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SUMMARY

Heritability (h?) is an important genetic parameter, useful to plant and animal breeders. Precise
estimation of this parameter isvital for deciding the breeding strategy for improving the characteristics
of the population. In this paper, an expression for the approximate variance of heritability estimate
based simultaneously on sire and dam components (h 2 ) of full-sib analysisis derived. The estimates

obtained from this expression under different family sStFactures are compared with those obtained from

bootstrap method. A comparison is also made between sire component estimate (h2?) and hZ  for
their variances. In the light of the results the bootstrap method is recommended for computing the

variances h? and h2 . It is also shown that h2 _is more precise than hZ when the trait is highly
heritable.
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1. INTRODUCTION

The characters of economic importance, in plants
and animals, which are generally controlled by polygenes,
show continuous variation in the phenotypic values of
theindividualsin the population. The heritability (h?), in
the narrow sense, measures the fraction of phenotypic
variance that can be attributed to the additive genetic
effects of genes controlling such characters. Knowledge
of this parameter is of vital importance to the breeders
because it is through the manipulation of the additive
genetic variability the characteristics of the population
areimproved. Mainly thereare two approachesavailable
for the estimation of h% one based on the intra-sire
regression of offspring on parent and the other based on
half-sib correlation (Falconer 1989). The estimatein the
former case is generally obtained by pooling the
regression within sire groupsin aweighted average and
in the latter, by making use of intra-class correlation
between paternal and maternal half-sibs. Under full-sib
mating design, the estimate heritability is a function of
either or both of the two components (i) intra-class
correlation between paternal half-sibs, and (ii) intra-class

correlation between materna half-sibs. The estimates of
h? obtained from these components are popul arly known
as sire component heritability, dam component
heritability and sire-plus-dam components heritability
(when both components are used), denoted by
hZ, h3 and hZ, , respectively.

Fisher (1950) gives the formula for the standard
error of intra-class correlation coefficient for large
samples size. Osborne and Patterson (1952) derive the
formulafor standard errors, both with single and double
classifications. Sastry (1956) has given the expression
for approximatevarianceof hZ, , while Robertson (1959)
obtained closer approximations to the variances of
estimates of both paternal and materna half-sib intra-
class correlations, assuming additive gene action. The
expressionsgiven by theseworkersare quite complicated
and not amenable for easy computation of variance of h?
and are also restrictive because of the assumption of
additive model, which may not bethe case. Thus, thereis
a case for the development of a computer intensive
procedure to work out the variances with a satisfactory
level of accuracy and precision.
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Aastveit (1990) suggests the use of bootstrap
technique for the estimation of the standard deviation of
variance and covariance components. Following this
approach, Ansari et al. (1999) obtained approximate
variances of h? estimates under severa full-sib family
structures and utilized these in deciding the best mating
design for heritability estimation. This investigation
focused on the determination of optimum sample size,
and structure for half-sib and full-sib mating designs.
The design giving least variances of the character under
study under optimum structures (i.e. for the number of
offspring per sireis around 4/h?) was adjudged superior
to other designs.

It can be noted that the sampling variance of
heritability estimates and the probability of inadmissible
estimates(i.e., thosefaling outside the prescribed limits,
0 and 1) are inter-linked, as a larger variance, will
increase the chance of obtaining inadmissible estimates
of heritability. Prabhakaran and Jain (1988) discussed
the merits of various mating designs from the point of
view of the probability of obtaining inadmissible

estimates. They observed that under full-sib mating
design hZis more precise than hZ, , if the population
value of heritability is< 0.25 and vice-versa; at h?=0.25
both being equally precise. An explanation for thisis as

follows. Since, hZ  is the simple average of h2 and
hZ, in view of the Cauchy-Schwartz inequality, it can
be concluded that hZ,  will either lie between the two
direct estimates or assume a value less than hZ. The
possibility of hZ , (also called the combined estimate)

taking a smaller value relative to h3 is understandable

because after al the variance expressions depend on,
the sire, dam and progeny numbersaswell as population
heritability and there could be some combinations of

these parameters for which, h , <h?.

The above discussion clearly showstheimportance
of hZ,, and its variance in relation to highly heritable

traits (h?> 0.25), for which hZ is not quite reliable.

However, no reliable expression of variance of the
combined estimate has been reported in the literature.
The suitability of bootstrap procedure for computing the
approximate variance of the combined estimate has to

be decided based on its performance vis-a-visa standard
technique. Hence, the main objectives of this paper are
(i) to derive the expression for the variance of the
combined estimate, and having obtained this, (ii) to
comparevariancesof heritability estimatesobtained from
bootstrap procedure with those based on a standard
procedure, called the delta technique explained below,
and (iii) to compare h2 and hZ , for their precision
under various sample sizes and family structures.

2. THE DELTA TECHNIQUE

Suppose X, X,, ..., X, be aset of random variables
with known variances and covariances

E(Xi):E.:i
V(xi):Vii
COV(Xi 'XJ) =Vij

We wish to find an approximate expression for the
variance of some function of the X;'s, say, Y = f(X).

Todothisweexpand f (X) in Tailor seriesabout, X =¢ .
& of
Y =f(§)+2(x —i)ylx =¢ +higher terms
i=1 i

Here, E(Y) =f(§)and

, o, of of
VY)=EY -EY)2z O Vizo o
A~ U 0X; OX;
i,j=1 ! J X=t
This approximate expression for V(Y) is useful in
many contexts. It can be generalized in an obvious way
for finding the covariance of two functions of the X's

namely Y, =f (X)and Y,=f, (X) as

k
o, of,
Cov(Y,.Y,) = Y v, 21 %2
V(Y1 Y2) IEJ: I 9x; 0x,
3. METHOD OF COMPUTATION OF h? FROM
FULL-SIB ANALYSIS

Therearequite afew species such aspoultry, where
the data confirm to a two-way nested structure. Here,
each of aset of siresis mated to a set of dams chosen at
random from the female population and each mating
produces several progeny, which are measured to



210 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

generate data. The mode! for the measurement y,,, on
k™ progeny of j™ dam mated to the i"" sire can be written
as

Yijk = M+S +djj + &k @
where u is the general mean, s the effect of i sire
(=12 ..59),d theeffect of thej"dam (j=1,2, ..., d)
mated tothei® sire, and € theerror (k=1,2,...,n). Let
us further assume that al the effects are randomly and
independently distributed with the expectations

E(s) = E(d)) =E(e,) =0
and variances

E(s?) = 05, E(d3) = 05 and E(ef, ) = o5,

Under these assumptions, the analysis of variance,
as per the linear model of Eqg. (1) isasshownin Table 1.
The expectations of mean squares given in the table are
based on the additive genetic model, which implies that
the paternal (t,) and maternal (t,) intra-class correlations

areequa (1), i.e, t;=t, =t. The anaysis of variance
(ANOVA) estimates of the observational components

of thetotal phenotypic variance (o), namely o2, o3,

2, denoted by, 62, 63, 62, respectively can be

obtained by equating the mean square components with
their corresponding expectations. Using these, the
estimate of the intra-class correlation between paternal
half-sibs is given by Ansari (1999) as
~2

cSS Ml - M 2

tlzfz
G5 +65+65 My+(d—D)M,+d(n—1)Ms

(2)

and, for maternal half-sibs, itis

t _—&g
2= 5 > =
62+65%+62,
d(M, —Ms)

= M+ (d-DM; + d(n- DM @

Table 1. Anadysis of Variance for full-sib data

Source d.f. MS E(MS)

Between sires (s-9 M. [[1+ (nd+n - 2)t]o3

Between dams/sires| s(d—-1) | M, [1+(n— 2)t]5§
Between progenies/| sd(n—1) | M, [1- 2t]cs,%
dams /sires

Using t, and t,, three estimates of heritability can
be obtained as

2

hg =4t
2

hg =4t,

Expressions for variances of hé and h2 as given

by Robertson (1959) are as under
V(h)=32{(L-t)X +[1+ (d-1) 2 Y + (n—1)°Z}
, ©®)
V(hp) =32{tX + [d—(d-Dt]2Y +[1+ (n—-1) {]2Z}
(6)

where
X =[1+ (nd+ n - 2)t]*[n%d?(s- D] *
Y =[1+ (n—2)t]?[n%d?s(d - 1)] >
Z=[1-2t]°[n%sd(n-1)]*

4. DERIVATION OF THE VARIANCE OF h§+D

The sire and dam combined estimate of h?, using
Egs. (2) and (3), can be written as

h2 _ AMy+(d-JMy —dM3)]
S0 7\, + (d—DMp + d(n-D)Mj 0

The variance of héD , using delta-technique, is

o2\ o2\
V(hgm)={ ahj*f] oﬁm[ af,,*f] S,
M1=E(My) Mo=E(M>)
2
+[ah§w] o2 tS)
oM M3
3 /M3=E(M3)

where Gf,,l, G%,,Z and GEABarethevariances of M, M,

and M, respectively. This gives

2 2 27122
) 4n242 M3GM1+(d—1) M30M2
V(hs,p) = o4

+(M1+dT]J\/|2)ZGf/|3 ©)

inwhichG=M_ +(d-1)M,+ (n-1)dM,andM , M,
and M, are to be replaced by their expectations.
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Noting that

(s-DM; ~ x5 1.[1+ (nd+ n—2)t]o}

S(d =DM ~ x§gg) [1+ (- 2)tlo}
sd(n-YM3 ~ x&y(ng) - A~ 20007
we find

o, = A1+ (nd+n-2)t]°cp /(s—1)
o, = A1+ (n-2)t]%0p/s(d-1)

G, = 2(1-2t)%c /sd(n - 1)
Accordingly, Eq. (9), reduces to
V(hZ, 5) =8 [ (1-2t)°X +[(1-20)]%(d-1)°Y
H1+2(n-1)t%2 ] (10)

where X, Y, Z are as defined earlier

Replacing t by h?/4 and simplifying, the variance
can be expressed as

V(hZ, ;) =2 [ (2-h%)*X +(2-h**([d-D°Y
+{2+(n-1)h%}?Z] (12)
where
X =[4+ (nd+ n—2)h?]?[16n%d?(s- ]t
Y =[4+ (n - 2)h?]?[16n%d?s(d - 1)] *
Z=[2-h?]?[4n%sd(n-1)] >
and thisisan expression of variance of hém interms of
h2.

5.BOOTSTRAP PROCEDURE FOR THE
ESTIMATION OF VARIANCE OF
HERITABILITY

The bootstrapping, as explained at the end of this
section, is executed on simulated data (master samples).
Sincethe variances are to be estimated for different full-
sib family structures and population heritability levels,
master samples with these attributes are generated. The
simulation procedure (Ronningen 1974) followed for the
full-sib case is based on the model

Yij=u+ oSS + cddi’j + Geq’j (12)

where 5, dfj and & are the standard normal variates

obtained from the Box-Muller transformation (Kennedy
and Gentle 1980). The values of s, s4 and s, are so
chosen and substituted in (12) as to generate data, for
different sire(s) and dam(d) numbers, and three different
levels of population heritability (0.10, 0.25 and 0.50),
assuming additive gene action (s% = s2y). Further, we
assume n progenies are resulting from amating of asire
and a dam.

For a particular level of population h?, consider a
full-sib mating design with s sires, d dams and suppose
that each mating produces n offspring. Bootstrapping is
applied both at sire and dam levels. First s sires are
selected at random from s sires by Simple Random
Sampling With Replacement by a sequence of random
numbers by giving a ‘seed’ value and then the d dams
mated to the selected ith sire are sampled from the d
damsinthe samefashion. Then all the progeniesattached
to the (i, j)th sire-dam combination are considered for
estimation of heritability. An estimate of heritability from
thus selected sdn observations forms one bootstrap
replication (sample). Repeating this method of sire and
dam resampling, atotal of N (100, 200, 500) bootstrap
samples are drawn. The generation of bootstrap samples
was carried out for several combinations of
s(=4, 8, 10, 16, 20, 25, 40, 50), d (= 10, 20, 25),n (= 2)
and true h?(0.10, 0.25, 0.50). The computation of
estimate of variance of bootstrap heritability estimate
was carried out as follows.

For any specified (h?, s, d and n) combination, let
hZ be the estimate of h? from the corresponding master
sample and hZ @, h2 (2), o , hZ (N) be the

estimates from N bootstrap samples. A bootstrap
estimator of h? is then defined as

s« N A Ak AN A A% ~
h? ()= {th (i)]%\l with bias, B2 = h? () - h2.
i=1

From these, the bootstrap estimate of sample varianceis
determined as

-~ N A Ak A~
V;:Z(BOOT) le—lgi[hz H—h* ()7 (13)
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6. PERFORMANCE OF THE BOOTSTRAP
METHOD VIS-A-VIS DELTA TECHNIQUE

The variance estimates for h% and h, ; obtained
by adopting bootstrap and delta techniques under
different sample sizesand family structures, for different
population heritability levelsare givenin Table 2. These
valuesaso helpin knowing thebehaviour of the estimates,
when the number of bootstrap replicationsincreasesfrom
100 to 500. The most encouraging result emerging from
the present study isthat the bootstrap estimates of h? are
very close to the approximate theoretical variance
determined from the delta technique and thistrend is all
the more visible when the trait is highly heritable
(h? > 0.25). This shows that the bootstrap technique can
be safely and advantageously used in the computation

of approximate variance of hé and héD.

The results have aso provided sufficient evidence

to resolve the conjecture, h%+D ismore precise than hé

when the trait involved is highly heritable. From
Table 2 it can be seen that, when the variances are much
lower for the estimate simultaneously based on sire and
dam components as compared to the sire component

estimate. When h? = 0.25, both the estimates showed
approximately the same precision. These findings
consolidate the findings of Prabhakaran and Jain (1988)
and Prabhakaran and Sharma (1995), where they have
drawn similar conclusions based on the probability of
inadmissible estimates under different full-sib family
structures. In the present study we have not considered
the case of dam component heritability because past
studies (e.g. Prabhakaran and Jain 1988) revealed that
the dam component estimates are much less precise and
much lessreliablein comparison with the sire component
and sire + dam components.

In our investigation, we have proceeded with the
notion that afull-sib mating design is optimum when its
group-size (i.e. the number of offspring per sire) isaround

4/h2. It is seen that the variance values are higher when
the group-size is below the optimum than when it is
above. Therefore, in the estimation of heritability of
lowly heritable traits it is desirable that the design has
family size in the range of 30-40. For a size of 10 will
suffice for reliable estimation. A similar view has been
expressed also by Prabhakaran and Sharma (1995).
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Table 2. Variances of heritability estimates (h’; and h?

S+D

213

) based on delta technique and bootstrap method for different levels

of h? under different sample sizes (T = sd n) and family structures where s = sire, d = dam, and n = offspring

Population heritability = 0.10

T (s, d, n) Var(h?) Var(heg, ;)
Delta Bootstrap replications Delta Bootstrap
replicationg
technigue techmnique
1UU 2zUU OUU 10U <UU QUU
200 10,10,2 0.02039 0.03166 0.02910 0.02900 0.04066 0.06801 0.06260 0.06130
5,20,2 0.01952 0.02220 0.01942 0.01932 0.04156 0.05920 0.05390 0.05240
4,252 0.02092 0.02640 0.02532 0.02469 0.04210 0.06278 0.05530 0.05496
400 20,10,2 0.00970 0.01733 0.01440 0.04193 0.02021 0.03790 0.03116 0.03103
10,20,2 0.00870 0.01340 0.01149 0.01147 0.02053 0.03419 0.02873 0.02680
8,25,2 0.00899 0.01597 0.01271 0.01235 0.02070 0.03503 0.03071 0.02807
800 40,10,2 0.00473 0.01139 0.00937 0.00935 0.01008 0.02147 0.01831 0.01790
20,20,2 0.00413 0.00862 0.00760 0.00744 0.01021 0.01833 0.01679 0.01658
16,25,2 0.00420 0.00997 0.00853 0.00828 0.01028 0.01943 0.01759 0.01718
1000 50,10,2 0.00377 0.10800 0.00875 0.00874 0.00806 0.01862 0.01558 0.01532
25,20,2 0.00327 0.00768 0.00688 0.00664 0.00816 0.01349 0.01149 0.01059
20,25,2 0.00332 0.00807 0.00750 0.00728 0.00822 0.01548 0.01273 0.01224
Poputarton neranifity = 0.2
T {s,dmy Varth?y) Varth’s o)
Delta Bootstrap replications Delta Bootstrap replications
technique technique
100 200 500 100 200 500
Around 20,5,2 0.04558 0.06066 0.05643 0.05424 0.04014 0.06480 0.06270 0.06120
200 12,82 0.04327 0.05207 0.04722 0.04659 0.04284 0.05728 0.05340 0.05317
10,10,2 0.04196 0.05562 0.05104 0.04920 0.04177 0.05968 0.05677 0.05544
400 40,5,2 0.02229 0.03580 0.033%4 0.03233 0.01996 0.03634 0.03285 0.03118
25,8,2 0.01991 0.03142 0.02782 0.02646 0.02038 0.03282 0.02993 0.02838
20,10,2 0.01994 0.03370 0.03069 0.02950 0.02066 0.03384 0.03034 0.02952
800 80,5,2 0.01102 0.01779 0.01675 0.01654 0.00995 0.01598 0.01568 0.01554
50,8,2 0.00977 0.01595 0.01473 0.01437 0.01015 0.01481 0.01418 0.01385
40,10,2 0.00973 0.01654 0.01523 0.01508 0.01028 0.01507 0.01461 0.01445
Around 96,5,2 0.00917 0.01622 0.01548 0.01540 0.00829 0.01521 0.01474 0.01451
1000 60,8,2 0.00811 0.01491 0.01319 0.01314 0.00845 0.01361 0.01326 0.01304
“40,1U,Z U.UUGUO U.ULOooU U.ULoI94 U.ULSOO0 U.UUGOUD UULlaZ1 UULST7O U.ULooI
Popuration heritability = U.5(
T (sdmy Var(tey) Var(te; o)
Delta Bootstrap replications Delta Bootstrap replications
tecnni que Leumlque
100 200 o00 100 200 o00
200 50,2,2 0.12164 0.09436 0.08893 0.08524 0.03612 0.04922 0.04510 0.04447
25,42 0.07711 0.08558 0.08227 0.08113 0.03773 0.04545 0.04236 0.04060
20,5,2 0.07498 0.08885 0.08481 0.08328 0.03857 0.04155 0.04091 0.03810
400 100,2,2 0.06047 0.05266 0.04727 0.04637 0.01799 0.02972 0.02468 0.02275
50,4,2 0.03790 0.04470 0.04121 0.03941 0.01875 0.02717 0.02222 0.02200
40,5,2 0.03665 0.04656 0.04400 0.04344 0.01913 0.02804 0.02276 0.00225
800 200,2,2 0.03015 0.03506 0.03021 0.02910 0.00898 0.01452 0.01399 0.01367
100,4,2 0.01879 0.02589 0.02263 0.02223 0.00934 0.01334 0.01286 0.01267
80,5,2 0.01813 0.02846 0.02607 0.02562 0.00953 0.01369 0.01320 0.01282
Around 240,2,2 0.02511 0.02908 0.02570 0.02512 0.00748 0.01286 0.01233 0.01218
1000 120,4,2 0.01564 0.02006 0.01769 0.01766 0.00778 0.01171 0.01120 0.01106
OR’E”) n_m 508 n_n')')or: ﬂ'n’)nQQ n.m Q01 n.nn7o/1 n.m 233 n.m 189 ﬂ'ﬂ1 152




