2 2 2

4 5 2 2ij 2i i 2 j j 4 5 2 2
i j

1
(p p ) { (d Y d Y ) } {p p ( )

2
∑ ∑
≠ ∈Ω

+ θ Θ − + + γ + θ

  
2 2

4 5 2 2i i
i

(p p ) } d Y∑
∈Ω

− + θ

  
2 2 2
2 6 6 2i 6 2ij 2i 2 j

i i j

1
F p (1 p ) d p (d d )

2
∑ ∑ ∑
∈Ω ≠ ∈Ω

⎧ ⎫
+ − + Θ −⎨ ⎬

⎩ ⎭

   6 2 4 5 2 2i i 2ij 2i 2 j 2i i 2 j j
i i j

1
2p F (p p ) d Y (d d )(d Y d Y )

2
∑ ∑ ∑
∈Ω ≠ ∈Ω

⎧ ⎫
− + θ − Θ − −⎨ ⎬

⎩ ⎭
(3.8)

On substituting (3.7) and (3.8) into equation (3.6)
and using the relation (3.3) and then setting

ff

1

ˆdV(Y )
0

dF
=

We have

 

1 2 1 1i i 1ij 1i 1j 1i i 1j j
i i j

4 5 2 2i i 2ij 2i 2 j 2i i 1j j
i i j

1 2
23

3 1i 1ij 1i 1j
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2

1
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2
F
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2
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∈Ω ≠ ∈Ω

∑ ∑ ∑
∈Ω ≠ ∈Ω

∑ ∑ ∑
∈Ω ≠ ∈Ω

∑
∈Ω

⎡ ⎤⎧ ⎫
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⎩ ⎭⎢ ⎥
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2
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Θ −
⎢ ⎥⎣ ⎦

(3.9)

The use of (3.9) in (3.6) leads to (3.5), and which
proves Theorem 3.2. Under simple random and with
replacement (SRSWR) sampling the results reduce to
Gjestvang and Singh (2006). Note that it is not an easy
process to suggest an unbiased estimator of variance if
the value of F

1
 is unknown.

3.1 Relative Efficiency

Let 1i 1n Nπ = , 2i 2n Nπ = , �
lij
 = n

1
(n

1
 – 1)/N

(N – 1), and �
2ij

 = n
2
(n

2
 – 1)/N(N – 1) be the two

independent SRSWOR samples taken from the

population. Let  1 1f n N=  and  2 2f n N=  denote the

finite population correction factors for simple random
without replacement samples. Then the variance of the
proposed GFQRR model becomes

ff
ˆV(Y ) = 

2 2
22 4 5 21 1 2 1
y2

1 2

(1 f )(p p )(1 f )(p p )N Y N
C

n n N 1

⎡⎧ ⎫− + θ− + θ ⎛ ⎞+⎨ ⎬⎢ ⎜ ⎟⎝ ⎠−∆ ⎩ ⎭⎣

2 2 4 5 21 1 2 1
y

1 2

(p p )(p p )
(1 C )

n n
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⎩ ⎭

{ }2
3 1 2 1 1 4 5 2 2

3 1 3 6 2 6

p (p p ) n (p p ) n

{(1 p ) n p (1 p ) (n p )}

⎤+ θ + + θ ⎥−
− + − ⎥⎦

(3.1.1)

Let n
1
 = n

2
 = n/2, then (3.1.1) can be written as

{ }( )
2 2

2
ff 1 2 1 4 5 2 y2

2N Y NˆV(Y ) 1 f 2 p p p p C
N 1n

⎡
⎢ ⎛ ⎞= − + θ + + θ ⎜ ⎟⎢ ⎝ ⎠−∆ ⎢⎣

     { }2
y 1 1 2 1 2 4 5 2(1 C ) (p p ) (p p )+ + Ψ − + θ + Ψ − + θ

     
{ }2

3 1 2 1 4 5 2

3 3 6 6

p (p p ) (p p )

{(1 p ) p (1 p ) p }

⎤+ θ + + θ ⎥−
− + − ⎥⎦

(3.1.2)

Thus percent relative efficiency (RE) of the
proposed GFQRR model with respect to BBB model is
given by

BBB ff
ˆ ˆRE(Y ,Y )  = BBB

ff

ˆV(Y )
100%

ˆV(Y )
×

( )

2 2 2 2
y y p

2
1 2 1 4 5 2 y

2
y 1 1 2 1 2 4 5 2

2
3 1 2 1 4 5 2

3 3 6 6

{C (1 C )C } 100%

N
(1 f 2) p p p p C

N 1

(1 C ){ (p p ) (p p )}

p {(p p ) (p p )}
 

{(1 p ) p (1 p ) p }

∆ + + ×
=
⎧ ⎫⎛ ⎞− + θ + + θ⎪ ⎪⎜ ⎟⎝ ⎠−⎪ ⎪
⎪ ⎪+ + Ψ − + θ + Ψ − + θ⎨ ⎬
⎪ ⎪

+ θ + + θ⎪ ⎪−⎪ ⎪− + −⎩ ⎭

(3.1.3)

The relative efficiency expression in (3.13) depends
upon several choices. Thus, to look at the behavior of
the performance of the proposed GFQRR model with
respect to BBB model, we considered a situation where
N = 10,000, n = 100, ��= 500, �

1
 = 100, �

2
 = 900,  P

1
 = P

= 0.8 (equal protection in the both GFQRR and BBB
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models), P
2
 = 2(1 – P

1
)/3, P

4 
= 0.2 and P

5
 = 2(1 – P

4
)/3.

The value of the coefficient of variation Cy of the
sensitive variable changed between 0.1 and 0.9 with a
step of 0.2 as shown in Fig 3.1. The values of the
coefficient of variation of the three scrambling variables
were kept same between 0.1 and 6 with a step of 0.1 by
following Singh and Mathur (2005), that is C

�
 = C

�1
 =

C
�2

. If the value of coefficient of variation of the
scrambling variable becomes more than 2, then the RE
becomes almost constant.
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