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SUMMARY

The methodology of longitudinal data analysis (LDA) has been discussed with particular reference
to applications in studies on nutrition and animal breeding. It is based on the concept of intra-individual
variation first advocated by Sukhatme in nutrition studies. First the process view of nutrition is discussed
with an auto-regressive Markov process for analysing data on protein or energy intake. The general
theory of linear models with correlated errors is then used, in the context of half-sib mating design
used in animal breeding, to develop the structure of covariance matrix. Its elements are in terms of four
components of variation and one serial correlation coefficient. The observational components of variance
are related to the causal components of variation based on genetic considerations. Intra-individual
heritability (42)in a narrow sense, in contrast to the usual heritability (#*) used in quantitative genetics
literature, is introduced that depends on the process variance and the average serial correlation coefficient.
As a consequence, a useful test for the existence or otherwise of additive x local environmental
interaction effects has become available. A significant process variance with a significant autocorrelation
function or its associated variogram indicates a significant /4>. The heritability of k repeated
measurements is derived and used to develop a new formula for the heritability of the progeny test
used in animal breeding. This formula indicates that the LDA leads to increased accuracy in predicting
the breeding value of the male on the basis of offspring’s performance. The estimation of the parameters
of'the linear model with correlated errors, particularly the covariances, by restricted maximum likelihood

method is also described.

1. INTRODUCTION

Soon after the Indian Statistical Institute was
established in 1931 at Calcutta (now Kolkata) by
Professor PC Mahalanobis, it attracted a number of
research workers who made great names in the field of
statistics and related subjects. Dr. K Kishen was one of
them who joined the Institute in 1936 and worked with
Prof. RC Bose on the problem of confounding in general
symmetrical factorial designs using galois fields and
projective geometry. This work, published in Sankhya
in 1940 and establishing interesting relationship between
the fundamental simplex at infinity in a space of n
dimensions and the components of main effects and
interactions in a factorial experiment, is a landmark paper
in the field of design of experiments that attracted
favourable comments and praise from its architect, the
well known Professor RA Fisher. But Dr. Kishen,
although he continued his interests in the design of
experiments, was more known as an agricultural

statistician due to his enormous contributions in the
Department of Agriculture, UP where he had joined as
Statistician in 1940 and worked for several decades
before his retirement from the same Department. He had
a close association with the Statistical Wing of the ICAR,
now known as IASRI, and the Indian Society of
Agricultural Statistics and worked with Drs. PV
Sukhatme and VG Panse on several problems of
agricultural surveys and crop yield estimation.

My association with Dr. K Kishen started soon after
I obtained my M.Sc. degree in Mathematical Statistics
in 1954 from Lucknow University and took up an
appointment in an ICAR Scheme on Cost of Cultivation
of Sugarcane through Sample Survey at the Cane
Commissioner’s Office, Lucknow that was under his
technical control. The scheme, under the guidance of
Dr. VG Panse, was launched in UP and Bihar as a sequel
to the success of the sample survey methodology for
determining the cost of cultivation of a crop that was
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attempted by Dr. Panse for cotton in Akola district of
Mabharashtra a few years ago. My work involved
inspecting the field work of kamdars posted in different
randomly selected villages of the State to collect data
and supervising the subsequent data analysis at the Cane
Commissioner’s Office. Both Drs. Panse and Kishen
used to conduct training programmes for the field staff
regularly in one of the villages of the scheme to which
we were also invited. It was in those meetings that [ had
a first hand experience in the techniques of sugarcane
crop production and the associated field work.
Dr. Kishen’s zeal was enormous and later on he took
fancy of me on my excellent output of data analysis. My
association with Dr. Kishen became more intimate after
my joining the IARS (now IASRI) and later on becoming
the In-Charge of training programmes. I used to have
discussions with him often on research problems in
statistics. I recall one such discussion on partially
balanced incomplete block designs - the truncated
triangular designs with five associate classes that he had
invented and presented, along with AN Shukla, in one
of the conferences of the ISAS in 1974. I used this device
in the construction of partial diallel crosses and published
it, with AS Arya (who worked with me for his Ph.D.), in
the journal of ISI, the Sankhya in 1981.

I pay my humble tribute to the memory of
Dr. K Kishen by discussing an important topic, the
statistico-genetic considerations in longitudinal data
analysis (LDA).

2. NATURE OF LONGITUDINAL DATA

Longitudinal data are characterized by the fact that
individuals have observations recorded over time for the
same randomly selected unit — usually a short time series
—in contrast to a cross-sectional data in which there is a
single observation for each unit. Such data require special
statistical methods since each observed unit now provides
with a vector of observations that have a certain
stochastic dependence structure. Longitudinal Data
Analysis (LDA) therefore necessarily involves looking
at the data as one realization of a stochastic process. There
are numerous instances in which a characteristic can
provide repeated measurements over time. [ will deal
with two situations, one from the field of nutrition and
the other from the field of animal breeding.

In a nutrition study, the data could be daily
N-balance on fixed intake measured on each of several

individuals engaged in similar activities. Dr. PV Sukhatme
viewed such data as an auto-regressive (AR) stochastic
process and introduced the concept of intra-individual
variation in protein requirement. Later on he and myself
showed that the intra-individual variability in calorie or
protein intake had a genetic interpretation in terms of the
genotype x environment interaction. [ will describe this
process view of nutrition in Section 3 to illustrate one
aspect of the special nature of the LDA.

In animal breeding, particularly dairy cattle and
buffalo breeding, milk yield is one characteristic repeated
in time when recorded in successive lactations and has
been intensively used for genetic improvement studies.
The usual practice is to correct the lactation records to
the first lactation basis, using Sanders factors, before
estimating the repeatability of the milk yield. However,
when appropriate theory of LDA for applicability to data
on successive lactation records is made available,
Sander’s procedure may not be necessary. Another
instance relating to milk is its protein content. In order
to determine it for a given cow, milk is collected on a
number of times on different days, analyzed for its
protein content and an average taken of the values on
the protein content. This, however, ignores the
interrelation between the repeated determinations on
different days, thus losing valuable information. Instead
one can adopt the method of LDA to the original data
set. Litter size in animals is another example of a
character repeated in time when it is recorded in
successive pregnancies where LDA method could be
used. Yet another example from animal breeding is body
weight of a number of pigs measured in successive weeks
in a growth study. The repeated measurements in each
ofthe cases mentioned above constitute the longitudinal
data. When such data are based on controlled matings,
LDA requires statistico-genetic considerations as we
discuss in this paper.

We consider a specific situation of sire evaluation
and progeny testing in animal breeding as given in Narain
(1990). Each of a set of males is randomly mated to a set
of females and one offspring is considered from each
such mating. This gives rise to half-sib families for a
given male. We now assume that a set of records repeated
over time for the character under study for each offspring
is available for a given period, the objective being to
evaluate the breeding value of the male on the basis of
its offspring’s measurements for the character repeated
over time. We have thus a problem of LDA involving
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genetic information, each observation on a number of
individuals that are half-sibs, being now a vector of
measurements that may be correlated. In Section 5, |
discuss this feature of LDA using the general theory of
linear model with correlated errors with particular
reference to quantitative genetics problems presented in
Section 4.

3. SUKHATME’S PROCESS VIEW OF
NUTRITION

Sukhatme along with Sheldon Margen of the
Department of Nutritional Sciences, University of
California, Berkeley developed in 1978, the concept of
protein requirements of individuals and indicated the
method by which it can be extended to those of
populations. According to the joint FAQ/WHO Ad-hoc
Expert Committee on Energy and Protein
Requirements— the safe level of protein intake is defined
as the average requirement plus twice the standard
deviation. According to them an individual eating below
this level, though not malnourished, runs the risk of
developing protein deficiency and this risk increases as
the intake falls below the safe level. All along it was
assumed that requirements remain constant in an
individual. Sukhatme’s approach was to take into account
the intra-individual variability in requirement, not as a
random noise due to measurement error but in a manner
represented by an auto-regressive (AR) stochastic
process.

When we have time series data on daily N-balance
in man maintaining body weight on fixed intake and on
the assumption that energy intake is not a limiting factor
in the diet, we can represent the series as

Wtzpwt—l+et (1)

where w is the balance on the t-th day, p is the serial
correlation of order one between w and w,  and ¢ isa
random variable with mean zero and variance (5(23 . This
model represents an auto regressive Markov process,
comprising of two components — one a short-term
component arising from the current value of the process
at the previous time point and the other a long-term
component in the form of errors of measurement. In such
a process, the errors get incorporated into the motion of
the process to determine the balance on any given day
and are not cancelled out as they would do in a purely
random process with p = 0. The expected value of w, is

found to be zero and the variance of w, is Gg /(1- p?)
which is independent of t and therefore remains constant.
Such a process is known as stationary stochastic process.
The observed value of balance on any given day will
then be distributed around mean zero within limits

+20, /\/(1—p?) which are known as homeostatic
limits.

Using daily data on N-balance on fixed intake,
Sukhatme found that for intakes in the range of 3.5 to
12 gms. N/day, the day to day N-balances were not
random but were serially correlated in an auto-regressive
process as described above. The daily N-balance is
regulated according to a probabilistic generating
mechanism constant over time. At very high or negligible
N-intake, this regulation is shown to break down i.e.
homeostasis can no longer be maintained. It was shown
that the magnitude of stationary variance is comparable
to the variation between individuals. This was found to
hold true even when the daily requirement was averaged
over several days. Sukhatme and Margen (1978)
concluded:

Protein deficiency may he defined as a failure of
the process to be in statistical control, and not
defined in the manner that assumes requirements
to be fixed whereby if an individual consumes
protein below this level, he suffers from protein
deficiency.

3.1 Genetic Interpretation of Intra~individual
Variation

Sukhatme and Narain (1982, 1983, 1984, 1996-97)
as well as Narain (1982, 1984, 1990, 1993, 1998, 2000)
showed that the intra~individual variability in calorie or
protein intake is enhanced due to interaction between
the genotype of the individual and the environment as
he advances in time.

Assuming that we have data on energy balance or
protein intake for & subjects, recorded at successive n
days, the model describing the response of subject 7 on
t-th day is given by

Ylt = M + bl + Wlt (2)

where Y, is the corresponding response with U as overall
mean, b’s are independently and identically distributed
with variance 6, independently of w, and w,’s for the
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same individual are n consecutive random variables
following an auto-regressive (AR) Markov process of
order one given by

Witzpwl(t_1)+elt (3)

where p is the serial correlation coefficient of order one
and e ’s are independently distributed with mean value

zero and variance 0'5. It was shown that the expected

value of the ‘between subjects’ mean square ( S% ) would
be

E(S5)=[n—(n—1)0] 65 +nop  (4)
where
O=[1-2(n+p/n+m+ 1)pXn-1)
—2p" Y n(n— 1))/ (1 - p?) (5)

The variance of the mean of the individual when
averaged over n different days can be expressed
alternately as

V,, = O + (05 m[{(1+p)/(1 - p)}
~2p(1 - p*)/n(1 - p)]
=02+ ro2+(l-r1)062/n (6)

where r is the average correlation between observations
of a given individual and is related to p approximately
as

r=2p/n(l -p) (7)

The effect b, in the above model reflects genetic
effects of the i-th individual as well as certain
environmental effects permanently associated with the
individual’s development such as intra-uterine and
external environment experienced by him. Its variance
would therefore contain the genetic component of
variance (V) as well as common environmental
component of variance (Vy,) so that

Gp =V, +V,, (8)

In so far as G: is concerned, it reflects only the
variability due to local environmental effects (V)
provided the genotype does not interact with the
environment. If it is not so, another component of
variance due to the interaction (V. ) would enter in the
within individual component so that when the
observations are averaged for several days, it does not
bring about the reduction in the variance of the mean of
the individual to the extent it would do if the genetico-

physiological process of calorie or protein metabolism
had been the same on each day. We, therefore, get

rog =V, ©)
(1-r1)63=V, (10)
giving
Vo= Vot Vi ¥ VetV in - (11)
and

r=V__ IV

GEs

+V..) (12)

GEs

The average correlation r can then be given a
genetic interpretation as ‘heritability of the individual®
in a broad sense in a manner similar to the concept of
‘heritability’ in a broad sense quite frequently used in
quantitative genetics literature. It is the fraction of the
total intra-individual variability which is due to
interaction between the genotype and environment and
could take any value between 0 and 1. The existence of
the genotype x environment interaction thus enhances
the intra-individual variability with stabilization of
variance as we increase the period of time over which
the data are collected. The strength of this interaction
can be measured in terms of the serial correlation
coefficient signifying the degree of auto-regulatory
mechanism.

4. GENERAL LINEAR MODEL WITH

CORRELATED ERRORS
Lety,,t=1,2, .. k be the set of observations on
the j-th offspring of the i-th male with j =1, 2, ... n and

i=1, 2, ... m, there being n half-sibs for each of the m
males. Let the corresponding values of the p explanatory
variables be x ., 1 = 1.2....p. We assume that y, are
realizations of random variables Y, which follow the
model given by

Y, =ZB x, te (13)

ijtl ijt

where g, are random sequences of length & associated
with each of the n offspring and correlated within
offspring.

In terms of matrices, let Y, denote the vector of k£
dimensions, representing the observations pertaining to
the j-th offspring of the i-th male. Let y = ((y,) be the
matrix of order m x n representing the whole set of data
of N = mnk observations. Let X be an N x p matrix of
explanatory variables and for covariance structure let X
be a block-diagonal matrix of order nk x nk with a non-
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zero ‘block’ sub-matrix for observations from each male
that would be explored in the next section. Then the
general linear model for longitudinal data regards y as a
realization of a multivariate normal random vector Y with

Y ~MVN(XB,1 ®%) (14)

where I is an m x m identity matrix and B is a vector of
p dimensions.

In order to parametrize the mean and covariance
structures separately, we express (14) as

Y=XB+e (15)
with

e~MVN (0,1 ®Y) (16)

4.1 Parametric Model for Covariance Structure

We assume that the sequence Yljt ,t=1,2, ...k, are
sampled from independent copies of an underlying
continuous-time stochastic process {Y(t), t € R}. We
explicitly model the stochastic dependence structure of
this process by defining the covariance matrix. For this
purpose we take the stochastic process as stationary and
assume that it results in a correlation between pairs of
observations on the same offspring that depends on the
time separation between the pairs of observations. The
correlation becomes weaker as the time separation
increases. Such a type of correlation is known as serial
correlation or autocorrelation.

The random effects of offspring for each male will
give rise to a variance component and likewise the
random effects of males themselves will lead to another
variance component. The measurement process on
individual offspring over time will add a further
component of variation of its own. All these three
variance components will have to be incorporated into
the stochastic dependence structure of serial correlation
that will have its own variance component. We model
them as below.

(a) Serial correlation

Let the time-varying stochastic process operating
within each offspring gives rise to a component of €
with zero mean, variance 62 and correlation function p(u)
for pairs of measurements on the same offspring with u

time units apart. The variogram of the stationary process
is then given by

Y(u) = 65+0" {1-p(u)} (17)

where Gg is the variance of the component of €, due to
measurement errors within each offspring. This
component is estimable only when ar least duplicate
measurements are taken at each time instant.

The average correlation over the £ measurements
for each individual is given by

p=[Z(k—r)p () Zk-r) (18)
the summation being over » from 1 to 4—1.

The average variogram over the k£ measurements
for each individual is given by

V=EG;-ny@/[Zk-r] (19

the summation being over r with the usual limits from 1
to (k— 1), the relation between p and y being given by

y=02+0c*(1- p) (20)

(b) Random effects

When we consider a particular time instant, the
longitudinal data becomes cross-sectional with a design
following half-sib structure. This gives rise to two
variance components Gﬁ] and Gg corresponding to male
and offspring effects respectively. In addition, if we
visualize that a number of measurements is made
instantaneously at the same time point on each individual
offspring’s each repeated measurement, the total within
offspring variability would be, say G&VO =62+ cé. This
would have two components (a) o? p, the uniform
covariance between pairs of duplicate measurements
within each measurement at the given time instant or
the variance of the means of measurements, and
(b) o? 1-p)+ cé , the within measurement component
of variance due to random errors of the measuring
instrument.

The variance of each € is then finally given by
1
Var (g,) = Op + g + 0% + 65 = 0%, say (21)

The covariance matrix will thus involve five
parameters — the four variances plus one correlation
function.
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4.2 Covariance Matrix

The nk x nk matrix 3. will have a block structure of
sub-matrices as depicted below

Z* Grznlk Grznlk Grznlk

szlk Z* szlk szlk

2 2 * 2
T=|0mlk omlk X - oplk (22)

2 2 2 *

Gmlk Gmlk Gmlk >

where I, is an k x k identity matrix and the k& x k matrix
" is given by

X'=
cs% cg + cszp(l) o§ + 0'2p(2) ---og + czp(k -1
o§ + Gzp(l) 012— c§ + Gzp(l) ---o§ + czp(k -2

62+6%(2) o2+0%(1) 062062 +0%(1) 02 +c%p(k-3)
cg +c52p(k—1) 0'§+62p(k— 2) 0%
(23)

where c§ = O'ﬁ] + oﬁ . It may be noted that when there

is no autocorrelation i.e. 6>= 0 and p(u) = 0, " reduces
to

621y +JF o2, (24)

where J, is a row vector of k dimensions. This situation
is common in animal breeding examples and gives rise
to estimation of repeatability of a character. When,
however, the character is not repeated over time so that

k=1and Gg is also zero, this matrix reduces to the scalar

62, + 63 = 6% and the reduced 7 x n matrix 3, then

has G% as diagonal elements and G% as off diagonal
elements, a typical case of half-sib analysis of variance
for the estimation of heritability of a character.

4.3 Relation between Observational and Causal
Components of Variance

The variance components discussed above are
observational components that are estimated from the
data generated during the study and need to be related to
causal components derived from genetic considerations
based on the genetic design adopted for the study (Narain
1990). Let the additive genetic variance, additive x

specific or local environment interaction variance, specific
or local environmental variance, general or common
environmental variance including non-additive genetic
components of variance, environmental variance
(including non-additive genetic components) and
phenotypic variance be denoted respectively by V,, V., .,
V.o V*Eg, V,and V. Then we have the relations as given
below

1. 6% =04V,

2. 6=V, +V"_

2_ 2 2 _ o
3. 0g=0qt 0=V, +V =V, +V,

4‘ G\%\/0 = 02+ Gg =VAES+VES (25)

5. 0% 1,=0> p=(/)V

AEs

6. 04o(1— r)=0¥1- p)+ 05 =(4)V, +V,

7' G% = VP =VA+VAES+(VE5+V*Eg)
=\/A—i_\/AEs—i_\/E

where ?0 = (0 5/ 05\,0) denotes the intra-offspring
correlation based on the average autocorrelation O in
the same spirit as discussed for 7 in Section 3. However,
Sukhatme’s model is not the same as is considered in
this section. His model has a Markovian structure for
errors as given by equation (3) and therefore, cannot be
extended to accommodate measurement errors and
random effects of the half-sib analysis. Here, the serial
correlation process is not Markovian so as to allow the
variance component approach to be adopted. The
algebraic results for serial correlation, however, happen
to be the same in both the cases.

In the above relations, the male effect variance ( Gﬁ] )
is equal to one-quarter of the additive genetic variance
(V,) since each male passes half of his genes to each
offspring. When squared to compute the variance, the
one-halfadditive genetic effect (breeding value) becomes
one-quarter of the additive genetic variance. The offspring
effect variance ( oﬁ )will therefore include the remaining
three-fourth* of the additive genetic variance, plus a
variance ( VEg ) due to general or common environmental
effect that includes non-additive genetic effects as well
as environmental effects common to all observations of
the offspring. The within offspring variability (05\,0)
includes the variance component (6?) due to serial
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correlation, plus the error component of variance ( (5(2e ),
only estimable, as already noted above, if at least
duplicate observations are recorded at each time point
instantaneously. Due to longitudinal nature of data, the
repeated observations taken at each time point for the
same offspring will include local environmental effects
due to time parameter with a variance (V_), plus an
interaction effect due to additive genetic effects of the
offspring interacting with the local environmental effect
with a variance (V. ). As already discussed in the section
on random effects, the within offspring variance has two
components —one due to the part explained by the serial
correlation (6> p) and the other containing the remainder,
plus that due to errors of measurement (G*(1— p)+ 6(2a ).
The former is equal to one-quarter of the variance due to
additive x local environmental effects ((4) V) since
each offspring carries only one-half of the male’s genes
and on computing the variance it becomes one-fourth.
The other component will therefore include the remaining
three-fourth of the interaction variance ((%2) V. ), plus
the variance due to local environmental effects (V). In
this way, it may be noted, the balance sheet of total
variability, at the observational as well as causal levels,

is made intact with G% =V,.

4.4 Heritability

With longitudinal data, the heritability of the trait is
of two kinds — one, the usual one used in quantitative
genetics literature, is at the population level and the other,
introduced in the Section 3, is at the individual level.

(a) Heritability at the population level

It is the fraction of the phenotypic variance (V)
which is due to the additive effects of genes and can
take any value between 0 and 1. Symbolically

W=V,/V, (26)
This heritability is stated to be in a narrow sense.
We can easily see that it can be estimated by

I=40p | 6% =4op | (oh + 0+ 07 + %) (27)

We have therefore to estimate the four variance

components Grzn , Gg, 62 and oé from the longitudinal

data for estimating this heritability.

(b) Heritability at the individual level

It is the fraction of the total variance (V,, +V_ ) at
the individual level given phenotypically by ( o2 + (5(23 )

which is due to the additive x local environmental
interaction effects and can take any value between 0 and
1. Symbolically

e =V, / (Vi + V) (28)

It is given the name intra-individual heritability or
heritability of the individual in the same spirit as in
Section 3. However, here it is defined in a narrow sense
whereas in Sukhatme’s model it is defined in a broad
sense and given by (12). The difference is obvious since
in that model we do not have a mating design like half-
sib design used here and the data generated there gives
only between individual variability that includes genetic
variance (V) and common environmental variance
(V). Here the half-sib design allows the additive genetic
component of variance (V,), a subdivision of V , to be
included into the analysis. This heritability can be
estimated by

hg =41, =4(0% p/ 0ap)

2

=4[6% p /(6% + 62)] (29)

or else, in terms of variogram, by
hg =4[1-Y/c?+ )] (30)

However, we need a model for p(u) or y(u) to be
able to determine P or Y . If we take

p(u) =p“with |[p | <1 31

the type studied under Sukhatme’s model in Section 3,
P is given by

P =[2p/(k— 1)1 —p)][1- (1 - p“Vk(1 - p)]
= 2p/[k(1 - p)] (32)

This is substituted in (29) before estimating hﬁ,

The behaviour of p that depends on & and p in a

characteristic manner is as shown in Fig. 9.1 of Narain
(1990).

We thus see that to be able to estimate h,z\, , we will
need to estimate p, 62, and Gg , k being given. It is also
important to see that if the process variance 62 is found

to be very small compared to 6(2a or Gg , the increasing
curve of the variogram is squeezed between the two

horizontal lines corresponding to oﬁ and G(Ze and

therefore disappears. That means h\%, becomes negligible,
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indicating thereby that additive x local environmental
effects are not present. The LDA then reduces to the usual
type of the analysis of variance with variation over time
within offspring providing an estimate of the
experimental error variance (5(23 and hence as a measure
of V_ only. It is therefore apparent that the non-existence
of additive x local environmental interaction effects
implies non-existence of serial correlation and vice versa.
LDA, in the context of a half-sib mating design, therefore
provides with a test for the presence or absence of such
interaction effects.

4.5 Heritability of &k Repeated Measurements

When we have k repeated measurements on a an
individual of the population following the above
discussed model of serial correlation, we can determine

the heritability (h&,) of the mean of the k& phenotypic
measurements by working out the regression coefficient
of the breeding value (4) of the individual on the mean

P= 2 P_/k, the summation being over i = 1 to i = £.
Then

Cov(d, P) =(1/k) L Cov (4, P)=V, (33)
Var () = (1/F) [Var (2 P)]
= (/R K 63 + k(62 + 62)
+k(k—1)0% p]
=[ 0§ + 0g {1+ (k- DI }/k]
=[RV,+(1-R)V, {1+ (k—1) 3 }/k] (34)
where R is the repeatability of the character given by
R=(05/0%)=(V,+ V', IV,=(V,+ V)V, (35)
Then
hZ = Cov (4, P)/Var ()
=k P/ [{1+ (k=DR} + (k=1)(1-R)RZ ]  (36)

When h\i =0, the expression for h,z\, reduces, as it
should, to that given by (9.29), with ‘n’ replaced by ‘k’,
of Narain (1990) for the heritability of the repetitions of
the same character without involving serial correlation.
When k =1, it becomes /* as it should. The accuracy in
determining the breeding value of the individual is thus
increased with longitudinal data with serial correlation.

5. CORRELATION BETWEEN THE BREEDING
VALUE OF A MALE AND THE AVERAGE
VALUE OF HIS OFFSPRING’S
MEASUREMENTS (PROGENY TEST)

The breeding value, denoted by 4, of an individual’s
phenotypic trait is an important concept in quantitative
genetics literature. When an individual is mated to a
number of individuals taken at random from a given
population and an offspring is scored for the character
from each mating, the mean deviation of the offspring’s
value from the population mean measures half the
breeding value (Y2 A) of the parent (Narain 1990). In
dairy cattle and buffalo breeding this forms the basis of
progeny testing where a finite number of daughter’s milk
records are used to assess the breeding worth of the sire
who does not express the milk characteristic. The square
of the correlation between A and the progeny test- the
average of the number of daughter’s records — termed

the heritability of the progeny test and denoted by hﬁr

tends to unity as the number of progenies is increased
indefinitely.

When we have several, say k, measurements over
time on each offspring of the male, we can work out the
hér for each measurement separately, the usual formula
being given by n/(n + a) based on the equation (12.14)
of Narain (1990) where a = (4 — #*)/h*. This can be
summed up over k& measurements and divided by & to
give the progeny test on per measurement basis. Since
each measurement is contributed by the same set of
genes, the formula remains same as that for an individual
measurement. This, however, does not take into account
the covariance structure of the longitudinal data. In what
follows, we therefore, examine the correlation between
A and the progeny test when the covariance structure of
the longitudinal data is taken into account.

Let the breeding value of the individual for a given
trait, expressed as deviation from the population mean,
be denoted by 4. Let the phenotypic values of the trait
of n offsprings from this male with £ measurements over
time, expressed again as deviation from the same
population mean and denoted by DlJ ,1=1,2 ... n,
j=1,2, ... kbe standardized to have unit variance so that
the heritability of the trait, denoted by /4* is the same as
additive genetic variance V,. We assume that for each
offspring of a given male, same genes affect the character
at the k different time points with the possibility of
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additive x genotype interactions. The covariance structure
discussed above and given by (22) and (23) indicates the
necessary random effects due to male, progeny and
measurement errors as well as the serial correlation
effects. We consider the mean of the £ measurements of

each offspring, say 5i for the i-th offspring, with
heritability given by (36). The breeding value of an
individual with respect to this mean would have variance

equal to this heritability times the Var ( 5i ) that is same
foralli=1,2,...n Then fori=1, 2, ... n, we have

Cov (A, D;)=(1/2)h2 Var (D;) (37)
Cov (Dy, Dj)=(1/4) hZ Var (D,) (38)
Var (B;) = [R+ (1 =R){1 + (k- DHh 1/k] (39)

Let the average of all the phenotypic values for the
means of the offspring of a given male, » in number, be
denoted by D so that

B=3B/n (40)
We then have
Cov (D, A4) =(1/n) = Cov (D;, 4)
=(1/2)hZ Var (D)) (41)
Var (D) = (1/n) £ Cov (D;. Dj)
= (I/m)[1 + {(n—1)/4} hZ Var (D;)(42)

Var (4) = hf Var (D;) (43)

Then the expression for the heritability of progeny
test for LDA is obtained as

h2 (LDA) = [Cov( D, A)J/[Var( D) Var(4)]
=2 /4)/[1 +(n—1)hZ /4]

=[n/(n+a )] (44)

where
a, =a—4k—1)(1- h\f, )(1 —R)/kh? (45)
a=@A-mnrw (46)

If we take k=1, a _equals aand hpr (LDA) becomes
hpr the well known formula for the heritability of the
progeny test (Narain 1990). When #» tend to infinity

hgr (LDA) tends to unity showing that the correlation
attains the maximum value of one, thus preserving the
well known result of hpr Further, since the extratermina

over and above the term a viz. 4(k—1)(1— h,v )(1—R)/k#?
is necessarily positive, a_ is less than a, indicating that
the heritability of the progeny test with longitudinal data
is increased compared to its value with cross-sectional
data. However, when V__is very small, making R very
large and close to one or else h%, is close to one, the a,
is close to a and the heritability with longitudinal data is
nearly the same as that with cross-sectional data. It is
only when R is low or hW has a small value that
hpr (LDA) has advantage over hpr It may be noted that
hW depends on the process variance 62 and average

serial correlation P by the relation (29) for which the
model for p(u) given by (31) is invoked.

An alternative form for the expression for the
heritability of progeny test with longitudinal data, by
substituting for hf from (36) and for R from (35), is
given by

N (LDA) = (nki2/4)/ [1+{(n — 1)k/4
(k= 1)(1 = W)t (k= 1) N,
(k=11 - h§)HV',] (47)
6. ESTIMATION

The parameters for the estimation in the general
linear model with correlated errors given by (15) and

(16) are B, a vector of p dimensions, and the matrix

I ®Y that is a function of five parameters, Gﬁ] , Gg,

02, Gg and p. While B, pertains to fixed effects like

herd, season of calving, order of lactation etc., in the
animal breeding example, the covariance matrix involves
components of variance and serial correlation coefficient.
We denote the latter by a vector a of 5 dimensions. The
covariance matrix is then denoted by G%V(Oc) where
each element of the matrix has been divided by the total
variance. The most versatile method of estimation is that
of restricted maximum likelihood (REML) introduced
by Patterson and Thompson (1971) in connection with
variance components estimation. Here it is to be adopted
for general linear model with correlated errors. For given
a, the estimating equations for the fixed effects are
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B ()= (X"V(o) ' X)'X"V(a) 'y (48)
Then the REML estimator for 62 is given by
62 () = RSS(av) / (mnk — p) (49)
where
RSS(0) = fy - XB (@)} V(@) fy—XB (@)}  (50)

The REML estimate ¢ maximizes

L(a) = —1/2 [mnklog {RSS(a)} + log | V() |
+ log | X™V(e) ' X]] 1)

and the resulting REML estimate of B is B=B(a).

7. DISCUSSION

LDA requires more sophisticated statistical methods
than that for cross-sectional data analysis. Here we have
demonstrated this by discussing two specific areas of
application viz. nutritional studies and animal breeding
data analysis.

We have built up over the method given by
Sukhatme and Narain on intra-individual variability in
nutrition studies. By utilizing the characteristics of the
longitudinal data in terms of serial correlation and
associated components but without invoking the Markov
process, it has been possible to give the concept of intra-
individual heritability in a narrow sense. It turns out that
this heritability is a function of the serial correlation
coefficient and enables one to test for the existence or
otherwise of the additive x local environmental
interaction effects.

We have used a model for serial correlation
function, given by (31), as p(«) = p* with |p|<1, so that
it decreases as the distance in time, u, increases. This is
a special case of the exponential correlation function
model given by

p(u) = exp(—Ku") (52)

where p = exp(-k) with v = 1. This more general model
is particularly useful when time parameter is continuous.

When confronted with LDA, the first step is to
explore the association among repeated observations for
an individual to determine the type of serial correlation
model to be used. This is exploratory data analysis (EDA)
to visualize the patterns in data. The effects of
explanatory variables, if any, are first removed by
regressing the response y on X and residuals r, are
obtained. Scatter plot matrix in which r, is plotted against
r forallj<1=1,2,... kis then obtained. Such a graphical
display can indicate the nature of correlation between
repeated observations and the manner in which it
decreases over time. This EDA is then followed by
confirmatory analysis as required.

Of particular interest, in this paper, is the accuracy
of the progeny test with longitudinal data, given by the
square-root of the expression (44) or (47) that seems to
be new in the literature of quantitative genetics. While
for £ = 1 they reduce to the familiar result in animal
breeding, when & tends to be large at a given value of n,
they tend to the limit given by

M (LDA, k— o) = n/[n+a—4 (1= h2 (1 - R)/I ]
= (nIIAY[{(n — 1) 14} + R2 +R(1— R2)] (53)

When h2 is close to one, this becomes hﬁr but
when h\%, is zero this becomes (nh*/4)/[(nh*/4) + Gg] if
R is expressed as (#7/4 + 0‘% ). In the later case it indicates
the effect of repeatability when the measurements
repeated indefinitely provide with a perfect estimate of
cé. It should be noted that in order that the effects of
serial correlation and random effects due to male and

offspring are distinguishable, £ should be greater than
two.
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