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1. INTRODUCTION

 The characters of economic importance, in plants
and animals, which are generally controlled by polygenes,
show continuous variation in the phenotypic values of
the individuals in the population. The heritability (h2), in
the narrow sense, measures the fraction of phenotypic
variance that can be attributed to the additive genetic
effects of genes controlling such characters. Knowledge
of this parameter is of vital importance to the breeders
because it is through the manipulation of the additive
genetic variability the characteristics of the population
are improved. Mainly there are two approaches available
for the estimation of h2: one based on the intra-sire
regression of offspring on parent and the other based on
half-sib correlation (Falconer 1989). The estimate in the
former case is generally obtained by pooling the
regression within sire groups in a weighted average and
in the latter, by making use of intra-class correlation
between paternal and maternal half-sibs. Under full-sib
mating design, the estimate heritability is a function of
either or both of the two components (i) intra-class
correlation between paternal half-sibs, and (ii) intra-class

correlation between maternal half-sibs. The estimates of
h2 obtained from these components are popularly known
as sire component heritability, dam component
heritability and sire-plus-dam components heritability
(when both components are used), denoted by

2 2
S Dh ,  h and 2

S Dh + respectively.

Fisher (1950) gives the formula for the standard
error of intra-class correlation coefficient for large
samples size. Osborne and Patterson (1952) derive the
formula for standard errors, both with single and double
classifications. Sastry (1956) has given the expression

for approximate variance of 2
S Dh +  while Robertson (1959)

obtained closer approximations to the variances of
estimates of both paternal and maternal half-sib intra-
class correlations, assuming additive gene action. The
expressions given by these workers are quite complicated
and not amenable for easy computation of variance of h2

and are also restrictive because of the assumption of
additive model, which may not be the case. Thus, there is
a case for the development of a computer intensive
procedure to work out the variances with a satisfactory
level of accuracy and precision.
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SUMMARY

Heritability (h2) is an important genetic parameter, useful to plant and animal breeders. Precise
estimation of this parameter is vital for deciding the breeding strategy for improving the characteristics
of the population. In this paper, an expression for the approximate variance of heritability estimate
based simultaneously on sire and dam components (h

S
2
 + D

) of full-sib analysis is derived. The estimates
obtained from this expression under different family structures are compared with those obtained from

bootstrap method. A comparison is also made between sire component estimate (h
S

2) and 2
S Dh +  for

their variances. In the light of the results the bootstrap method is recommended for computing the

variances 2
Sh  and 2

S Dh + . It is also shown that h
S

2
 + D 

is more precise than 2
Sh  when the trait is highly

heritable.
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Aastveit (1990) suggests the use of bootstrap
technique for the estimation of the standard deviation of
variance and covariance components. Following this
approach, Ansari et al. (1999) obtained approximate
variances of h2 estimates under several full-sib family
structures and utilized these in deciding the best mating
design for heritability estimation. This investigation
focused on the determination of optimum sample size,
and structure for half-sib and full-sib mating designs.
The design giving least variances of the character under
study under optimum structures (i.e. for the number of
offspring per sire is around 4/h2) was adjudged superior
to other designs.

It can be noted that the sampling variance of
heritability estimates and the probability of inadmissible
estimates (i.e., those falling outside the prescribed limits,
0 and 1) are inter-linked, as a larger variance, will
increase the chance of obtaining inadmissible estimates
of heritability. Prabhakaran and Jain (1988) discussed
the merits of various mating designs from the point of
view of the probability of obtaining inadmissible
estimates. They observed that under full-sib mating

design 2
Sh is more precise than 2

S Dh +  if the population

value of heritability is < 0.25 and vice-versa; at h2 = 0.25
both being equally precise. An explanation for this is as

follows. Since, 2
S Dh + is the simple average of 2

Sh  and

2
Dh , in view of the Cauchy-Schwartz inequality, it can

be concluded that 2
S Dh + will either lie between the two

direct estimates or assume a value less than 2
Sh . The

possibility of 2
S Dh + (also called the combined estimate)

taking a smaller value relative to 2
Sh  is understandable

because after all the variance expressions depend on,
the sire, dam and progeny numbers as well as population
heritability and there could be some combinations of

these parameters for which, 2
S Dh +  < 2

Sh .

The above discussion clearly shows the importance

of 2
S Dh + and its variance in relation to highly heritable

traits (h2 > 0.25), for which 2
Sh + is not quite reliable.

However, no reliable expression of variance of the
combined estimate has been reported in the literature.
The suitability of bootstrap procedure for computing the
approximate variance of the combined estimate has to

be decided based on its performance vis-a-vis a standard
technique. Hence, the main objectives of this paper are
(i) to derive the expression for the variance of the
combined estimate, and having obtained this, (ii) to
compare variances of heritability estimates obtained from
bootstrap procedure with those based on a standard
procedure, called the delta technique explained below,
and (iii) to compare 2

Sh  and 2
S Dh +  for their precision

under various sample sizes and family structures.

2. THE DELTA TECHNIQUE

Suppose X
1
, X

2
, ..., X

k
 be a set of random variables

with known variances and covariances

i iE(X ) = ξ

i iiV(X ) V=

i j ijCov(X ,X ) V=

We wish to find an approximate expression for the

variance of some function of the iX 's , say, Y f (X)= .

To do this we expand f (X) in Tailor series about, X = ξ .

k

X = 
ii 1

f
Y f ( ) (X ) |  higher terms

X ξ
=

∂= ξ + − ξ +
∂∑

Here, E(Y) f ( )≅ ξ and

2V(Y) E[Y E(Y)]= − ≅
X

k

ij
i ji, j 1

f f
V

X X
= ξ=

∂ ∂
∂ ∂∑

This approximate expression for V(Y) is useful in
many contexts. It can be generalized in an obvious way
for finding the covariance of two functions of the X

i
’s

namely Y
1
 = f

1
(X) and Y

2
 = f

2
 (X) as

1 2Cov(Y ,Y )  = 
k

1 2
ij

i ji, j

f f
V .

X X

∂ ∂
∂ ∂∑

3. METHOD OF COMPUTATION OF h2 FROM
FULL-SIB ANALYSIS

There are quite a few species such as poultry, where
the data confirm to a two-way nested structure. Here,
each of a set of sires is mated to a set of dams chosen at
random from the female population and each mating
produces several progeny, which are measured to
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generate data. The model for the measurement y
ijk

, on
kth progeny of jth dam mated to the ith sire can be written
as

ijk i ij ijky s d e= µ + + + (1)

where � is the general mean, s
i
 the effect of ith sire

(i = 1, 2, ..., s), d
ij
 the effect of the jth dam (j = 1, 2, ..., d)

mated to the ith sire, and e
ijk

 the error (k = 1, 2, …, n). Let
us further assume that all the effects are randomly and
independently distributed with the expectations

E(s
i
) = E(d

ij
) = E(e

ijk
) = 0

and variances

2 2 2 2 2 2
i s ij d ijk wE(s ) ,E(d )  and E(e )= σ = σ = σ

Under these assumptions, the analysis of variance,
as per the linear model of Eq. (1) is as shown in Table 1.
The expectations of mean squares given in the table are
based on the additive genetic model, which implies that
the paternal (t

1
) and maternal (t

2
) intra-class correlations

are equal (t), i.e., 1 2t t t= = . The analysis of variance

(ANOVA) estimates of the observational components

of the total phenotypic variance ( 2
pσ ), namely 2

sσ , 2
dσ ,

2
wσ  denoted by, 2 2 2

s d wˆ ˆ ˆ,  ,  σ σ σ  respectively can be
obtained by equating the mean square components with
their corresponding expectations. Using these, the
estimate of the intra-class correlation between paternal
half-sibs is given by Ansari (1999) as

2
s

1 2 2 2
s d w

ˆ
t

ˆ ˆ ˆ

σ
=
σ + σ + σ = 1 2

1 2 3

M M

M (d 1)M d(n 1)M

−
+ − + −

(2)

and, for maternal half-sibs, it is

2t = 
2
d

2 2 2
s d w

ˆ

ˆ ˆ ˆ

σ
σ + σ + σ

= 2 3

1 2 3

d(M M )

M (d 1)M d(n 1)M

−
+ − + −

(3)

Table 1. Analysis of Variance for full-sib data

 Source  d.f. MS E(MS)

Between sires (s 1)− M
1

2
p[1 (nd n 2)t]+ + − σ

Between dams/sires s(d 1)− M
2

2
p[1 (n 2)t]+ − σ

Between progenies/ sd(n 1)− M
3

2
p[1 2t]− σ

dams /sires

Using t
1
 and t

2
, three estimates of heritability can

be obtained as

2
S 1h 4t=
2
D 2h 4t=

( )2
S D 1 2h 2 t t+ = + (4)

Expressions for variances of 2
Sh  and 2

Dh  as given
by Robertson (1959) are as under

2
SV(h ) = 32{(1 – t)2X + [1 + (d – 1) t]2 Y + (n – 1)2t2Z}

(5)
2
DV(h )  = 32{t2X + [d – (d – 1)t]2 Y + [1 + (n – 1) t]2Z}

(6)

where

2 2 2 1X [1 (nd n 2)t] [n d (s 1)]−= + + − −

2 2 2 1Y [1 (n 2)t] [n d s(d 1)]−= + − −
2 2 1Z [1 2t] [n sd(n 1)]−= − −

 4. DERIVATION OF THE VARIANCE OF 2
S Dh +

The sire and dam combined estimate of h2, using
Eqs. (2) and (3), can be written as

2 1 2 3
S D

1 2 3

2[(M (d 1)M dM )]
h

M (d 1)M d(n 1)M+
+ − −

=
+ − + − (7)

The variance of 2
S Dh + , using delta-technique, is

1 2

1 1 2 2

3

3 3

2 22 2
2 2 2S D S D
S D M M

1 2M E(M ) M E(M )

22
2S D
M

3 M E(M )

h h
V(h )

M M

h
                

M

+ +
+

= =

+

=

⎛ ⎞ ⎛ ⎞∂ ∂
= σ + σ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂
+ σ⎜ ⎟∂⎝ ⎠

(8)

where 
1

2
M ,σ

2
2
Mσ and 

3
2
Mσ are the variances of M

1
, M

2

and M
3
 respectively. This gives

1 2

3

2 2 2 2 2
2 2 3 3M M2

S D 4 2 2
1 2 M

M (d 1) M4n d
V(h )

G (M d 1M )
+

⎡ ⎤σ + − σ
⎢ ⎥= ⎢ ⎥+ + − σ⎢ ⎥⎣ ⎦

(9)

in which G = M
1
 + (d – 1)M

2
 + (n – 1)dM

3
 and M

1
, M

2

and M
3
 are to be replaced by their expectations.
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Noting that

 2 2
1 s 1 p(s 1)M ~ .[1 (nd n 2)t]−− χ + + − σ

2 2
2 s(d 1) ps(d 1)M ~ .[1 (n 2)t]−− χ + − σ

2 2
3 sd(n 1) psd(n 1)M ~ (1 2t)−− χ ⋅ − σ

we find

 
1

2 2 4
M p2[1 (nd n 2)t] /(s 1)σ = + + − σ −

2
2 2 4
M p2[1 (n 2)t] / s(d 1)σ = + − σ −

3
2 2 4
M p2(1 2t) / sd(n 1)σ = − σ −

Accordingly, Eq. (9), reduces to

2 2 2 2
S DV(h ) 8 [ (1 2t) X [(1 2t)] (d 1) Y+ = − + − −

2{1 2(n 1)t} Z ]+ + − (10)

where X, Y, Z are as defined earlier

Replacing t by 2h / 4  and simplifying, the variance
can be expressed as

2 2 2 2 2 2
S DV(h ) 2 [ (2 h ) X (2 h ) (d 1) Y+ = − + − −

2 2{2 (n 1)h } Z ]+ + − (11)

where

2 2 2 2 1X [4 (nd n 2)h ] [16n d (s 1)]−= + + − −

2 2 2 2 1Y [4 (n 2)h ] [16n d s(d 1)]−= + − −

2 2 2 1Z [2 h ] [4n sd(n 1)]−= − −

and this is an expression of variance of 2
S Dh + in terms of

h2.

5. BOOTSTRAP PROCEDURE FOR THE
ESTIMATION OF VARIANCE OF

HERITABILITY

The bootstrapping, as explained at the end of this
section, is executed on simulated data (master samples).
Since the variances are to be estimated for different full-
sib family structures and population heritability levels,
master samples with these attributes are generated. The
simulation procedure (Ronningen 1974) followed for the
full-sib case is based on the model

ij s i d ij e ijy s d e= µ + σ + σ + σ′ ′ ′ (12)

where is′ , ijd′  and ije′  are the standard normal variates

obtained from the Box-Muller transformation (Kennedy
and Gentle 1980). The values of ss, sd and se are so
chosen and substituted in (12) as to generate data, for
different sire(s) and dam(d) numbers, and three different
levels of population heritability (0.10, 0.25 and 0.50),
assuming additive gene action (s2

s = s2
d). Further, we

assume n progenies are resulting from a mating of a sire
and a dam.

For a particular level of population h2, consider a
full-sib mating design with s sires, d dams and suppose
that each mating produces n offspring. Bootstrapping is
applied both at sire and dam levels. First s sires are
selected at random from s sires by Simple Random
Sampling With Replacement by a sequence of random
numbers by giving a ‘seed’ value and then the d dams
mated to the selected ith sire are sampled from the d
dams in the same fashion. Then all the progenies attached
to the (i, j)th sire-dam combination are considered for
estimation of heritability. An estimate of heritability from
thus selected sdn observations forms one bootstrap
replication (sample). Repeating this method of sire and
dam resampling, a total of N (100, 200, 500) bootstrap
samples are drawn. The generation of bootstrap samples
was carried out for several combinations of
s (= 4, 8, 10, 16, 20, 25, 40, 50), d (= 10, 20, 25), n (= 2)
and true h2 (0.10, 0.25, 0.50). The computation of
estimate of variance of bootstrap heritability estimate
was carried out as follows.

For any specified (h2, s, d and n) combination, let
2ĥ be the estimate of h2 from the corresponding master

sample and 2 2 2ˆ ˆ ˆh (1),  h (2),  ,  h (N)
∗ ∗ ∗

�  be the

estimates from N bootstrap samples. A bootstrap
estimator of h2 is then defined as

2ĥ (.)
∗

=
N

2

i 1

ĥ (i) N
∗

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑  with bias, 2

2 2
ĥ

ˆ ˆh (.) h
∗∧

β = − .

From these, the bootstrap estimate of sample variance is
determined as

2

N
2 2 2

h (BOOT)
i 1

1 ˆ ˆV̂ [h (i) h (.)]
N 1

∗ ∗∗

=
= −

− ∑ (13)
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6. PERFORMANCE OF THE BOOTSTRAP
METHOD VIS-A-VIS DELTA TECHNIQUE

The variance estimates for 2
Sh  and 2

S Dh + obtained
by adopting bootstrap and delta techniques under
different sample sizes and family structures, for different
population heritability levels are given in Table 2. These
values also help in knowing the behaviour of the estimates,
when the number of bootstrap replications increases from
100 to 500. The most encouraging result emerging from
the present study is that the bootstrap estimates of h2 are
very close to the approximate theoretical variance
determined from the delta technique and this trend is all
the more visible when the trait is highly heritable
(h2 > 0.25). This shows that the bootstrap technique can
be safely and advantageously used in the computation

of approximate variance of 2
Sh  and 2

S Dh + .

The results have also provided sufficient evidence

to resolve the conjecture, 2
S Dh +  is more precise than 2

Sh

when the trait involved is highly heritable. From
Table 2 it can be seen that, when the variances are much
lower for the estimate simultaneously based on sire and
dam components as compared to the sire component

estimate. When 2h  = 0.25, both the estimates showed
approximately the same precision. These findings
consolidate the findings of Prabhakaran and Jain (1988)
and Prabhakaran and Sharma (1995), where they have
drawn similar conclusions based on the probability of
inadmissible estimates under different full-sib family
structures. In the present study we have not considered
the case of dam component heritability because past
studies (e.g. Prabhakaran and Jain 1988) revealed that
the dam component estimates are much less precise and
much less reliable in comparison with the sire component
and sire + dam components.

In our investigation, we have proceeded with the
notion that a full-sib mating design is optimum when its
group-size (i.e. the number of offspring per sire) is around

4/h2. It is seen that the variance values are higher when
the group-size is below the optimum than when it is
above. Therefore, in the estimation of heritability of
lowly heritable traits it is desirable that the design has
family size in the range of 30-40. For a size of 10 will
suffice for reliable estimation. A similar view has been
expressed also by Prabhakaran and Sharma (1995).
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Table 2. Variances of heritability estimates (h2
S
 and h2

S + D
 ) based on delta technique and bootstrap method for different levels

of h2 under different sample sizes (T = s d n) and family structures where s = sire, d = dam, and n = offspring

Population heritability = 0.10

T (s, d, n) Var(h2
S
) Var(h2

S + D
)

Delta Bootstrap replications Delta Bootstrap
replications

technique technique

100 200 500 100 200 500

200 10,10,2 0.02039 0.03166 0.02910 0.02900 0.04066 0.06801 0.06260 0.06130
5,20,2 0.01952 0.02220 0.01942 0.01932 0.04156 0.05920 0.05390 0.05240
4,25,2 0.02092 0.02640 0.02532 0.02469 0.04210 0.06278 0.05530 0.05496

400 20,10,2 0.00970 0.01733 0.01440 0.04193 0.02021 0.03790 0.03116 0.03103
10,20,2 0.00870 0.01340 0.01149 0.01147 0.02053 0.03419 0.02873 0.02680

8,25,2 0.00899 0.01597 0.01271 0.01235 0.02070 0.03503 0.03071 0.02807

800 40,10,2 0.00473 0.01139 0.00937 0.00935 0.01008 0.02147 0.01831 0.01790
20,20,2 0.00413 0.00862 0.00760 0.00744 0.01021 0.01833 0.01679 0.01658
16,25,2 0.00420 0.00997 0.00853 0.00828 0.01028 0.01943 0.01759 0.01718

1000 50,10,2 0.00377 0.10800 0.00875 0.00874 0.00806 0.01862 0.01558 0.01532
25,20,2 0.00327 0.00768 0.00688 0.00664 0.00816 0.01349 0.01149 0.01059
20,25,2 0.00332 0.00807 0.00750 0.00728 0.00822 0.01548 0.01273 0.01224

Population heritability = 0.25

T (s, d, n) Var(h2
S) Var(h2

S + D)

Delta Bootstrap replications Delta Bootstrap replications
technique technique

100 200 500 100 200 500

Around 20,5,2 0.04558 0.06066 0.05643 0.05424 0.04014 0.06480 0.06270 0.06120
200 12,8,2 0.04327 0.05207 0.04722 0.04659 0.04284 0.05728 0.05340 0.05317

10,10,2 0.04196 0.05562 0.05104 0.04920 0.04177 0.05968 0.05677 0.05544

400 40,5,2 0.02229 0.03580 0.03394 0.03233 0.01996 0.03634 0.03285 0.03118
25,8,2 0.01991 0.03142 0.02782 0.02646 0.02038 0.03282 0.02993 0.02838

20,10,2 0.01994 0.03370 0.03069 0.02950 0.02066 0.03384 0.03034 0.02952

800 80,5,2 0.01102 0.01779 0.01675 0.01654 0.00995 0.01598 0.01568 0.01554
50,8,2 0.00977 0.01595 0.01473 0.01437 0.01015 0.01481 0.01418 0.01385

40,10,2 0.00973 0.01654 0.01523 0.01508 0.01028 0.01507 0.01461 0.01445

Around 96,5,2 0.00917 0.01622 0.01548 0.01540 0.00829 0.01521 0.01474 0.01451
1000 60,8,2 0.00811 0.01491 0.01319 0.01314 0.00845 0.01361 0.01326 0.01304

48,10,2 0.00808 0.01530 0.01394 0.01388 0.00856 0.01421 0.01375 0.01339

Population heritability = 0.50

T (s, d, n) Var(h2
S
) Var(h2

S + D
)

Delta Bootstrap replications Delta Bootstrap replications
technique technique

100 200 500 100 200 500

200 50,2,2 0.12164 0.09436 0.08893 0.08524 0.03612 0.04922 0.04510 0.04447
25,4,2 0.07711 0.08558 0.08227 0.08113 0.03773 0.04545 0.04236 0.04060
20,5,2 0.07498 0.08885 0.08481 0.08328 0.03857 0.04155 0.04091 0.03810

400 100,2,2 0.06047 0.05266 0.04727 0.04637 0.01799 0.02972 0.02468 0.02275
50,4,2 0.03790 0.04470 0.04121 0.03941 0.01875 0.02717 0.02222 0.02200
40,5,2 0.03665 0.04656 0.04400 0.04344 0.01913 0.02804 0.02276 0.00225

800 200,2,2 0.03015 0.03506 0.03021 0.02910 0.00898 0.01452 0.01399 0.01367
100,4,2 0.01879 0.02589 0.02263 0.02223 0.00934 0.01334 0.01286 0.01267

80,5,2 0.01813 0.02846 0.02607 0.02562 0.00953 0.01369 0.01320 0.01282

Around 240,2,2 0.02511 0.02908 0.02570 0.02512 0.00748 0.01286 0.01233 0.01218
1000 120,4,2 0.01564 0.02006 0.01769 0.01766 0.00778 0.01171 0.01120 0.01106

96,5,2 0.01508 0.02295 0.02038 0.01991 0.00794 0.01233 0.01189 0.01152


