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SUMMARY

Identification of correct model is essential for optimization of processes and systems in engineering
and the sciences. Supersaturated designs provide an important tool for evaluating a large number of
factors in the initial phase of an experiment. Several procedures have been proposed in literature over
the last decade or so for identification and estimation of correct model using supersaturated designs.
A review of these methods is provided in this paper. A generalization of the contrast variance method
to situations where coefficients of active effects are neither all equal nor linearly related is also provided.
Since no method seems to be consistently superior over other methods, it is concluded that results
obtained using competing methods should be carefully evaluated before a final model is selected.
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1. INTRODUCTION

In preliminary phase of many experiments,
especially in industry, simulation experiments or
exploratory research, experimenters are forced to study
a large number of factors. The main purpose of such
experiments is to identify a few important factors with
large effects from among a very large number of
potentially relevant factors. Due to constraints of cost
and time, not too many experimental runs can be
performed. For example, Nguyen (1996) described an
experiment dealing with passenger impact crash test of
cars in which as many as 54 factors were initially thought
to be relevant. The number of car prototypes that could
be used was at most 28. Often the number of factors that
turn out to be really important is far fewer than the number
of factors that are initially thought to be relevant. For
example, Lin (1995) described a situation related to
modeling of AIDS data which involved 150 factors to
begin with, but only 5 of these eventually turned out to
be important.

Ifresources are adequate, a suitable main effect plan
can be used to design a screening experiment. Often,
however, the size of even a main effect plan may be too
large. For instance, in Nguyen’s (1996) example, an

orthogonal main effect plan would require 55 runs, which
is clearly too large a number given that at most 28 runs
can be afforded. In such cases, a design requiring far
fewer runs than the number of factors is needed. Such
designs are called supersaturated designs. More
specifically, if fis the number of factors involved and n
is the number of runs, then for a supersaturated design, n
<f+ 1. Supersaturated designs for two-level factors have
received considerable attention over the last few years.

The idea of supersaturated designs was initiated by
Satterthwaite (1959). However, the random balance
designs of Satterthwaite are not very useful. Booth and
Cox (1962) proposed a criterion, E(s?) criterion, for
comparing supersaturated designs. Using this criterion,
they constructed some designs with the help of a computer.
The criterion is a measure of nonorthogonality strictly
for the case of two active factors. Wu (1993) discussed
the connection of E(s?) criterion with A- and D-optimality
for the case of more than two active factors and gave a
method of constructing supersaturated designs using
Hadamard matrices. Since then, several authors have
given methods of construction, for which we refer the
reader to Xu and Wu (2005) and the references cited
therein. In this paper we restrict attention to
supersaturated designs for two-level factors.
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Supersaturated designs do not afford a transparent
analysis as is the case with full-rank models. Since the
columns of the design matrix can not all be independent,
the effects of active factors get aliased with one another
in supersaturated designs making it very diffcult to
identify the active factors correctly. Several authors have
investigated this problem and have developed novel
methods for analyzing them. The purpose of this paper
is to provide a review of various methods for analyzing
supersaturated designs given in literature over the last
decade or so. A generalization of the contrast variance
method of Holcomb et al. (2003) for situations where
coefficients of active effects are neither all equal nor
linearly related is also provided. Attention is restricted to
supersaturated designs, and methods for analyzing
saturated designs are not considered, see Hamada and
Balakrishnan (1998). We refer to Wang and Voss (2001)
for selection of active factors within the context of
saturated designs.

2. ANALYSIS METHODS

Hamada and Wu (1992)

The regular fractional factorial or geometric
Plackett-Burman (PB) designs with number of runs a
power of two are popular for screening experiments due
to their nice projection properties and orthogonal
estimation of main effects and unconfounded interactions.
In contrast, non-geometric PB designs have complex
aliasing patterns, and thus they have traditionally been
used to screen only main effects under the absence of all
interactions. Hamada and Wu (1992) argued that complex
aliasing patterns of non-geometric PB designs may, in
fact, be considered as an advantage in the following sense.
The regular fractions do not allow estimation of a
confounded interaction because the interaction effect is
completely aliased with one of the main effects. On the
other hand, since interactions are partially aliased with
main effects in non-geometric PB designs, it may be
possible to estimate them under certain situations. Under
effect sparsity, Hamada and Wu (1992) considered models
that satisfy the condition of effect heredity, i.e. a two-
factor interaction is included only if main effect of a factor
involved in the interaction is significant, and proposed a
method based on iterative forward selection. They first
identify significant main effects using usual methods
including the half-normal plot. Then all the significant
main effects, all two-factor interactions that involve a
significant main effect factor, and other interactions that
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are thought to be relevant are considered. Forward
stepwise procedure is then used to select significant effect
from this list. Having identified the significant effect in
this list, a second forward stepwise procedure is used to
identify additional main effects that may have been missed
earlier. This whole procedure may be repeated more than
once to identify the final model.

Box and Meyer (1993)

Box and Meyer proposed a Bayesian approach for
analysis of designs with complex aliasing that is based
on marginal posterior probability of a factor being active
by summing over posterior probabilities of subsets of
models that contain that factor. The method is
considerably more computationally intensive than the all-
subsets regression approach under effect heredity because
posterior model probabilities have to be computed. The
procedure considers models containing all possible
combinations of factors as in all-subsets regression. Let
the i" model be denoted by M.. Each model contains main
effects and all interactions up to a specified order among
the factors included in the model. Let the i model M. be

written as Y = X . + €, B, = (B, B, - Bmii)' be the
parameter vector with corresponding design matrix X,
and € is the vector of independent random errors

distributed normally with zero mean and constant variance
o°. The prior probability of model M. is given by

p(M;)=rP (1- )P where p, is the number of active
factors included in M, 7t is the constant probability of a

factor being active, and k is the total number of factors.
The likelihood of the data is then

f(yIM;) o o™ exp{-(y - XiB;)'(y — XiB;) /(26°)}
where n is the number of runs. The  and log(c) are

assumed to have noninformative priors and (By,--,B;i)’

is assumed to follow the prior N(0, %62 ). The value of
y is one for which p(y| y) is maximum, being proportional
to {p(M,|y)}'. Here, the model M, has only the intercept
term and none of the factor effects. The value of y is then
obtained by minimizing the probability of model M. The
posterior probability p(M,|y) needs to be computed for
each value of'y. Box and Meyer (1993) showed that then
the posterior probability of the model is given by

P(M; |y) o= Ty Ty, Bi = (I + X X)) 'Y
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Ty =( - )pi “m |Xo+Xof'?
T + XX 2

A A A N —(n-D)/2
L z( s(Bi)+AB;FiBi)]
| s(Bo)

0 0
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e (0 Imij

sBi) = (y - Xif) (y - XiB;)

T, is the penalty for having a larger number of
parameters in the model and T, is a measure of how well
the model fits the data. The marginal posterior probability
of a factor is obtained by summing posterior probabilities
p(M|ly) of models that contain that factor. Active factors

are identified using these marginal posterior probabilities.

Samset and Tyssedal (1998) observed that in some
situations, Box and Meyer (1993) method appears to be
dependent on the size of active effects and size of o°.
For example, sometimes their method fails to identify an
active factor with a small effects size if the range of the
effect sizes is increased. They argued that because
nonsignificant coefficients are retained in model M,, the
penalty term T is larger than what it should really be,
resulting in the method missing some small size active
effects. They proposed a modification of Box and Meyer
(1993) method by removing all non-significant terms from
M, thereby increasing the value of v, and reducing the
magnitude of the penalty function T . They showed with
the help of examples that the modified method performs
better than Box and Meyer’s (1993) method.

Chipman, Hamada and Wu (1997)

Chipman ef al. (1997) developed a Bayesian
approach based on the stochastic search variable selection
(SSVS) method of George and McCulloch (1993, 1997).
All possible models are explored in SSVS even in the
supersaturated set-up. However, rather than selecting a
final model from among all possible models, the method
yields several potential final models with high model
posterior probabilities. The SSVS approach can be briefly
explained using the linear regression model
Y, = XB+€,e~ N, (0, 6%1,,) . where Y _is the vector of
residuals obtained from response Y after fitting the

intercept and any other coefficients that are to be included,
a priori, in the final model. The matrix X is normalized
such that the sum of squares of the elements of each
column equals unity. Normal mixture priors are specified
for the k regression parameters in 3. For small size of an
effect (inactive effect), the variance is taken to be riz and
for a large effect size (active effect), the variance is taken
to be (c.T)>, where ¢ and T, are appropriately chosen tuning
constants, i=1, 2, ..., k. Whether an effect is considered
small or large is determined through Bernoulli prior
distribution. This in effect specifies a prior on the model.
Chipman et al. (1997) restricted the search to models
that satisfy the condition of effect heredity. This means
that the main effects and interactions can not have
independent priors as presence of interaction in a model
is contingent upon the presence of the main effect of at
least one of the factors involved in the interaction. This
hierarchy of effects is incorporated through hierarchical
priors developed by Chipman (1996). Normal prior for
an inactive effect is taken to be f3; ~ N(O,’ciz) and
correspondingly for an active effect, B; ~ N(O, Ciz‘fiz ).
Finally, a prior on o is specified through v /o2 ~ X2,
where v and A are tuning parameters for the prior on G.

Beattie ef al. (2002) note that the conditional
probability that B is active, to be used in Gibbs sampler,
is given by

L aeme (B -0
P 2

where . is the prior probability of the i* factor being
active. Thus, large 7’s produce models with few active
factors and conversely, small T’s provide models with
too many active factors. Chipman et al. (1997) use
¢, = 10 indicating that active effect is substantially larger
in magnitude than an inactive effect. Also, they used

B AY
g max(X;) - min(X;)}

T

AY is taken to be equal to s, /5, where s, denotes the
sample standard deviation of AY. The G is also taken to
be approximately equal to AY with v = 2. The posterior
probability of amodel is used to assess the goodness of a
model obtained using SSVS. The iterative stepwise
methodology of Hamada and Wu (1992) does not search
for models as well as the all-subsets regression approach.
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The approach based on SSVS, under condition of effect
heredity, stochastically searches all possible models with
nonzero probability. As an advantage over all-possible
regression, the SSVS approach can identify several
possible models capable of explaining the data sufficiently
well.

Westfall, Young and Lin (1998)

Wastfall et al. (1998) observed that Type 1 error
rates in forward selection method can be high under effect
sparsity, as high as 70% when 5% significance level for
selecting active factors is used. They carried out a
simulation study for the half fraction of the 28-run
Plackett-Burman design given by Lin (1993) using up to
p = 6 active effects and significance levels a of 0.05,
0.10 and 0.15. The study showed that it is highly likely
that one or more inactive is declared as an active factor.
Several inactive factors may be declared active at higher
significance levels. The problem is that the mean square
error appearing in the denominator of the F test statistic
tends to be overly biased downwards resulting in large F
values. The authors proposed a resampling method for
controlling Type 1 errors at each stage of the forward
selection through adjusted p-values.

The method is based on the distribution of the
maximal F statistic, which is maximum of all the F test
statistics computed at any given step of the forward
selection procedure. At any given step, the method
assumes that the factors selected in previous steps, and
thus appearing in the model at the given step, were forced
into the model and none of the remaining factors under
consideration are truly active. The distribution of the
maximal F statistic is then completely determined by the
known design matrix X but it is not analytically tractable
due to complex aliasing among the columns of the design
matrix. Then, adjusted p-value is obtained using two
components - the Bonferroni estimate and an estimate of
the remainder to be substracted from the Bonferroni
estimate. The remainder is obtained using Monte Carlo
simulation. Simulation results for Lin (1993), 14 x 23
design showed that Bonferroni method provides a better
control over Type 1 error than the unadjusted forward
selection method. Thus, the proposed adjusted p-value
procedure appears to be an improvement over
Bonferroni’s method.

Chen and Lin (1998)
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Srivastava (1975) showed that when 6> = 0, a
necessary and sufficient condition for identifying and
estimating p active effects is that every submatrix of the
design matrix X with 2p columns has full column rank.
However, in practice we have 6> > 0, in which case the
condition is still necessary. Shirakura et al. (1996) gave
some results on probability of correctly searching one
active effect. Chen and Lin (1998) derived a lower bound
on the probability that the factor with the largest estimated
effect is indeed the largest true effect. The bound depends
on the relative size of the largest effect and the maximum
correlation between columns of the design matrix. Their
results have important implications for construction of
suitable designs with suciently large value of this
probability. Chen and Lin (1998) proved that the absolute
value of the correlation between any two columns of the
design matrix X should be less than 1/(p— 1) in order to
estimate any set of p effects. For p odd, this correlation
could be equal to 1/(p — 1). Using simulation, they
obtained probability of correct identification of the largest
active effect for the designs given by Lin (1991, 1993,
1995) and Wu (1993).

Abraham, Chipman and Vijayan (1999)

Abraham ef al. (1999) pointed out that all-subsets
regression is to be preferred over stepwise regression since
it can identify several candidate models that may explain
the data adequately. These candidate models can be
further investigated to determine the final set of active
factors. However, as they illustrated with the help of
Williams (1968) rubber data, all-subsets regression can
still be misleading in some cases. They compared the
results obtained for the rubber data using eight alternative
designs constructed through Lin’s (1993) half fractions
of Hadamard matrices method. They considered 5 model
sizes, with 1 to 5 active factors. Using all-subsets
regression, different designs gave different choices of
active factors for various model sizes. They showed that
selection of active factors is sensitive to design choice.
They also considered best fitting models for each of the
8 designs, for each of the five models. However, the
findings were not satisfactory, since important active
factor(s) were not selected in many cases. Although
several candidate models is a better alternative over single
best model, their results emphasize one of the main di
culties in analysis of supersaturated designs, i.e. different
designs may identify different factors as active. Abraham
et al. (1999) also compared stepwise and all-subsets
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regression through simulation under model
misspecification. They concluded that all-subsets
regression performs significantly better than stepwise
regression in identifying the correct model. However, one
has to be very careful as frequently it is possible to select
inactive factors as active factors.

Beattie, Fong and Lin (2002)

Beattie, Fong and Lin proposed a two-stage
Bayesian model selection strategy, combining two recent
methodologies: the stochastic search variable selection
(SSVS) method of George and McCulloch (1993, 1997)
and the intrinsic Bayes factor (IBF) method of Berger
and Pericchi (1996). Although the main interest is in the
analysis of supersaturated designs, the approach can be
used in analyzing any type of dataset, especially when
(a) the number of independent variables is large, (b) a
relatively small number of these factors are likely to be
active, (c) only a relatively small number of observations
can be taken, and (d) all active factors have first order
effects which are at least as large as interactions and
higher order effects. The SVSS used in the first-stage
was also utilized by Chipman ez al. (1997). As discussed
above, the SVSS is able to keep all possible models under
consideration, however, informative priors are used
instead to allow proper posterior distributions. Beattie
et al. (2002) demonstrated that when SSVS and IBF are
combined into a single two-stage procedure, a powerful
tool for the analysis of supersaturated designs is obtained.
The limitation of IBF that it cannot be used for
supersaturated designs data is not shared by SSVS.
However, the limitation of SSVS is that it is very sensitive
to tuning constant choices and it is unlikely to select one
best “objective” model. The strength of IBF is that non-
informative priors result in objectivity in model selection.
Since SSVS identifies several possible models that
provide good fit to the data, the use of informative priors
is not so disadvantageous. The main use of SSVS in the
two-stage procedure is to find a short list of potential
final models, which are then feeded into the IBF method,
thereby resulting in objective selection of the final model
from this list through use of a noninformative prior in
IBF approach. Thus, the two-stage strategy takes
advantage of the strengths of each approach.

As already discussed above, one needs to specify
tuning constants (¢, T,) in the prior for factor coefficients
B. Beattie et al. (2002) used the following four values as
suggested by George and McCulloch (1993):

(G, 5), (6p;,10),(0.1065,, 100) and (0106, , 500)

Here G p; is the standard error of the least squares estimate

of 3, which were obtained by fitting a model for each 3,
separately. One also needs to specify the tuning constants
v and A in the prior for 6. These were taken as v =3 and

A = 62/3, where 6 is an estimate of 62, which was
taken from the final model selected by stepwise regression.
In the second stage of the approach, noninformative priors
of the form f (B, 6) o« 0 ~1*9 with q= 0 were used in the
IBF approach.

Beattie et al. (2002) described the following step-
by-step procedure for their method.

1. Identify all the candidate factors.

2. Center all the predictors and scale them so that each
has sum (across observations) of squares equal to
1.

3. Run stepwise regression using a p-value criterion
of p = 0.05. Using the final model that stepwise
selects, obtain an estimate of the residual variance.

4. Runthe SSVS procedure of George and McCulloch
(1993) on the full dataset using several different
choices of tuning constants (e.g.,

(Ci ,’L'i) = (GBI '5)'(6Bi '10)'(01065| ,100), and
(0.105p, ,500), where Gp; =6).

5. From each of these four SSVS runs, identify the
model with the highest estimated posterior
probability. Select only models that are
distinguishable from the other sampled models. Also
identify any other apparent important factors that
may not have been included in the top model, such
as factors that exist in 5 of the top 10 sampled
models.

6. Combine all the models and factors selected in the
previous step into one “encompassing’ model.

7. Run the IBF procedure of Berger and Pericchi
(1996a) on the encompassing model using the
reference prior (or with several different prior
choices).

8. Identify the best model selected by IBF using either
A IBF or G IBF averaging.
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9. Proceed with regression diagnostics on the final
model choice to assure oneself of the accuracy of
the final selection.

Li and Lin (2002)

The approach introduced by Li and Lin is based on
the nonconcave penalized likelihood variable selection
(NPL) method of Fan and Li (2001). With a suitable
choice of penalty function and regularization parameter
in the NPL method, coecients that are close to zero are
automatically estimated as zero and other coefficients,
i.e. non-zero coefficients, are estimated like the true
submodel was known in advance (oracle property). The
method, however, requires the design matrix to be of full-
rank, and hence it can not be used for analysis of
supersaturated designs. Li and Lin (2002) extended the
NPL method to nonconvex penalized least squares and
non-full rank design matrix. The iterative procedure
requires initial value for the regression parameters, which
are obtained using stepwise regression. Penalized least
squares estimates are obtained by minimizing

n k
QB) =52 (% =% B2+ 3P, (8D
i=1 i1

where p,(.) is a penalty function and is a tuning parameter.

The penalty function P, (|Bj]) can be locally

approximated by the quadratic function
[P, (1B; D" =2, (185 Dsan(B)) =[p3, (187 /185 1B,

where BEO) is an initial value of BJ close to its true value,

the ﬁ j is taken to be zero if BEO) is very close to zero. As

mentioned above, initial values BEO) are obtained using

stepwise regression. The penalty function is taken to be
the smoothly clipped absolute deviation (SCAD) penalty
of Fan and Li (2001), defined by the first-order derivative

’ _ (OOV_B)+
px(ﬁ)-x{ussm—(a_l)l I«M)}

with p,(0) = 0, and I(.) denotes the indicator function.
The tuning parameter A is selected using generalized
cross-validation approach of Craven and Wahba (1979).
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Let V.= lim_ _ _ (1/n)X’X, and let V and X, be
respectively the submatrix of V and the submatrix of X
corresponding to the active effects in 3. The asymptotic
normality and the oracle property for the penalized
least squares estimator holds under the conditions
MaX i X5 (X1 X)Xy =0, as n — oo, and V is
finite with V, > 0. To implement the procedure, the SCAD
penalty function is locally approximated by the quadratic
approximation described above. The penalized least
squares estimates are then obtained iteratively from the
following ridge regression type expression

BO = (XX +nz, B 1x7y (B /B

where

%, (3@)=diagp;, (1B D/B, ..., B3, (1B D/ 1B 1

and d denotes the number of active effects. Li and Lin
(2002) showed effectiveness of their procedure using
several examples.

Holcomb, Montgomery and Carlyle (2003)

For orthogonal fractions of two-level factorials, least
squares estimates of estimable main effects and
interactions, except for normalizing constants, are given
by C = XY where the design matrix X contains effect
contrasts in its columns. This simple way of estimating
contrasts has sometimes been used in non-orthogonal
fractions as well. Holcomb et al. (2003) showed that
contrast estimates C follow permuted multivariate
hypergeometric distribution, which may be approximated
by normal distribution. FromY = X3 + €, it follows that

C=X'XB+X’e. Partition B=(B, Br)" with B, =0
and By = Bpg,-Bpp) X = (Xp.X;), C = (CpCr)” with
Cp =(Cp1,Cp2,---,Cpp) where p and r correspond to
active and inactive effects respectively. Then, Holcomb

et al. (2003) showed that E(C,)= (B, Dus, E(C,) =
Boi{n =t} + (B, Dus, 07 = BpBp)oioy = (BrB, —B5)o2

where g = E(S),02 = E(s%) — E(s)? are respectively the
expected value and variance of an off-diagonal element

of the X’X matrix, and 1 is a column vector of 1’s of
appropriate order. They proposed two methods for
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selecting active contrasts, namely the bootstrap method
and the contrast variance method (CVM).

The bootstrap method is based on bootstrap samples
from the n responses of a supersaturated experiment. Each
bootstrap sample is also of size n. For each bootstrap
sample, a contrast estimate is obtained by summing the
values in the first half of the bootstrap sample and
subtracting from it the values in the second half of the
bootstrap sample. This process generates the empirical
distribution of the contrasts. Then, contrasts falling in
the equal tails of this distribution are selected as active
effects.

The main objective of their second method, the
CVM, is to control Type 2 error rate. The following steps
are as given by them.

1. Estimate the number of active factors in the model.
(...the process is more robust to moderate over-
estimation of p, and ..... that the number of active
factors is half the number of experimental runs.)

2. Form all factor contrasts and remove the p contrasts
having the largest absolute values.

3. Estimate the variance of the inactive factor contrasts
from the remaining contrasts.

4. ... variance of the active factors is approximately
equal to the variance of the inactive factors, so

2_ a2
0 =0r.

assume G
5. Use this estimate of variance, the design properties
E(s) and E(s?), and the bounds on the summation
terms to estimate the maximum absolute coefficient

B = Jé? (ES)-E9DY. &
i=1

6. The mean of the extreme contrasts may be estimated
as-nf3 and +nf}_ .

7. Form the upper and lower limits on the critical
region with the following : ucl = n[gmax - ZYGp

where z is the standard normal percentile with an
upper tail area of vy.

Contrasts that are not within the interval (Icl, ucl)
are selected as active. In the above procedure,

d= Bpl/ B, Where 3 isthe maximum value of the active
effects Bp, in absolute value.

Holcomb et al. (2003 ) demonstrated the superiority
of'the bootstrap and CVM methods through Monte Carlo
simulations for two cases

(1) All the regression coecients of active effects are

equal, i.e. By =Bmaxl.

(i) The regression coecients of active effects vary

linearly from —f,,5t0+ B pax-

For these two cases, they presented Type 1 and Type
2 probabilities for their methods, and stepwise regression
and all-models regression with some models selectively
excluded. However, we remark that although Type 2 error
seems to be generally small for their methods, frequently
Type 1 error can be as high as 80%. It appears that CVM
and bootstrap methods are particularly useful when a
significantly high value of
Type 1 error is not a disadvantage for the experimenter.

Generalization of Contrast Variance Method

A limitation of CVM is that it requires the effect
coefficients to be either all equal or linearly related. In
practical situations, it is quite likely that effects
corresponding to distinct factors do not bear such a
systematic relationship. We now develop a generalization
of CVM (GCVM) to cover other situations. Let

g =By 1/ P, 05 = (BB, — Pufp)/p and By = gy /

Opp be the mean, variance and coefficient of variation

of active effects respectively. We assume that the
experimenter has some prior knowledge about possible
spread in the magnitudes of active effects

; 2 . .
Bp,l-& o Bp.and the average size of active effects as

measured by the coefficient of variation eBp . The range
of active effects can then be taken to be approximately
(Ogp —0p, and (Bpp +3)0p, which
corresponds to normal distribution. We then have the
following theorem.

ideally

Theorem 1. Estimates of the minimum and maximum
active effects are given by
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2
“ A (e)
() Bpin = \/G_rz —{(p —1)e§p"§p +(p- 9)0§p + GGBpGEp}

S

~2
ey A (o)
(i1) B = \/_05 ~{(P-105,05, + (P~ 90, — 60,05}

S

Proof. From the definitions of Gﬁp and g, it can be seen

that BuBp = P(L+05,)08, - Adding
Bain —{ ©p,, —3)0[3p}2, which approximately equals

zero, to the right hand side of Bp'Bp and simplifying we
get

Brmin = Bp B —{ (P~ 103,05, + (P~ 955, + 60,07}

Also, from o2 =(B;)Bp)c5§ we get Bp'szérzlcg.

Substituting Bp'[?)p in the expression proves (i). The proof
of (ii) follows along similar lines by adding
Bﬁw ={(Bg, + 3)c5[3p}2 which approximately equals

zero, to the right hand side of the expression for
By Bp =P+ eép)ﬁép :
The means of the extreme contrasts are then

estimated by E(Cpin) =Brin{n -t} + By Duts and

IAE(Cmax) = Bmax{ n- Ms) + (Bpll)“vs with

Bp’lz pGBpeBp . Then, following Holcomb et al. (2003),
form upper and lower limits of the critical region as
lel = E(Cmin)+zy8p and ucl = E(Cmax) - ZYép-

Finally, contrasts that are not within the interval (Icl, ucl)
are selected as active.

A simulation study was carried out to study the
performance of CVM, bootstrap, GCVM and stepwise
regression methods. Only the uniform and linearly varying
effects were considered for CVM. For stepwise
regression, o0 and o were both kept at 0.15, and the

critical value z, for CVM and GCVM was taken to be
2.4, the values used by Holcomb et al. (2003). Several
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different values of 0, in the range 3 to 10 were used, and

the values of Gép were taken to be in the range 0.1 to 1.0.

For uniform and linearly varying effects in CVM, 8 =
2, 3, 4, 5 were used. The above set of values were also
used for the bootstrap method. Simulations were carried
out for the 8-run supersaturated design with 10 factors
and the 12-run supersaturated design with 22 factors.
The Type 1 and Type 2 errors were based on 5000
simulation runs, while the number of samples for each
bootstrap run was kept at 1000. The results of simulation
showed less than consistent behavior in
Type 1 and Type 2 error rates for both CVM and GCVM.
The Type 2 error rates were generally quite low but high
values of Type 1 error rates were observed in the
simulation runs. Our simulation results for CVM for the
two designs we considered were less convincing than those
reported by Holcomb ez al. (2003). Similarly, results we
observed for GCVM and the bootstrap methods were also
less than convincing. Results obtained using stepwise
regression method were significantly better than CVM,
GCVM and bootstrap methods.

The simulation study will be extended to all the
designs considered by Holcomb ez al. (2003) and some
other designs with larger number of factors and/or runs,
results of which will be reported elsewhere.

Allen and Bernshteyn (2003)

The analysis of a design is closely related to its
statistical properties. The authors argue that although
the popular E(s?) criterion is statistically meaningful in
the supersaturated set-up, by far it is not the best or the
only meaningful criterion. Unless a design has good
statistical properties, the experimenter can not hope to
achieve correct results from analysis of the design. The
authors consider four criteria from the perspective of the
analysis of supersaturated designs. Evaluation of
available supersaturated designs on the basis of these
criteria underscores the importance of the criteria in
constructions of designs as well. The four criteria are
(i) p,,» the probability that the analysis identifies all active
and inactive effects correctly, (ii) p_ , the probability the
analysis correctly identifies all active effects, (iii) d, the
average model size, and (iv) w, the probability of
identifying any given active factor. Allen and Bernshteyn
(2003) evaluated the 14-run design in 23 factors given
by Lin (1993) on the basis of these criteria and concluded



164 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

that users of this design “should not expect to achieve
correct selection in realistic scenarios.” They constructed
several designs for number of runs 6, 8, and 10 for number
of factors from 7 to 16 using E(s*), D, criterion of Wu
(1993), Half-fractions of Plackett-Burman designs, and
p,..- Comparisons of these competing designs on the basis
of the proposed four criteria using stepwise regression
on simulated data resulted in the following conclusions.
The designs that are optimal with respect to the p_are
approximately optimal with respect to the other criteria
as well. The proposed criteria may sometimes result in
unbalanced designs which may be useful when costs of
treatment runs are taken into consideration. Further,
among several possible E(s?) optimal designs, one should
select a design that is optimal with respect to other criteria.

Yamada (2004)

Yamada conducted an extensive simulation study
to investigate Type 1 and Type 2 errors in selecting active
factors using stepwise regression. His recommendations
reinforce the results of Liu et al. (2007) concerning
selection of one or two active factors. The simulation
results highlight that one should focus on selection of the
most important active factors, e.g. one or two largest
active factors.

The probability of selecting the second largest active
factor is maximum in many cases at the third stage of the
stepwise regression. Based on this the author
recommended that for controlling Type 1 error, it is
preferable to select active factors only up to the third
stage in stepwise regression. However, if Type 2 error is
more important, then as a compromise, active factors
may be selected up to the fifth stage in stepwise regression.
Furthermore, as observed by Abraham et al. (1999), the
simulation results indicate that active factors may not be
correctly selected if there are several potentially important
active factors, e.g. as many as five or more.

Lu and Wu (2004)

It has been established by Abraham et al. (1999)
and several other authors that all-subsets regression
performs better than stepwise regression. However, a
major disadvantage of all-subsets regression is that it is
too time consuming since the number of potential factors
is much larger compared to the number of active factors.
Several authors have thus proposed various strategies to
reduce the number of model evaluations without

substantially sacrificing the efficiency of all-subsets
regression. Hamada and Wu (1992) proposed iterative
use of forward stepwise regression in the setting where
the model may include some significant interactions. Lu
and Wu (2004) proposed selecting some large effects in
the first stage, followed by selecting active factors from
these relatively large effects using stepwise regression.
The active factors selected using stepwise regression are
combined with the factors that were left out in the first
stage and stepwise regression is applied for the second
time to come up with the final selection of active factors
from this combined list of factors. The selection of factors
in the first stage is based on a preestimate of effects.
Based on simulation results, the authors provide some
guidelines for the minimum size of the effects and the
number of effects to include in the first stage.

Based on simulation results, the authors claimed that
their procedure was more accurate than the usual stepwise
regression procedure in identifying active factors and the
correct model size. However, the results were not
uniformly superior across various supersaturated designs.

Zhang, Zhang and Liu (2006)

Zhang, Zhang and Liu introduced a variable
selection method based on partial least squares (PLS)
regression. The PLS regression blends the frameworks
of principal components and canonical correlation with
multiple regression, see e.g. Bastien et al. (2005). The i
PLS component is defined by t = X w,, where the weights

W= W, W, ., W, ], with w, 'Wi =1 are determined
using maximal correlation of Y with PLS components.
Here Y _and X are standardized versions of the response
Y and the design matrix X, i.e. each of the columns of
[Y, X ] has zero mean and unit variance. Also, note that
corr(Y,, X)) = cov(Y, X ), as both Y_and Xy the j®

column of X , are standardized.

For the first PLS component t , weights w, as given
below are obtained by maximizing corr(Y , t,), and they
correspond to the standardized eigen vector of

XS YSY, X with the largest eigen value
corr(Yg, Xg)

Wy = —— -
\/2 i1 {(com(Ys Xg)}

The main feature of PLS regression is that now it treats
the first PLS component t, as an independent variable
not only for the response variable Y , but also for each of
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the variables X , X, ..., X . Let Y, be the residual
vector obtained from Y _ after fitting t, to it. Similarly,
X, , be the remdual vector obtained from X, after fitting
t to it, j = , k. The weights for the “second PLS

component t, = 2|:1W2| Xg1 are then given by

cov(Yg, Yar)
2 foouYg, Xl

The next PLS component is obtained in a similar
way by considering t, as an independent variable for the
residuals Y, ijl, j=1 , k, and the procedure is
repeated until the partial covariances are no longer
significant. Finally, in PLS regression, a multiple linear
regression model fits to Y _using the PLS components t,,
t, ..., t_asindependent variables, where m denotes the
number of PLS components. The relative importance of
the 1 effect variable is judged through the variable

importance in projection (VIP) criterion defined by

Wy =

k m
— {corr(Yg,t)} 2w
¥ feom(Ye, )} > |

VIR =

A variable with high VIP value tends to be more
important and it is likely to be chosen as an active factor.
However, the selection of active factors is not based on
VIP values alone. The selection is fine-tuned using another
criterion called Mpress. The whole process of selecting
active factors involves repeated application of the PLS
regression. Let e, be the residual for the i response
obtained from the model with only the j* predictor in it
and fit after excluding the ith response. Then, for the j®*

. _ n o . .
variable, PressJ = Zizlqj . Likewise, let e, be the

corresponding residual obtained from a model with | — 1
predictors, and the j® predictor in it; clearly these 1 — 1
predictors, and the j predictor are all distinct. Then, for

the j* variable, Press, = Zin:lqzﬂ Zhang et al. (2006)
integrate a penalty function into Press, and define
Press; 2|

+ E—
2(n=1) n

MpressJl =

They use Mpress, to decide which factor to select
among two candidate active factors with largest VIP
values, and also to decide when to stop the process of
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active factor selection. The active factor selection
continues as long as there is a decrease in Mpress,
criterion value; the procedure terminates when the
criterion value increases as a result of adding another
active factor in the model. From the two variables with
the largest VIP values, the variable having smaller value
of Mpressﬂ, with 1 = 1, is chosen to be the first active
factor. Let Y, be the residual vector after fitting the first
active factor to the response Y. The m PLS components
are now recomputed using the remaining k — 1 factors
and the residual vector Y,. The VIP criterion values are
similarly computed for each of the remaining k — 1 factors.
From the two candidate factors having largest VIP values,
the factor having smaller value of Mpress, with =2, is
chosen as the second active factor. This procedure of
selecting active factors is repeated as long as there is a
reduction in Mpress, criterion value, otherwise the
procedure concludes. Zhang et al. (2006) refer to their
procedure as PLSVS method. The PLSVS method is
applicable to multi-level and mixed level supersaturated
designs as well.

Liu, Ruan and Dean (2007)

Liu, Ruan and Dean also emphasize the fact that
correct analysis of a design is directly linked to its
statistical properties. They investigated selection of
correct active factors using forward selection through
consideration of the expected values of the quadratic
forms involved in the F statistics of different effects. For
the case of one active factor, they proved that forward
selection method will always select the correct active
factor when random errors are small relative to the size
of the active effect. In general, there may be more than
one active factor present. For the case of two or more
active factors, they showed that correct selection of the
active factor with the largest effect in absolute terms (the
“most active” factor) depends on the extent of the
correlation between the columns of the design matrix.
They obtained bounds on the maximum correlation
between columns of the design matrix to ensure the correct
selection of the most active factor. Liu et al. (2007) also
investigated selection of the two most active factors using
best subset selection method. For the case of two active
factors, they proved that the best subset method will select
the correct two active factors if the maximum correlation
between columns of the design matrix is less than 0.33.
They also listed several designs that satisfy their bounds
on the maximum correlation between the columns of the
design matrix.
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Srivastava (1975)

As we have already mentioned, Srivastava (1975)
derived a condition that must be satisfied by a
supersaturated design before the problem of identifying
active factors can be solved at all. Let f denote the
maximum number of factors such that when the design
is projected into any subset of f factors, all the main
effects in the projected design are estimable. This means
that there is at least one subset of f + 1 factors for which
not all main effects in the projected design are estimable.
Deng et al. (1999) defined f as the resolution rank, r-
rank of a supersaturated design. Among alternative
designs with the same number of runs, it will be desired
to select the one with the largest value of
r-rank. Srivastava (1975) proved that a supersaturated
design will not be able to search the active factors and
estimate their effects unless its r-rank is at least 2p. The
supersaturated designs satisfying the r-rank condition are
called search designs. Shirakura ez al. (1996) gave some
results on searching probabilities for main effects designs
for searching one active interaction. Srivastava’s (1975)
procedure for searching active factors is as follows.

We have the search linear model Y=pl +XpB + €,
V(€) = o°I where B includes both active and inactive
effects. Srivastava (1975) gave the following fundamental
formulation of the search problem. Under the above model
with 62=0, a necessary and sufficient condition that the
problem can be completely solved is that for every
submatrix X of order n x 2p of X, rank[l X ] =
1 + 2p holds. The condition remains necessary for the
practical case 6> > 0. For only active effects, the model
iIsE(Y)=pul+ Xpo’ where the subscript p refers to the
active effects. The sum of squares for this model is given
by ss(B,) = Y'{1 ~ Q(B)}Y. where Q(B,) = A(A)'A”
with A = [1 Xp]. Srivastava (1975) proposed the
following procedure for searching active effects.

Step 1: Compute ss(PBp) by taking all possible p x 1 sub-
vectors of 3.

Step 2: Find a vector Bp for which ss(Bp) is minimized.

However, this does not guarantee selection of correct
p active factors. Thus, probability of correct searching
for a design d is computed as follows

P(d) BT'c n ﬁlpe”l\' (r;jzp) P(ss(Bp) < ss(Byp) )
where A(sz) denotes the set of all possible sub-vectors
of size p of B of which at least one element is not in Bp.

Shirakura et al. (1996) suggested the following for
comparing two competing designs. Let d and d, be two
competing supersaturated designs. Calculate the
searching probabilities P(d) and P(d,) for these designs.
Then the design d is to be preferred over d, if
P(d) > P(d,).

3. CONCLUDING REMARKS

Full-rank models permit estimation of the parameters
of the model through usual linear model regression
methods. Identification and estimation of active factors
in supersaturated designs is considerably more complex.
Srivastava (1975) considered identification of the correct
model in the non-full-rank setting when, in addition to
the parameters that are a priori to be included in the model,
e.g. main effects, there may exist few other non-negligible
parameters (or active effects) unknown to the
experimenter that also need to be estimated. He
established that the analysis of a supersaturated design
has problems of estimability unless its r-rank is at least
2p. This is a necessary condition for a supersaturated
design to be useful - namely, for the analysis to have any
hope of success. Since n, the number of runs, is much
smaller than the number of factors f, the necessary
condition implies that the number of active factors should
be small. Furthermore, Chen and Lin (1998) proved that
the absolute value of the correlation between any two
columns of the design matrix X should be less than
1/(p—1) in order to estimate any set of p effects. In other
words, larger the number of active effects, smaller the
pairwise column correlations must be. It would then seem
that either p must be quite small relative to n or the design
while supersaturated must be close to being merely
saturated. There are several other inherent
difficulties in the analysis of supersaturated designs.
Although only few factors may be active under effect
sparsity, their exact number (or model size) is unknown
in general. When the design satisfies the necessary
condition of Srivastava (1975), the probability of correct
identification of active effects depends on the magnitude
of correlations between columns of the design matrix.
The results of Abraham ez al. (1999) emphasize a major
difficulty in analysis of supersaturated designs, i.e.
different designs may identify different factors as active.
They also observed the importance of rather extreme
effect sparsity and concluded that active factors may not
be correctly selected if there are several potentially
important active factors, e.g. as many as five or more.
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The method of Li and Lin (2002) based on nonconvex
penalized least squares appears promising and it should
be explored more extensively. Liu ez al. (2007) emphasize
the fact that correct analysis of a design is directly linked
to its statistical properties. For the case of (only) two
active factors, they proved that the best subset method
will select the correct two active factors if the maximum
correlation between columns of the design matrix is less
than 0.33, which would seem to be a rather severe bound.
The contrast variance method and its generalization, and
the bootstrap method do not seem to perform better than
stepwise regression. Therefore, forward selection,
stepwise regression, and all-subsets regression methods
should be preferred over ad-hoc methods developed using
simulation based procedures.

An additional complexity in identification of active
factors is the possibility that some interactions among
factors may also be present. Interactions may not only
mask the main effects but may also result in different
sets of active effects being identified by different methods.
Lewis and Dean (2001) introduced two-stage group
screening methods to study interactions in addition to
main effects. Hamada and Wu (1992) also investigated
two-factor interactions but their approach is limited in
the sense that it does not really takes into account effect
sparsity and supersaturated nature of the experiment,
including all two-factor interactions in the second stage.
Group screening method was first used by Watson (1961)
for screening main effects. In the two-stage group
screening method of Lewis and Dean (2001), the factors
are partitioned into sets or groups of factors. Using prior
information, factor levels are labeled so that the main
effects of all the factors within a group are in the same
direction, i.e. positive (or negative). They developed two
group screening strategies, one that considers only main
effect of each grouped factor in stage 1, and the other in
which both two-factor interactions and main effects of
grouped factors are considered in the first stage. Grouping
of factors in the groups selected in the first stage is
disbanded in the second stage, and main effects and two-
factor interactions among factors are examined in both
the strategies. We refer to Lewis and Dean (2001), Dean
and Lewis (2002), and Vine ef al. (2008) for further
details of the two-stage group screening methods.

In a practical situation, identification and estimation
of active factors should be based on a careful evaluation
of'the results obtained across several competing methods.
Finally, irrespective of the method of analysis used, it is
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to be expected that the active factors selected in the
screening phase of the experiment will be evaluated
further in a follow-up confirmatory experiment.
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