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SUMMARY

In a mixture experiment the mean response is assumed to depend only on the relative proportion
of ingredients or components present in the mixture. Scheffé (1958, 1963) first systematically considered
this problem and introduced different models and designs suitable in such situations. Optimum designs
for the estimation of parameters of different mixture models are available in the literature. The problem of
estimating the optimum proportion of mixture components is of great practical importance. Pal and
Mandal (2006) first attempted to find a solution to this problem using the trace criterion. They adopted
a pseudo-Bayesian approach with invariance property of the second order moments of the optimum
mixing proportions. In this paper the same criterion has been employed to find a solution to the problem,
but with a pseudo-Bayesian approach, with assumed values of only the second order moments of the

optimum mixing proportions.

Key word : Mixture experiments, Second order models, Non-linear function, Asymptotic efficiency,
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1. INTRODUCTION

In a mixture experiment, the response depends on
the proportions Xq,Xp,...,Xq of a number of ingredients

q
present in the mixture satisfying X; ZO,ZXi =1

Scheffé (1958, 1963) introduced canonical rlﬁédels of
different degrees to represent the response function Gy .
He also introduced Simplex Lattice Designs and
Simplex Centroid Designs for mixture experiments.
Optimality of mixture designs for the estimation of
parameters of the response function was considered by
Kiefer (1961, 1975), Galil and Kiefer (1977), Liu and
Neudecker (1995), and others. Draper and Pukelsheim
(1999) established the optimality of Weighted Centroid
Designs with respect to Partial Loewner Ordering
(PLO) for two and three component mixtures.

The problem of estimating the optimum mixture
combination in a mixture experiment is of great practical
importance. In pharmaceutical research, for example,
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response is the potency of a new drug relative to an
established one and the problem is to find the optimum
proportion of the mixing substances so that the relative
potency is maximized. Pal and Mandal (2006) probably
first attempted to find optimum designs for the estimation
of optimum mixture combination. They solved the
problem under the assumption that the response function
can be approximated by a second degree concave
function in the mixture components. The optimum
mixture combination Y came out to be a non-linear
function of the unknown parameters in the response
function. A pseudo-Bayesian approach was pursued
where a prior distribution of ¥ was considered with the
rather restrictive assumption of invariance property of
the second order moments in respect of the mixing
components. The criterion used to get the optimum
design was minimization of the expected trace of

MSE(Y) . Their investigation was restricted to the cases
of two and three components.

Other related optimality studies confine to (i) four-
component mixture design with invariance (Pal and
Mandal 2007), (ii) minimax criterion ( Pal and Mandal
2008) and (iii) deficiency criterion (Mandal and Pal
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2008). Most of these studies are based on the
assumption of invariance of the mixing components.

In this paper, we attempt to solve the problem using
the same approach as in Pal and Mandal (2006), but
with a more general assumption on the second order
moments of the prior distribution of y by relaxing the
assumption of invariance of the mixing components. In
Section 2, we formulate and investigate the problem. In
Section 3, the optimal designs are obtained for situations
involving two or three mixing components.

2. THE PROBLEM AND THE
PERSPECTIVES

As in Pal and Mandal (2006), we assume the
response function to be quadratic concave in the

components
E ={(X1, X2, Xq) |%,20,i=1(1)q,2Zx; =T and  to
have the form

X1,X2,-.,Xq in the factor space

E(Y %) =6x = 2 Bix? + X Bixix;
i i<j
= f (x)p 2.1
where x= (Xl,Xz,---.Xq)’

2.2 2 :
)= (X{ X300 Xg2 X1X2, X1X3, s Xq-1Xq )

B= (B11.P22.-Bgq:B12.B13:-Bg-14)’
f(x) and B being p x 1 vectors with p= (q; 1).

The response function (2.1) can also be expressed
in the form

Gy = XBX

P11 1/ 2)B12 (1/ 2)By3 ... (1/ 2)Byq

Bz (1 2)B23-..(1/2)By
with B )

qu
We assume that B is negative definite so that,

q
subject to 2 X; =1,Gx is maximized at x =y, where
i=1
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y=81B1 (2.2)

with 8 = I’B™'1. We are interested in estimating the non-
linear function y given by (2.2) as accurately as possible

—

by a proper choice of a design in = . In this paper, we
shall work in the framework of “approximate “or
“continuous” designs.

Let £ be an arbitrary design in = and

M(E,p) = J.f (x)f'(x)dé(x), the information matrix of

=

£ . For a given design £, we can estimate B by B, the

least squares estimator of B, and hence d by 5. Then,
replacing & and B by § and B respectively in (2.2),
we get an estimate of y as

v=5§18h 2.3)

Under suitable regularity assumptions on error

distribution, the standard 0 -method gives, for large n,
an adequate approximation of the dispersion matrix of
¥ as
EG-nGE-01 = AMMTERA®  (24)
where A(Y) is a q X p matrix given by
dy oy dy dy oy oy
9B11 B Bgq B2 Bz IPg-1q

Aly) =( )

M (&,B) is the information matrix of the design for

the model (2.1), and M L(&,B) is its generalized

inverse. Here, we restrict our study to the class of non-
singular information matrices, as in Pal and Mandal
(2006).

It has been shown in Pal and Mandal (2006) that
A(Y) can be expressed as

“20-Dv1 2 . 2 v1—@Dva Yg1tyg
2y1 =2A9-Dyo. 2yq ¥2-(@-Dvi- YgatYq
21 2 . 2q Yit¥2 - YgatYq
Al =d 2y 217 ---—2(£1—])Yq Yitv2 - Y‘q—l""Yq
27 2y, 2/ Y1tY2 ---qui*(Q*l)Yq
2y 21 . 2y YitY2 -Yq—@-Dvg1 (2 5)
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1
where d=[5q%7?|B[ 97!, |B| being the determinant

of the matrix B.

Design optimality aims at minimizing some function

of AWM HEB)A() . Since AMTHERA (1)is
singular, for comparing different designs we consider the
trace criterion

o(. M) = rAMM I ERA () (2.6)

It should be noted that the mixture model, in its
canonical form, is linear in the parameters and, hence,
the information matrix M () is independent of the
parameters. This means that the expression in (2.6)
depends on 7y only through the elements of the matrix
A(y). Of course, this is built upon the consideration that
in our search for optimal design, we may and will
“disregard” the common multiplying factor “d” in the
expression (2.5) for the matrix A(Y). Note that without
this factor, the elements of the matrix A(y) are linear in
the y—components and, consequently, the expression in
(2.6) is quadratic in the y-components. Therefore,
assuming a prior on the first two moments of the
y-components is adequate. This is precisely what was
done in Pal and Mandal (2006). We now continue along
similar lines.

Pal and Mandal (2006), assumed a prior distribution
of y with E(y?)=v, i=12, .., q and E(¥ivj)=w,
i,j=1 2, .., q; i<] and minimized E[¢(y,M(&))],
expectation being taken with respect to the prior

distribution of y. We make a more general assumption
on the prior moments, viz.

Ev?)=v;, i=12 .., q
E(vivp)=wjj, i,j=1 2 ...,q; i<] 2.7)

q
Since ZYi =1 v;, Wij ’s must satisfy
i=1

ZVi +22Wij =1
|

i<j

Our criterion for optimal choice of design is
minimizing

0(&) = Eo(v,M(&))
= tr(M™Y(E, BE(A"(Y)A(Y)) (2.8)
3. OPTIMUM DESIGNS

Here we find the optimum designs for different
values of q.

3.1. Case of Two Components

Here
- 1
(LR (Ej (y1-v2)
Ap-ad G.1)
e (—Ej(Yl—Yz)
with d=[8|B [ *and E(yy) = (Vl V\\?ZJ (3.2)
2

In the case of two components, since the design
can be represented by points on a straight line of length
one in the two-dimensional space, the class of competing
designs D can be substantially reduced by using the
following theorem:

Theorem 3.1. Given any arbitrary design € D with

information matrix M(E,B), we can always find a

design N € D* c D where D* is the class of three
point designs with whole mass concentrated at the two
extremes and a point in between, such that

M(n, B) = M(E.B)

Proof. Here the model is
2 2
E(Y [X) = Sx =B1aX{ +PBooX5 +ProXXo  (3.3)
Since X;+ X, =1, we can rewrite the model as

Cy = Bo+PBixg +BoxZ (G4)

Where B* :(BB’ Bis B;)/ and BZ (Blb 6225 612)’ are
related by

p = PB 3.5
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0O 1 O
with Pp=/0 -2 1
1 1 -1
Then DE') = PD(B)P’ (3.6)

Let D, be the set of single factor designs, based
on x,. Clearly, there is a one-to-one correspondence
between D, and D.

For any design D,, we can write the moment
matrix as M(&;, B, using (3.5).

Now, it is known (vide Liski ez al. (2002)) that for
any arbitrary & e D, with information matrix

M(&l,B*), we can find a three-point design
n,€ Dl* with mass at 0, 1 and a € (0, 1) such that

M(my.B) = M(EB)
in the Loewner Order Dominance sense, where D*, is
the class of all three-point designs.
Hence, from (3.5) and (3.6), we have that for any

arbitrary two component design & e D, there exists a

three-point design M € D* such thatM(n,B) > M(E,B).

This establishes the theorem.

From the theorem it is clear that, in order to find
the optimal design in the two factor case, we may
restrict ourselves to the class D*.

Let n denote a three-point design with masses o,
a,, and 1 — o, — o, respectively, at the support points
(1, 0), (0, 1) and (a, 1 — a). The information matrix for
the design is then given by

a b ¢
M) = % G 3.7)
b
where

4
a=a, ta(l -0 —-a,

4
a,=do,+(-al-o0 —-a,)

¢,= (1 —a,—aya(l —a)
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¢,= (1 —o, —oa(l—a)
b=(1 - o, — o’ (1 -a) (3.8)
For two-factor experiment, from (3.1)
E(A’() A(Y))

8V1 —8W12
= d2 8V2

4wz —Vy)
4wz = V2) (3.9)
2(Vy+Vy —2wWyy)
For convenience, we find the expression of the
trace criterion using an alternative representation of the
response function following Pal and Mandal (2007):

Gx = 011%1(Xg —@) + 020X (X — (1—@)) + B19X1X5
(3.10)

where 8= (019, 055, 01p)and B=(Byg, B2p, Byo) are
related by

B=16
with
l-a 0 0
L=1]o0 a o0
-a —(1-a 1
Then
wu@-a* o 0
4
VPY:} 0
M(E,0) = 2
(1-a)a’(1-a)?
(.11
where o =0, tao,
Hence, M~Y(E,B) = LM7L(E,0)L (3.12)

Therefore, we get
0(&) = tr [LM7Y(E,0L" E(A' (1AM ]
= tr [M71E,0)L E(A (NAGM)L]

tr[M~1(,0)G], say

where G = ((gy) = L" E(A’(v)A(y))L
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with g, = 8(1—a)%v; +2a%(V; + V, — 2Wy5)
—8a(l-a)(wyp —vq)
g, = 8a2v2 +2(1- a)z(vl +Vy —2Wq5)
—8a(l-a)(wy, - v3)
gy; = 2Avy+ Vo —2wpo)
g, = -22a%(Wyp — Vp) + 2(1-8)* (Wyp - Vy)
—a(l-a)(vy + vy —6wyp)]
gy = A2~ a)(wp —vy) —a(vy + vy —2wyp)]
gy, = Z2a(wyp — Vo) - (1-a)(vy+ Vo — 2wypp)]
Therefore, for given a

_9u 92 933
0©) Zg a-a)* awa? (1-a)a(l-a)

> (S gi)?

(3.13)
h * O11
where i — 1-a)°
s _ 92
922 — a*
* 933
= 5 3.14
O33 a2(1_ a)2 ( )
with  equality in  (3.13) holding for
O =0c,*(a)=—\/a* i=1 2 (3.15)

L\ i
J

Suppose a* is the value of a minimizing

*\2
QG-
i
Then the optimal design assigns masses
oc;(a*), ocz(a*) and 1-oc;(a*) —oc;(a*) , respectively,
at the support points (1, 0), (0, 1) and (a* 1-a ).

3.2 Case of Three Components

Here the model is

3 3
E(Y %) = Sx = Bixf+ X BiXiX;  (3.16)

i=1 ij=1

We shall assume that i<j
V=V, Wis = Wy 3.17)
Then
E(A'(MA(Y)) =
24vy —12wpp —6(vi—2wpp) —12wyz  —6(vy — 2wyg) —6(wy, +Wy3)
24vy —6(vy - 2Wpp) —12wp3  —6(wpp + W) —6(vy —2wp3)

6(2v; —wyp) 12wz —3(vy +Wip —Wy3) —3(Vy +Wyp — Wy3)
vy —6(v3—2wy3) —6(v3 - 2wy3)
6(vy+V3—Wyz) —3(V3+2wy3 —2Wyo)
6(vy + V3 —Wi3)

_1 1
where d=[8q%2|B]] 97 [35 |B[] 2.asq=3.

3.2.1 A heuristic search for optimum design

We note that in the invariant situation, where
Vi =V, = V5, Wy = W3 = W,3, each component of the
optimum design took three distinct values for each of
the factors, two at the extremes and one in between
(Pal and Mandal 2006). In the present case, the
assumption in (3.17) amounts to the fact that we are
treating the first two mixing components as
“exchangeable”. This, in its turn, presupposes that the
“optimum” mixture proportion also enjoys this same
property. This leads to the heuristic argument that it
may be enough to search for an optimum design in the
hyperplane manifested by the property of
exchangeability of the first two components. It turns out
that in such a plane, the quadratic response surface
function involving all the three mixing components may
be reduced to a quadratic in the third component only.
Appealing to Liski et al. ( 2002), we therefore, adopt
an initial design with x, taking the three values 0, 1 and
some a € (0, 1).

Let us write

400 220 202 310 301 211
w

W oo

M040 M022 Ml30 M121 M031

M004 MllZ M103 M013

Ml _ M/220 M/211 M/121
M, 202 M /112

M/OZZ




OPTIMUM MIXTURE DESIGNS: A PSEUDO-BAYESIAN APPROACH

Now, the criterion function introduced in (2.8) and

simplified below (3.12), for any design &, comes out to
be

0(E) = 24vy (uH% + n%40) 4 24v4, %%
—24w o170 - 24w (W + %)

+12(2wq5 — V1)(M310 + i

)
301,031y

m
+12(2w1z - V) (W™ +

+12(2w13 — vg) (uO* +u'%)
—6(W1p +Wyg) (nH + )
—12w; 30 + 6(2v; - W)

+6(vy + Vg — Wyz) (2% + p 9%)

211 A21
=3(Vy + Wyp —Wy3)(W T+ )

—6(v3 + 2wy3 — 2wpp)u

1220

which is invariant with respect to the first two
components. Further, since ¢(§), given by (2.8), is

convex with respect to the information matrix M, the
optimum design will be invariant with respect to the first
two components (Mandal and Pal 2008).

Hence, we propose the following class of designs
with support points as indicated below:

X, X, X4 weight

1 0 0 oW,

0 1 0 oW,

1/2 1/2 0 (1-20)W,
0 0 1 W,

l-a 0 a W;,,

0 1-a a W,,,

where 0 <o <'’2,a€ (0,1), W, >0,i=1.23,
W, + W, + W, =1

Let us denote such a design as & (o, a, W). Then,

after a little algebra, the information matrix for the
design comes out to be

M(E) = DAD’

where

1—&1)2
\/EObO( 0
J2
1—a)2
0o Jabo o ¢
J2
0O O boO 0 0
_ 2 2 2
V2 J2
a(l-a)
0O 0 00 ——= 0
J2
a(l-a)
0O O 0O 0 _
J2

A = Diag (W1, W,, W, 1,)

b= 1- 20
= / o
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Hence, for the design the criterion function (2.8)

reduces to
0(&(c,a,W)) = AT [DT'E(A’(v)A(Y))D" ]
W W, Wi
where

D™ EA(AMD™ = ((g,)
011= O11+022+ 933, 922 =044, U3 = Uss+ Jeo

with

1
G1=02 = 5[24V1 +6(4vy —5wyy)

1-a
+6(vq —Wqp — 3W13)T

+6(vy+ V3 - W13)(1_Ta)2]

*

_9
_ZOC’S&y

*

(2vi-wpp)

- 96
833 1-20  1-2a

Sy
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a
gy = 24V3 + 24(V3 - 2W13)E

+6(2v) + Vg — 4Wyg + 2W12)(—1 a )2
—a

(V1 + V3 —Wyq3)

8ss ~ 866 — a2(1-a)

For given a, W, ¢ (& (a, a, W)) is minimized at

g o

Then, at o= 0

0(&(0g,a W)) = 0(&(a,W))

J110 + U220 N U330
W, W, W

> (3 \/gi0)° (3.18)

where g?i,o = gﬁ |oc:ocoa i=1 2 3.

Equality holds in (3.18) at W, = W; (a) = VY0

2\/ i 0

1=1,2, 3. :
Hence, given a

0(E(e,a,W)) = 0(E(aW(@) = (Xi0)°

for all o, W. (3.19)

We now find optimal ‘a’ which minimizes the
R.H.S. of (3.19). As algebraic deduction of optimal a
is intractable, we have indicated the optimal value a
of a, and hence those of o and W, for some
combinations of (v, = v,, V5, W ,, W3 = W,,) in Table
3.1. It may be noted that this design is optimal within
the class of designs

D, = {&(c,a W);0<a<1,0<a<lWi>0,
i=l1 2, 3,W1+W2+W3:]} (320)
In the following subsection we establish the

optimality of the design E_,(a* ,W(a* )) within the entire
class.

3.2.2 Verification of optimality

For the optimal design £(a')= &(a ,W(a)) in the
class (3.20), let

o(&@)) = 9
M7HE@ ) E(A (AMM ™ E@D)) = (b,

The matrix M‘l(g(a* )) is symmetric, and since

the optimum design is necessarily invariant with respect
to the first two components, we get

b1g =033, D1g =24, Dy5=D2g, D16 = D25, B35 = b,
bys =046, bss = bes

We now check the optimality of the design within
the entire class of competitive designs using the
equivalence theorem. Kiefer (1974) established the
general equivalence theorem which gives a necessary
and sufficient condition for a design to be optimum in
the entire class. We restate it as given in Silvey (1980).
Theorem 3.1. (Kiefer). If ¢ is concave on 77| and

differentiable at M (&), then & is ¢-optimal iff
RM(E).f(x)f (x)}<0

for all x in the factor space == {(x,, X,, ...,xq) | x;, 20,
1= 1(1)q, 2x; = 1}. Equality in (3.21) holds at the support
points of &.

(3.21)

Here, F, {M,, M, } is the Fréchet derivative of the
criterion function ¢ at M, in the direction of M, and 7]
is the class of all moment matrices M.

In the present set-up, the theorem reduces to the
following :
Theorem 3.2. A necessary and sufficient condition for.
a mixture design & to be optimum is that
f(x)” M(E)E (A’A)YM(§) f(x) < tr M'(E) (E (A'A))
(3.22)
holds for all x in the factor space E .
(See Pal and Mandal 2007).
Equality in (3.22) holds at the support points of €.

For the design ﬁ(a*) , equality at the support points
(1,0,0), (0,1,0) and (0,0,1) will hold provided
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b, =b
When (3.23) holds

f)' M E@))(EA'AIMH(E@ )T (x)

—trMH(E(@))(E(A'A))

X{X5(2by, + bz — 60y7)

(XEX2 + X1 X3)(2by3 — 4by)

X3 (X{ +x5)(2by4 + bgs — 6by;)

X4 (X3 +x3)(2b,; — 4b,,)

—4byq)

+ 2x1XoX3(Xg + X2)(byg + bgs — 6by;)

5 = by = 0 (3.23)

+

+

+

+xg(x1 + X5)(2by5

+2XX X3 (D34 + bsg — 6by) (3.24)

Then for equality at the support points (', ', 0),
(l—a 0, a)and(O l—a a) we must have

2015 + b33 —6by; = ~2(2by3 - 4byy) (3.25)
a (1-a)[(2b—4by;)a 2 + (2byg — 4by;)(1-a )?
+(2by4 + bsg —6byg)a (1—a )] = 0(3.26)

Az =2by, + bgs — 6by; and using (3.25) and (3.26) in
(3.24), we get

f(x)'MHE@ NEMRAMEER ) (x)
~trM (& (@))(E(A'A))

= X1Xp(X1 ~ X2)?(2by3 — 4byy)

2
+X1X3(1=X%2)[(A1 + A,

A3 Xlx )2

A2

-(2A,

AN +A]

X
+ x2x3(1—x1)2[(A1+A2—A3>(1 ZX )?
Al

~(2A, —Ag)(lfz‘xl)wz]

+2X1X oX3[X3(b34 + bsg — byg — b3s)

+(byg + 35 — 6by3)] (3.27)
Clearly, (3.27) equals 0 at each support point of

g@)-
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Now, consider the quadratic form
h(y)= (Ap+Az-Ag)y? . —(2A2-Ag)y+A;
0<y<1. From (3.26), we have that h(1- a*):O.

Further, for A +A, -A3<0 and A32 =4AA, . f(y)
is a strictly concave function of y with maximum value
Oaty=1-a.

Thus, for any x
== {(X17X27X3)|Xi > 0, 1=
0 under the conditions

(i) 2b,;—4b,, <0
(i) A, +A, A <0 andA =4A A,
(iii) b34+b56 b — by <0, b ¢ T bys—6b, <0

We, therefore, get a set of sufﬁcient conditions for

in the factor space
1,23 2x; =1}, (3.27) is <

a design &(o,a,W) to be optimum within the entire

class of designs.
Theorem 3.3. A set of sufficient conditions for a

mixture design &(o,a,W) with information matrix
ME@)and M7HE@)) E (A (DAGM ' (E@*)
= (b,) and value of criterion function ¢, to be optimal

within the entire class of competitive designs is as
follows

(i) by =byy =bzz3 =10
(ii) 2byg—4by; <0
(i) Aj+A,—Az <0and A% =4A.A,
2A; —Ag
(iv) a

2(A1 + A2 A3)
(v) bzg +bsg —byg —bzs <0,

b16 + b35 - 6b11 <0
(3.28)

where Al = 2b45 - 4bll’ and

—4byy, Ay =25
Az =204 + bgs — 6by;

Remark. In all the numerical examples considered, the
optimum mixture design &(a*) within the subclass of
designs D, given by (3.20), has been found to satisfy
the conditions in (3.28). Thus, it appears that the
optimum design within D, is also optimum within the
entire class of competing designs.
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