
J. Ind. Soc. Agril. Statist.
62(3), 2008 : 214-220

1. INTRODUCTION

 Multiple linear regression (MLR) methodology is
extensively employed to determine relationship between
response variable and a set of predictors (Sengupta
et al. 2001). However, one limitation of this methodology
is that resultant model is assumed to be “linear”. In a
realistic situation, this assumption is rarely satisfied.
Also, if there are several predictors, it is well nigh
impossible to have an idea of underlying nonlinear
functional relationship between response variable and
predictors. Fortunately, to handle such a situation, an
extremely powerful approach of “Artificial neural
networks” (ANNs) is rapidly developing. Recently,
Singh and Prajneshu (2007) have thoroughly studied
“Multilayered Feedforward ANN” and applied it to
forecast maize crop yield on the basis of four predictors.

Another limitation of MLR is that underlying
phenomenon, response variable, and predictors are all
assumed to be “crisp” or “precise”. In reality, one or
more of these is vague, or imprecise, or fuzzy.
Accordingly, area of “Fuzzy logic” has been developed
(Klir and Yuan 2000). Incorporating this aspect in ANN
methodology, a rapidly developing area of “Neuro-
fuzzy” has been emerging (Rutkowaska 2002). In an
excellent paper, Abraham et al. (2004) applied Neuro-

Neuro-Fuzzy Approach for Modelling and Forecasting: An Application

Rama Krishna Singh and Prajneshu
Indian Agricultural Statistics Research Institute, New Delhi

(Received: June 2007)

SUMMARY

 Artificial neural network and Fuzzy logic provide attractive ways to capture nonlinearities present
in a complex system. Neuro-Fuzzy modelling, which is a newly emerging versatile area, is a judicious
integration of merits of above mentioned two approaches. In this paper, an important model from this
class, viz. Adaptive Neuro-Fuzzy Inference System (ANFIS) is thoroughly studied. The model is
implemented on Fuzzy Logic Toolbox of MATLAB using ANFIS. As an illustration, the methodology
is applied for development of a forecasting model for secondary data of yield of 100 banana plants on
the basis of data at six different stages of growth using several biometrical characters like plant height,
plant girth and leaf length as predictors.

Key words: Neuro-Fuzzy, ANFIS, Membership function, MATLAB, Mean square error.

fuzzy techniques for forecasting time-series
meteorological subdivisions level data of Kerala.
However, in that paper, development of the process only
over time was considered. Extension and application of
this type of work when several predictors are present, is
a challenging task.

Purpose of this paper is to make an indepth study
of “Adaptive neuro-fuzzy inference system (ANFIS)”,
which is most popular in the family of Neuro-fuzzy
modelling. As an illustration, ANFIS model, using
“MATLAB Fuzzy Logic Toolbox” is applied for
development of a forecasting model for secondary data
of yield of 100 banana plants on the basis of data at six
different stages of growth using several biometrical
characters like plant height, plant girth, and leaf length
as predictors.

 2. NEURO-FUZZY COMPUTING

In a real world situation, traditional equation based
techniques are not suitable for modelling nonlinearity.
Neuro-fuzzy computing (Jang et al. 2004) is a judicious
integration of merits of neural and fuzzy approaches.
This incorporates generic advantages of Artificial neural
networks like massive parallelism, robustness, and
learning in data-rich environments into the system.

NEURO-FUZZY MODELLING 215

Modelling of imprecise and qualitative knowledge as
well as transmission of uncertainty is possible through
use of Fuzzy logic (Klir and Yuan 2000). Present study
is based on ANFIS, which is a multilayered feedforward
ANN consisting of nodes and directional links through
which nodes are connected. Moreover, part or all the
nodes are adaptive, which means that their outputs
depend on incoming signals and on the parameter(s)
pertaining to these nodes. ANFIS either uses input/output
data sets to construct a fuzzy inference system whose
membership functions are tuned using a learning
algorithm or an expert may specify a fuzzy inference
system and then the system is trained with data pairs by
an adaptive network. Conceptual diagram of ANFIS is
shown in Fig. 1.

 A Fuzzy inference system (FIS) has five functional
blocks. A fuzzifier converts real numbers of input into
fuzzy sets. The database (or dictionary) contains the
membership functions of fuzzy sets. The membership
functions provide flexibility to fuzzy sets in modelling.
A rule base consists of a set of linguistic statements of
the form, if x is A then y is B, where A and B are labels
of fuzzy sets on universes of discourse X and Y,
respectively. An inference engine performs the inference
operations on the rules to infer the output by a fuzzy
reasoning method. Defuzzifier converts the fuzzy outputs
obtained by inference engine into a non-fuzzy output
real number domain. In order to incorporate the

capability of learning from input/output data sets in fuzzy
inference systems, a corresponding Adaptive network
is generated. An Adaptive network is a multilayered
feedforward network consisting of nodes and directional
links through which nodes are connected. As shown in
Fig.1, Layer 1 is the input layer; Layer 2 describes
membership functions of each fuzzy input, Layer 3 is
inference layer and normalization is performed in
Layer 4. Layer 5 gives output and Layer 6 is
defuzzification layer. Learning rule specifies how
parameters of adaptive nodes should be changed to
minimize a prescribed error measure. Change in values
of parameters results in change in shape of membership
functions associated with FIS. The modelling process
based on ANFIS can broadly be classified in three steps:

Step 1: System Identification

First step in system modelling is identification of
input and output variables called system’s variables.

Step 2: Determining Network Structure

Once input and output variables are identified,
Neuro-fuzzy system is realized using a six-layered
network.

Layer 1 (Input Layer)

Each node in Layer 1 represents input variables of
the model. This layer simply transmits these input
variables to fuzzification layer.

 Fig. 1. Conceptual diagram of ANFIS

216 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Layer 2 (Fuzzification Layer)

 This layer describes membership function of each
input fuzzy set. Membership functions are used to
characterize fuzziness in fuzzy sets. Output of each node

i in this layer is given by ()A ii
� � , where ()A� � denotes

membership function. Its value on unit interval [0,1]
measures degree to which element x belongs to fuzzy
set A, x

i
 is input to node i and A

i
is linguistic label for

each input variable associated with this node. Gausian
membership functions are employed, since they are
nonlinear and smooth and their derivatives are
continuous and is given by

()xµ = ()
2

exp x b a⎡ ⎤− −⎣ ⎦ (1)

Layer 3 (Inference Layer)

 Third layer is the inference layer. Each node in this
layer is a fixed node and represents the IF part of a fuzzy
rule. This layer aggregates membership grades using any
fuzzy intersection operator which can perform fuzzy
AND operation. The fuzzy intersection operators are
commonly referred to as T-norm (triangular norm)
operators. Most frequently used T-norm operators are
min or product operators. For example, IF x

1
is A

1
AND

x
2
is A

2
 AND x

3
is A

3
, THEN y is f (x

1
, x

2
, x

3
), where

f (x
1
, x

2
, x

3
) is a linear function of input variables or may

be a constant. The output of ith node is given as

w
i

= A 1 A 2 A 31 2 3
(x) (x) (x)µ × µ × µ (2)

Layer 4 (Normalization Layer)

The ith node of this layer is also a fixed node and
calculates ratio of ith rule’s firing strength in inference
layer to sum of all the rules’ firing strengths as

iw = ()i 1 2 Rw w +w + +w� (3)

where i = 1, 2, ..., R and R is total number of rules.

Layer 5 (Output Layer)

 This layer represents the THEN part (i.e. the
consequent) of the fuzzy rule. The operation performed
by the nodes in this layer is to generate qualified
consequent (either fuzzy or crisp) of each rule depending
on firing strength. Every node in this layer is an adaptive
node. The output of the node is computed as

O
i

= i iw f (4)

where w
i
 is a normalized firing strength from Layer 3

and f
i
 is a linear function of input.

Layer 6 (Defuzzification Layer)

This layer aggregates qualified consequents to
produce a crisp output. The single node in this layer is a
fixed node. It computes weighted average of output
signals of output layer as

O = i i i i i i
i i i i

O = w f = w f w∑ ∑ ∑ ∑ (5)

Step 3: Learning Algorithm and Parameter Tuning

ANFIS model fine-tunes parameters of membership
functions using either backpropagation learning
algorithm or hybrid learning rule. Backpropagation
algorithm is an error-based supervised learning
algorithm. It uses gradient descent method to update
parameters. Network output is compared with desired
output values. The error measure EP, for pattern P at the
output node in Layer 6 may be given as

EP = ()2P P
61 2 T O− (6)

where TP is target or desired output and P
6O , single node

output of defuzzification layer in the network. Further,
sum of squared errors for entire training data set is

 EP = ()2P P P
6

P P

1
E T O

2
= −∑ ∑ (7)

The error measure with respect to node output in
Layer 6 is given by

� = ()6 6E O T O∂ ∂ = − − (8)

This delta value gives the rate at which output must
be changed in order to minimize error function. This
delta value must be propagated backward to inner layers
in order to distribute error of output unit to all layers
connected to it and adjust corresponding parameters. The
delta value for Layer 5 is given as

5E O∂ ∂ = () ()6 6 5E O * O O∂ ∂ ∂ ∂ (9)

Now, if � is a set of design parameters of the given
adaptive network, then

E /∂ ∂α = () ()
O P

E O * O
∈′

∂ ∂ ∂ ∂α′ ′∑ (10)

where P is set of adaptive nodes whose output depends
on �. Thus, update for parameter ��is given by

NEURO-FUZZY MODELLING 217

�� = ()* E−η ∂ ∂α (11)

Here � is learning rate given by

� = ()2k E
α

∂ ∂α∑ (12)

where k is step size. Value of k must be properly chosen
as change in value of k influences rate of convergence.
Thus, design parameters are tuned according to real
input/output data pairs of the system. Change in values
of the parameters results in change in shape of
membership functions initially defined by an expert. The
new membership functions thus obtained after training
gives a more realistic model of the system.

3. AN ILLUSTRATION

 An hectare of banana yields 40 million calories of
energy as compared to 2.5 million calories by wheat (Rao
2005). India ranks second among banana producing
countries of the world. Venugopalan and Shamasundaran
(2005) developed a statistical model for evolving crop-
logging parameters across different growth stages of
banana plants collected from farmers’ fields located at
Kestur, Bangalore. In present study, data culled from
Venugopalan and Shamasundaran (2005), has been used
to apply ANFIS to forecast banana yield at different
stages of its growth using a number of predictors like
number of leaves, plant height (cm.), plant girth (cm.),
leaf length (cm.), leaf breadth (cm.), number of hands/
bunch, and number of fingers/hand. Out of total data for
100 banana plants, data for 80 banana plants is used for
“Training” while data for remaining 20 plants is used
for “Validation”. In order to have a visual idea, a
MATLAB plot of variables for first stage growth is

exhibited in Fig. 2. Fuzzy Logic Toolbox available in
MATLAB is used for training ANFIS. A computer
program was written in MATLAB and the same is
appended as Annexure-I. In view of availability of data
at different stages of growth corresponding to different
numbers of predictors, a five input-one output system
for first four growth stages of banana and seven input-
one output system for last two stages is considered for
development of ANFIS model.

The input variables are represented with Gaussian
membership function. For building ANFIS, membership
function of each input was tuned using hybrid method
consisting of backpropagation for parameters associated
with input membership function (MF) and least square
estimation for parameters associated with output
membership functions. Computations of membership
function parameters are facilitated by a gradient vector,
which provides a measure of how well the FIS system is
modelling input/output data. For a given set of
parameters, numbers of nodes in training data were
found. The numbers of linear parameters and nonlinear
parameters were identified. The hypothesized initial
number of membership functions and type used for each
input were taken as six. Now, hypothesized FIS model
is trained to emulate training data by modifying MF
parameters according to chosen error criterion. A suitable
configuration has to be chosen for best performance of
the network. Goal for the error was set to be 0.1 and
number of training epochs was given as 200. After
training (with 200 epochs) was complete, final

Fig. 2. MATLAB Plot of input-output variables in
training set for first stage of banana plant

Table1. Fuzzy Information Structure for different stages of
banana plant

Stages

I II III IV V VI

Number of inputs 5 5 5 5 7 7

Number of MF for each input 6 6 6 6 6 6

Number of fuzzy rules 30 30 30 30 42 42

Number of linear parameters 140 146 164 184 108 80

Number of nonlinear parameters 300 310 340 360 154 110

Number of training epochs 200 200 200 200 200 200

Number of training data set 80 80 80 80 80 80

Number of test data set 20 20 20 20 20 20

Error goal 0.01 0.01 0.01 0.01 0.01 0.01

Fuzzy
Information System

218 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

configuration for FIS is reported in Table 1. Several two
and three-dimensional plots were drawn for proposed
ANFIS model, two of which are depicted in Figs. 3 and
4. Evidently, the surface is complex and highly nonlinear.
Rule viewer for first stage is depicted in Fig. 5. The Rule
Viewer displays a road map to the whole fuzzy inference
process. Each row of plots represents one rule.

Model was trained for 200 epochs and it was
observed that most of the learning was complete in 150
epochs as error goal settles down to almost zero percent
at around 150th epoch for all the six stages. Mean square
error (MSE) for validation set is computed to compare
performance of ANFIS model for different stages and
the same is reported in Table 2. Evidently, MSE decreases
as number of stage of plant growth increases, which is
quite logical. Further, MSE at first and second stages
are very high. As there is a considerable decrease in third
stage, banana yield may be forecasted at third stage with

Fig. 4. Three-dimensional plot for “second stage” between
yield, height and number of leaves

Fig. 3. Two-dimensional plot for “second stage” between
yield (Kg.) and number of leaves

Table 2. Comparison of MSE (Validation data set) for all
six stages of growth in banana

 Stages

MSE
I II III IV V VI

Validation 366.04 236.55 102.47 95.35 79.29 39.08
data set

reasonable accuracy. However, if much more accuracy
is required, one would have to wait until 6th stage.

4. CONCLUDING REMARKS

Purpose of this paper is to highlight the importance
of a very powerful and versatile methodology of Neuro-
fuzzy modelling and not development of a forecasting
model for banana plant yield per se. In the illustration
considered, we had data of only 100 banana plants. Had
data of more number of banana plants say, 500 were
available, resultant model would have been more
efficient! As a rule of thumb, at least 500 data points are
required for training and validation of an ANFIS model
efficiently. It is hoped that, in future, research workers
would start applying ANFIS Neuro-fuzzy modelling
approach to their data sets.

NEURO-FUZZY MODELLING 219

 Fig. 5. Rule-viewer for membership functions of variables under study in “first stage” of growth in banana plant

220 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

ACKNOWLEDGEMENT

Authors are grateful to Dr. R. Venugopalan for providing
data.

REFERENCES

Abraham, A., Philip, S. and Mahanti, P.K. (2004).
Softcomputing models for weather forecasting. Int. J.
Appl. Sci. Compu., 11, 106-117.

Jang, J.S.R., Sun, C.T. and Mizutani, E. (2004). Neuro-Fuzzy
and Soft Computing: A Computational Approach to
Learning and Machine Intelligence. Pearson Education,
New Delhi.

Klir, G.J. and Yuan, B. (2000). Fuzzy Sets and Fuzzy Logic:
Theory and Applications. Prentice-Hall, India

Kukolj, D. (2002). Design of adaptive Takagi-Sugeno-Kang
fuzzy models. Appl. Soft. Comput., 2, 89-103.

Matlab@ (2006). Fuzzy Logic Toolbox User’s Guide. The
Math Works Inc., U.S.A.

Rao, V.N.M. (2005). Banana. Directorate of Information and
Publications of Agriculture, Indian Council of
Agricultural Research, New Delhi, 69.

Rutkowaska, D. (2002). Neuro-fuzzy Architectures and Hybrid
Learning. Physica-Verlag, U.S.A.

Sengupta, K., Nandi, S. and Chakraborty, N. (2001). Effect
of sulphur-containing fertilizers on productivity of rainfed
greengram (Phaseolus radiatus). Ind. J. Agri. Sci., 71,
408-410.

Singh, R.K. and Prajneshu (2007). Artificial neural network
methodology for modelling and forecasting maize crop
yield. Ag. Econ. Res. Rev. (To appear).

Venugopalan, R. and Samasundaran, K.S. (2005). Statistical
model for evolving crop-logging technique in banana.
Trop. Agril., 82, 23-27.

ANNEXURE-I

MATLAB CODES FOR ANFIS

load ‘stage1.txt’;

input=stage1(1:80,1:5);
output=stage1(1:80,6);
input_chk=stage1(81:100,1:5);
out_chk=stage1(81:100,6);
trndata=[input output];
chkdata=[input_chk out_chk];
stepsize = 0.1;
fismat=genfis2(input,output, [.2 .3 .5 .3 .5 .5],[],[1.25 .5 .15 0]);
[fismat1, error1, stepsize, fismat 2, error 2] = anfis(trndata,fismat,[200 0.1 .9 1.1],[1 1 1 1], chkdata);
result=evalfis(input, fismat1);
result1=evalfis(input_chk,fismat1);
plot(output,result, ‘bd’,out_chk, result1, ‘ks’);
plot(result, ‘DisplayName’, ‘result’, ‘YDataSource’, ‘result’); figure(gcf)
plot(result, ‘DisplayName’, ‘result’, ‘YDataSource’, ‘result’); hold all; plot(output, ‘DisplayName’, ‘output’,
‘YDataSource’, ‘output’); hold off; figure(gcf)
plot(result, output, ‘DisplayName’, ‘output vs result’, ‘XDataSource’, ‘result’, ‘YDataSource’, ‘output’);
figure(gcf)
scatter(result, output, ‘DisplayName’, ‘output vs result’, ‘XDataSource’, ‘result’, ‘YDataSource’, ‘output’);
figure(gcf)
plot(output, ‘DisplayName’, ‘output’, ‘YDataSource’, ‘output’); hold all; plot(result, ‘DisplayName’, ‘result’,
‘YDataSource’, ‘result’); hold off; figure(gcf)
surf(input); figure(gcf)
surfview(fismat)

plot(trndata, ‘DisplayName’, ‘trndata’, ‘YDataSource’, ‘trndata’); figure(gcf)

