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SUMMARY

The notion of canonical efficiency factors is re-examined in the context of arbitrary block designs,
and a simple statistical interpretation of these is provided. Some related issues are also discussed.
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1. INTRODUCTION

The notion of canonical efficiency factors was
formally introduced by James and Wilkinson (1971),
though it was at least implicitly discussed earlier by Jones
(1959). Canonical efficiency factors are relevant in the
context of all block designs, in particular in respect of
efficiency-balanced designs and C-designs which have
been studied quite extensively; see e.g., Caliriski (1971),
Williams (1975), Puri and Nigam (1975, 1977) and Saha
(1976) for initial developments and the two-volume book
by Calin'ski and Kageyama (2000) for a more
comprehensive treatment and an extensive bibliography.
In this short note, we give a (possibly) more transparent
statistical interpretation of the canonical efficiency
factors in the context of arbitrary block designs with
possibly unequal replicates and unequal block sizes. As
a consequence, a statistical justification for studying
C-designs is also provided.

2. RESULTS

Consider a block design d with v treatments and b
blocks, wherein the i treatment is replicated r , times,
1<i<v andfor 1<j<Db.k o denotes the size of the j®
block of d. Throughout, for a positive integer s, I_ will
denote an identity matrix of order s and 1, an s x 1
vector with all entries equal to 1. With reference to the
designd, let

R, = diag(ry,... ry, ), RY2 = diag(r¥/2,...,r¥2)

Kd = dlag(kdl,,kdb),rd = (I’dl,...,rdv)/

Ky = (Kggerr Kp) 2P = (11 seens a2’ (1)

Under a standard homoscedastic, fixed effects
model, the coefficient matrix of the reduced intrablock
normal equations for estimating linear functions of
treatment effects (the well-known C-matrix) of d is given

by
Cy =Ry —NgKz'Ny 2

where N, = (n a) 18 the v X b incidence matrix of d, n g
being the number of times the i treatment appears in
the j" block of d.

It is well-known that all treatment contrasts are
estimable using d if and only if d is connected or,
equivalently, if and only if Rank(C ) =v — 1. Henceforth,
only connected block designs are considered.

For a connected block design d with v treatments,
define the v x v matrix A as

Ad — REmCdRQUZ (3)

where Rall 2 is the inverse of Rtlj/ 2 We then have the

following result.

Lemma 1. For a connected design d, the following are
true:
(i) Rank(A) = Rank(C)=v -1

(i) A, isnonnegative definite.
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(iii) The eigenvalues of A and Ralcd are the same.

Proof. The result in (i) is trivially true. Let x bea v x 1
non-null vector and define Q= Rallzx . Let

Q = T—NgK7'B be the vector of adjusted treatment

totals, where T and B respectively denote the vector of
treatment and block totals. If 6> 0 is the variance of
an observation, then

0< 6 Var(qQ) = X’'RzY?CyRY 2x = x’A 4x
This proves (ii). Finally, observe that for a scalar ,
Ay -ul, =RY?(R3'C, —ul,)R;Y?; which proves
(iii).
Let

v-1
Ag= Z}Vdiédi&c;i @)
i=0

be a spectral decomposition of A, where

0=Ago <Ag SAgp S...SAgyoy are the eigenvalues of

A, and  Egp=n""%p4Ey,..Eq, qare  the

corresponding orthonormal eigenvectors. Clearly, then
v-1 , v-1 , ,
Y&ala =lv=D8aka =lv—papa /N (%)
i=0 i=1

The positive eigenvalues of the matrix A , namely
A, 1 <i<v—1 are known as the canonical efficiency
factors of d. By part (iii) of Lemma 1, the canonical
efficiency factors are also the positive eigenvalues of
the matrix Ralcd . In particular, for equireplicate designs

(i.e., whenr =r (say), for all i; 1<i<v), the canonical
efficiency factors are simply 1/r times the positive
eigenvalues of C , the C-matrix of d.

Using (3) and (4), we can write
v & 1/2
Ca =Ry (z;.}‘diédi‘iai ) Ry (6)
1=

The following result can be proved by invoking the
definition of a generalized inverse.

Lemma 2. A generalized inverse of C is given by

v-1

Ca= Rallz(Zk&l&diiéi ) Rallz 7
i=1

For1<i<v-1,let

P, = Ry %y ®)
If T=(t,,...T,) is the vector of treatment effects,

then foreachi, 1 <i<v—1, P{T represents a treatment

contrast as, p/ 1, =&, RY 1, = E4py =0 by virtue of

(4). Also, it is not hard to see that (i) the vectors {p},
1 <i<v-—1 arelinearly independent and, (ii) any arbitrary
treatment contrast 1't can be expressed as a linear

combination of the contrasts {p{t},1<i<v-1.

Consider the treatment contrasts{ pi’r,lﬁ i<v-1
and let the best linear unbiased estimator (BLUE) of
p/t be p/T. The variance of p/T under the design d,
using (7) is then given by

Var(p(t)g = o°piCqap; = 07Ag' ©)
where 67 is the per observation variance.

Letd, be a (possibly hypothetical) orthogonal design
with the same replication numbers as in d. Recall that a
connected block design is called orthogonal if the
BLUE of any treatment contrast is uncorrelated with
the BLUE of any block contrast. Under d,, the variance

of the BLUE of pT is given by
Var(p{ 1)q, = o’piRy'p = 0° (10)
As is customary, if we now define the efficiency

factor of the contrast P{T as the ratio of the variance of

the BLUE of p{T under d, to that under d, then one has
Efficiency factor (p/T) = Ay; (11)

Thus, the canonical efficiency factors are really the

efficiency factors of the contrasts pT relative to an

orthogonal design with the same replication numbers.
According to Pearce, Calinski and Marshall (1974), a
contrast of treatment effects s'T is a basic contrast if

and only if C4R5"s = € s for some positive scalar € . It is
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not hard to see that the contrasts p/t,1<i<v—1lare in

fact a set of basic contrasts, and thus the canonical
efficiency factors are the efficiency factors of basic
contrasts relative to an orthogonal design. See also
Ceranka and Mejza (1979), John and Williams (1995,
pp. 38-39) and Calinski and Kageyama (2000, p. 84) in
this context. The following two results are well-known
in the context of equireplicate designs; the versions given
in Lemmas 4 and 5 are for an arbitrary block design.

Lemma 4. For an arbitrary connected design d, all the
canonical efficiency factors are in the interval (0, 1].

Proof. By definition, A i > Oforeachi, 1 <i<v-1.

Also, from (9)-(11), Ag = P/Rg'p; / p/C3p; so that

15 _P(C-Rp

i . 12
a PICyb; (12)

In order to show that A <1, it suffices to show that
the numerator of (12) is nonnegative. Now, since the
design is connected, p, € M(C,), where M(-) represents
the column span of a matrix. This in turn implies that
there exists a vector A such that p. = C A. Therefore

P{(Cq —Rgp; = A'(C4C4Cq — C4R5'Cy)A
= A/(Cyq —C4R5'CyA
But
Cq —CaRg"Cq = Rg — NgK3™Ng — (Rg — NgKg'Ng)
x (Rg —NaKg'Ng )

= NgKg'(Kg = NjRF"Ng)K'Ng  (13)

The matrix on the right hand side of (13) is
nonnegative definite, since the matrix Ky — Ng RalNd
is so, being the coefficient matrix of the reduced normal
equations for block effects. It follows now that for each
p,eM(C), p{(Cq - R;Y)p; 0. This completes the
proof.

For which class of designs the canonical efficiency

factors are each equal to unity? The following result
characterizes such designs.

Lemma 5. Under an arbitrary connected block design
d, each canonical efficiency factor equals unity if and
only if d is an orthogonal design.

Proof. (i) “If” part: Recall that a connected design d is
orthogonal if and only if Ny=ryki/n where

b

n= 2:;1 I = 2j=1kdi is the total number of
experimental units in d. For an orthogonal design d,
symmetric, idempotent matrix of rank v — 1. It follows

then that the positive eigenvalues of A are each equal
to unity.

(ii) “Only if” part: Suppose now that d is such that all the
canonical efficiency factors are equal to unity, i.e., for
1<i<v-—1,A, = 1. Then, from (6)

v-1
Ci= R}jlz(zé;di&aij R%ilz
i=1
= Ry2(ly —pgp4 /MR ?, by (5)
= Ry—rgrg/n 14

Also, for an arbitrary design d, C is given by (2).
Equating (2) and (14), we have

NgKg'Ng = Tafg/n

= Rank(NgKg'Ng ) = Rank(Ng)=1 (15)
This implies that N, = ab” for some non-null vectors

a, b where a is v x 1 and b is b x 1. Now,
=1 Ny=12 ab’=ab’ where o =1 a. Therefore,
b'=o k). Also, ry=Ngl =ab’l =pa, where
B =b"Y . Note that both o and 3 are nonzero scalars.
Hence, a=B"ry. This shows that Ny = (o) *rykj.

The proof is completed by recalling that 15, N 1, = n.

If for a design d, all the canonical efficiency factors
are equal, then d is called an efficiency-balanced design.
A characterization of efficiency-balanced designs was
provided by Williams (1975). Another class of designs,
called C-designs (Saha 1976) or, simple partially
efficiency-balanced designs (Puri and Nigam 1977) has
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also been studied in the literature. The main motivation
for studying these designs appears to be the simplicity in
the analysis as, for such designs, computation of a
generalized inverse of the C-matrix is very simple.
Following Calinski (1971), Saha (1976), and Puri and
Nigam (1977) defined these designs through a v x v matrix

M, =Rg'NgKg'Ng ~1,1/n (16)

As we shall see presently, C-designs can be defined more
directly in terms of the canonical efficiency factors.

Consider a connected block design d with v
treatments, b blocks and other parameters as in (1).
Suppose the matrix A | given by (3) has only two distinct
positive eigenvalues, A € (0, 1) and unity and suppose
the multiplicity of the eigenvalue A is m where
0 <m <v-—1. This of course means that the design d
has only two distinct canonical efficiency factors, viz., A
and unity. Without loss of generality, let the positive
eigenvalues of A be A, = A ...=A, =Aand for m+
1<i<v—1,A, = 1.Also,as before, for I <i<v—1, let

the orthonormal eigenvector corresponding to Ay be

€. - Then, it can be seen easily that the C-matrix of d is
given by

m v-1
C,= RY? A EgEai+ Y, &di&éin]&/Z
i-1

i=m+1

v-1 v-1
= RY? A gy +(1-n) Y &di&:ﬂij RY?(17)
i-1

i=m+1
Using (16) and (17), we have
M,, = Rg'NgKg'Ng —1r5/n

= R (Ry—Cy)—1r}/n

v-1
- (1—x)(lv—1ré/n—Ra”2 Y &di‘iéiRsz

i=m+1

v-1
= (1—}\)R51/2(|v_pdpé/n_ 2 ‘idi‘iéi)Rgz

i=m+1

= (- A)Ra”z(Zédi&ai J RYy? (18)

i=1

=(1-M)L (19)

where

L= R&”Z(Z&d@:ﬁ) Ry? (20)
i=1

is a symmetric idempotent matrix of rank m. Clearly in
such a case, 1 — A is the unique nonzero eigenvalue of
M, with multiplicity m. These facts were also observed
by Caliriski (1971).

Conversely, suppose for a connected block design
d, the matrix M, is given by (18). Also from (16), for
any arbitrary design d

M,,= Rg'NgKg'Ng -1, 15/n

Rg"*(ly =Rg""CaRq""* —papy /MRy *

= Rg"?(1, —Aq —papy / MRY? Q1)

Equating (18) to (21), we have, after some simplification

m v-1

A= }\2 EaiCa + 2 Eaia (22)
i=1 i=m+1

which shows that A  has two distinct eigenvalues, A with

multiplicity m and unity, with multiplicity v— 1 — m.

From (19), it is easy to see that for every positive
integer t

My = (1=2) Mg (23)

Condition (23) was used by Saha (1976) to define a
C-design, i.e., a design d is a C-design if and only if (23)
holds. The above analysis shows that equivalently, a
connected block design d is a C-design if and only if d
has only two distinct canonical efficiency factors,
A€ (0, 1) with multiplicity m and unity with multiplicity
v — 1 —m. Based on the statistical interpretation of the
canonical efficiency factors, one can now provide a
statistical justification for studying C-designs: under these
designs, v— 1 —m basic contrasts are estimated with full
efficiency while the remaining m are all estimated with
the same efficiency factor A € (0, 1). Clearly, an
orthogonal design is a C-design with m = 0 and a non-
orthogonal efficiency-balanced design is a C-design with
m = v — 1. From an overall efficiency point of view, if
one were to use a C-design then one should choose one
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for which m is as small as possible and/or A is as close to
1 as possible. Even in such a case, a C-design may turn
out to be less efficient than a non-C-design. The issue of
optimality of non-orthogonal C-designs (including
efficiency-balanced designs) has not been studied in its
complete generality. For some results on the optimality
of binary efficiency-balanced designs in certain restricted
classes of competing designs, see Mukerjee and Saha
(1990).

Finally, using (17) it can be shown that for a
C-design d, a choice of a generalized inverse of C is

m v-1
Gy = Ral’z(%_lf,édi&ai + 2 gdigaiJRallz
i=1

i=m+1
= (Mg +1,)Rg L%, /n (24)

an expression that is very similar to the one obtained by
Calinhski (1971) through a different approach.
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