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SUMMARY

Some early uses of experimental designs and more recent applications are reviewed. Role of
experimental designs in controlled sampling is appraised. Some new work on constructing balanced
bootstrap replicates from stratified random samples is also reported.
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1. INTRODUCTION

Experimental designs have long been used in survey
sampling. More recent applications include controlled
sampling, handling of sensitive questions and dentiality
of survey data and the construction of balanced
subsamples for variance estimation. Section 2 gives a
brief account of early uses followed by more recent
applications in Section 3. We also report some new work
on constructing balanced bootstrap replicates from
stratified samples in Section 4.

2. SOME EARLY USES

Use of experimental designs in survey sampling
dates back to Frankel and Stock (1942). They used Latin
square designs to increase the effective depth of
stratification in the selection of primary sampling units
(clusters) when the number of sample clusters is small.
The primary units in the population are divided into L*
cells and one cell is selected from each row and column
using a Latin square. One cluster is then selected at
random from each of the L selected cells, leading to a
sample of n = L clusters. Homeyer and Black (1946)
used the principle of Latin square in sampling
rectangular fields of oats. Patterson (1954) studied two-
and three-dimensional lattice sampling.

Mahalanobis (1946) advocated the use of
interpenetrating subsamples to measure interviewer
variability and to estimate total variance (response
variance plus sampling variance). The sample is divided

! University of Western Australia, Crawley, Australia

into k subsamples and k interviewers (treatments) are
assigned at random to the k subsamples (plots). This is
an example of a completely randomized design. Fellegi
(1964) used cross-over designs to measure the
components of response variance.

Chakrabarti (1963) did pioneering work in the use
of balanced incomplete block designs (BIBD) for
drawing samples with the same first- and second-order
inclusion probabilities, 7; and 7, as simple random
sampling (SRS), i.e., m; = n/N and 7;; = n(n — 1)/
[N(N — 1)], where n and N denote the sample and
population sizes, respectively. This approach ensures
variance equivalence with SRS for the sample mean and
yet leads to support size (number of samples s with
probability of selection p(s) > 0) smaller than the support

size (r':l ) for SRS. In the BIBD, number of treatments

v =N, plot size k = n and number of blocks, b, is the
support size. For example, if a symmetric BIBD exists
for the desired (N, n), then b =N which is much smaller

than (r';‘ ) . Practical implications of Chakrabarti’s result

are discussed in Section 3.
3. MORE RECENT APPLICATIONS

Raghavarao and Singh (1975) extended
Chakrabarti’s (1963) work to more complex sampling.
They applied two associate class partially balanced
incomplete block designs (PBIB) to cluster sampling.
Singh et al. (1976) extended this work to
multidimensional cluster sampling by using higher
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associate class PBIB designs. Singh and Raghavarao
(1975) applied linked block designs to sampling on two
occasions.

Raghavarao and Federer (1979) used BIBD and
spring balance weighting designs as an alternative to the
randomized response method for eliciting reliable
responses from individuals on sensitive questions. A
sample respondent is required to give only the total of
responses to k questions, sensitive or not. Raghavarao
et al. (1971) used spring balance weighing designs to
handle measurement errors in surveys. In this
application, each respondent gives the value of the study
variable for each of the other (n - 1) units in the sample.
For example, a sample farmer might provide more
correct information about the produce of other farmers
than his own. Raghavarao and Chang (1992) used BIBD
and contaminated block totals to protect confidentiality
of data. Lakatos and Raghavarao (1987) used
undiminished residual effects designs in ordering
sensitive questions. Using these designs, they estimated
the residual effects of questions and then ordered the
questions according to increasing size of residual effects.
This approach can improve the quality of responses and
increase the response rates.

Experimental designs have also been used to obtain
inclusion probabilities proportional to size (IPPS)
sampling designs (Gupta ef al. 1982 and Nigam et al.
1984). IPPS sampling leads to efficient estimation of a
finite population total Y.

It often happens in practice that certain samples,
s, are known to be non-preferred (for example, the units
in s may be too widespread, thus increasing the travel
cost). It is desirable to minimize the probability of
selecting a non-preferred sample and at the same time
ensure variance equivalence to SRS or to a more general
design. Controlled sampling aims to achieve this
objective. Most of the literature on controlled sampling
used various incomplete block designs to construct
designs with minimum support size (i.e., minimum
number of distinct blocks) and then identify maximum
number of distinct blocks with the non-preferred
samples. One of the b blocks is then selected at random
and the units in it form the sample. Avadhani and
Sukhatme (1973) applied BIBD to controlled sampling,
but the application readily follows from Chakrabarti’s
(1963) results. Unfortunately, the class of BIBD’s with
distinct blocks do not exist for many v =N and k = n.

For example, no BIB with distinct blocks exists for

v=8 k=3and b< (2) = 56 blocks. To handle such

cases, Wynn (1977) and Foody and Hedayat (1977)
proposed BIBD’s with repeated blocks and variance
equivalent to SRS. Hedayat and Majumdar (1995) used
the technique of trade-off. in experimental design to
generate desirable sampling plans. The focus of the
above papers and others on controlled sampling is on
reducing the support size rather than minimizing the
probability of obtaining a non-preferred sample. To
implement the latter objective, even approximately, from
a given incomplete block design could often involve
considerable trial and error and computations. Rao and
Nigam (1990) used the linear programming approach to
obtain optimal controlled sampling designs. If S; and S
denote the set of non-preferred samples and the set of

all (,’:‘ ) possible samples, the optimal controlled design,
pc(s), is obtained by minimizing

o= 2, P

seSl

subject to

Y ps) =nm-1/{NN-D} 1 <i<j<NQ@G.l)

21, ]

and p(s) 2 0 for all s € S. The condition (3.1) ensures
variance equivalence to SRS. Rao and Nigam (1990)
gave an example with N = 8, n = 3 for which
Omin = 0.1607 compared to ¢ = 32/56 = 0.5714 obtained
by Foody and Hedayat (1977). Through trial and error
the latter ¢ could be reduced to 24/56 = 0.4286 by
interchanging the units 3 and 5 in the Foody—Hedayat
plan. Foody and Hedayat (1977) alluded to mathematical
programming in the context of SRS, but did not pursue
that approach to construct optimal controlled plans.

The linear programming approach readily extends
to IPPS sampling designs and other general sampling
designs, as demonstrated by Rao and Nigam (1990,
1992). However, a difficulty with this approach is that
the dimensionality of the problem increases very rapidly
with increase in N and n. Lahiri and Mukerjee (2000)
attempted to address the dimensionality problem. They
showed how from consideration of symmetry it is
possible to achieve a drastic reduction in the
dimensionality of the problem. Tiwari and Nigam (1998)
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applied the linear programming approach of Rao and
Nigam (1990) to two-dimensional optimal controlled
sampling. Their method achieves the goal of “controls
beyond stratification” (Goodman and Kish 1950) as well
as minimize the probability of selecting a non-preferred
sample.

Hedayat et al. (1988) studied balanced sampling
plans excluding contiguous units (BSEC) for situations
when the units in the population are ordered in time or
space and the contiguous units provide similar
observations. For a BSEC, pairs of contiguous units do
not appear together in a sample whereas all other pairs
appear equally often in the samples. The first and second
order probabilities are given by ; =n/N;i=1, ... , N
and ;=n(n—1)/[NN-3)];i#j=1,..,Nand|i—]|
> 1 and mj = 0 if [i - j| = 1. Hedayat et al. (1988)
showed that the variance of the sample mean under
BSEC is smaller than the variance under SRS when the
units are regarded as arranged round a circle with i and
(i + I)mod N as contiguous units and the first order
circular serial correlation p; is greater than
—1/(N = 1). Stufken (1993) generalized BSEC by
excluding all those pairs where distance is less than or
equal to m (= 1). He named such sampling plans as
balanced sampling plans excluding adjacent units
(BSAC(m)); note that BSA(1) = BSEC. Stufken et al.
(1999) studied a generalization of BIBD, called
polygonal designs (PD), that ensures variance
equivalence with BSA(m). Existence and construction
of PD have been studied in the literature (see Mandal
et al. 2008a) but very few PD are available for m > 1.
Hedayat et al. (1988) first introduced PD for the case
m = 1. Mandal et al. (2008a) applied the linear
programming approach to obtain balanced sampling
plans excluding adjacent units (BSA(m)). Mandal et al.
(2008b) extended this work to obtain IPPS sampling
designs excluding adjacent units. The optimal solution

gives ¢ = 2 sEslp(s) =0, where S, is the set of non-
preferred samples.

Experimental designs have also been used for
estimating the variance of linear and nonlinear statistics
computed from stratified multistage samples. For the
important special case of n, = 2 clusters sampled with
replacement from each primary stratum h (= 1, ... ,L),
McCarthy (1969) proposed the method of balanced half-
samples (BHS) based on a number of half-samples
formed by deleting one cluster from the sample in each

stratum. The set of R balanced half-samples used may

be defined by an R x L design matrix (SL),lg r<Rr

and 1<h<L where §] =+1 or—-1depending on

whether the first or the second sample cluster in the
h-th stratum is in the r-th half sample and

Y 818 =0 forall h#h’ (3.2)
r

The estimator of a parameter, 0, is computed from

each half-sample r, leading to 0, r=1, ..R.The BHS

variance estimator of the estimator 8 from the full
sample is then given by

VBHs (é) = %ZR: (é(r) -6)?

r=1

The property of balance, given by (3.2), ensures
that vgyg agrees with the customary variance estimator

in the linear case 6 = Y , Where Y is the unbiased
estimator of the total Y. For nonlinear statistics § of the

form §=g( Y ) where g(+) is a smooth function, vgyg is
approximately equal to the Taylor linearization variance
estimator, but the latter requires the derivation of a
separate formula for each statistic § unlike vpys.

A minimal set of R balanced half-samples
(L+ 1 <R <L+ 4)can be constructed by using
Hadamard matrices of order R = 4m. Wolter (1985)
listed such matrices for values of R up to 100, and gave
rules for generating these matrices.

Gurney and Jewett (1975) extended BHS variance
estimation to the case n, = q (a prime) for all h, using
orthogonal arrays of strength two. Gupta and Nigam
(1987) extended the BHS method to the case of unequal
n;, by using mixed orthogonal arrays of strength two, but
a disadvantage of the extensions is that they require a
much larger number of replicates, R, than in the case
of n, = 2 for all h. Wu (1991) developed a variance
estimator for this method that agrees with the customary

A~

variance estimator in the linear case § =Y and
approximately equal to the Taylor linearization variance

estimator for nonlinear statistics 0 = g(\?) . Sitter (1993)
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extended the orthogonal array method to orthogonal
multi-arrays which provides greater of flexibility in
construction and thus can handle unequal ny,’s with fewer
replicates, R. But the method cannot handle odd prime
values of n;, unless one uses artificially deined units to
make all ny, even.

4. BALANCED BOOTSTRAP

Efron (1979) proposed bootstrap resampling for the
case of simple random sampling with replacement
(i.i.d.). Rao and Wu (1988) extended the i.i.d. bootstrap
to stratfied multistage sampling. However, these methods
are subject to simulation error in the sense that the
bootstrap variance estimator does not agree with the
theoretical bootstrap variance estimator in the linear
case. Graham ef al. (1990) and Nigam and Rao (1996)
used experimental designs to construct balanced
bootstrap replicates yielding second-order balance, i.e.,
the variance estimator agrees with the theoretical
variance estimator in the linear case.

In this section we present second-order balanced
bootstrap designs for both the i.i.d. case and stratified
multistage sampling with arbitrary ny,. For the i.i.d. case,
we give designs with the smallest possible number of
balanced bootstrap replicates, B. Technical details of the
results in this section will be reported in a separate paper.

4.1 Simple Random Sampling

Suppose {y|, - . ., yo} denotes a simple random

sample with mean Y . The theoretical bootstrap variance

estimator of ¥ reduces to {(n— 1)/n} (Sf, /n) where § =

(n-1) -l 2 (y; —;)2. Suppose we want B bootstrap
replicates and let f}; be the frequency count of y; in the
b-th bootstrap sample. Then the conditions for second
order balance are given by

_ R |
where A(k) = 0 or 1 according as k # 0 or k = 0, and
my; = fi; — 1. In matrix notation, (4.1) may be written
as

M™ = B(l —%J) (4.2)

where M is a B x n matrix with elements my; and J is a
matrix with all elements equal to 1.

n Even

Smallest B = 2n when n is even. In this case, a
Hadamard matrix H of order 2n for almost all even
values of n exists. In its standard form H has all the
entries in its first row and first column equal to 1 and
by rearranging the rows of H we can write

1 1 H
H=11 1 n,
where 1 is a n-vector of all 1°s. The balanced bootstrap
design M is given by

M= 0 H
which satisfies (4.2).
n Odd

We consider two possible cases: (i) n = 4m — 1;
(ii)) n = 4m + 1, where m is a positive integer. In case
(i) we consider a skew Hadamard matrix H of order 4m
with the property H+ H" = 2I. Skew Hadamard matrices
also exist for most of the orders 4m. We choose H such
that the first row of H has all entries equal to 1, and
M" is obtained by removing the first row and column

of H-1as
- o 1
- 1 M7
T 1
We have M™ =(4m-1)(l _HJ)

and B=4m-1

In case (ii), we consider a conference matrix of
order 4m + 2 with entries 1 or 0 and satisfying H'H
= (4m + 1)I. When such a matrix H exists, we can
assume without loss of generality that the diagonal
entries of H are all zero and all the entries of the first
row and the first column equal to 1, except for the first
entry. The matrix obtained by deleting the first row and
rst column can be used as M"

We have

M™ = @m + 1) (I —%J)



130 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

and B = 4m + 1. Raghavarao (1971) has shown that
conference matrices do not exist form = 5, 8, 14, 17,
19, 23.

4.2 Stratified Multistage Sampling

Let f,,; be the frequency count of the (hi)-th sample
cluster in the b-th balanced bootstrap sample, b =1, ...,
B. Then the conditions for second order balance are
given by Rao and Nigam (1996) as

_ L 1
SpMpyi = 0. B™EpMpmyy = A - J)—n— (4.3)
h

B_lembhimbkj =0, h¢ kzl, reny L (44)

We construct an ny, X t;, matrix ME for the h-th
stratum as in Section 4.1 (assuming existence), where
t, = 2ny, if ny, is odd and t;, = n,, if ny, is even. From ME
we construct an n, X t matrix Ny, by adding copies of
M, as

Ny =(M[..M])

where t is the least common multiple of t;, ..., t;. To
construct M, we use a Hadamard matrix H of order
4m and replace 1’s in the h-th row by Nj, and —1’s by
—N;.. The matrix M" would have 4mt columns and it
satisfies the second order balance conditions (4.3) and
(4.4). The matrix M is B x n with B = 4mt and
n = 2ny,

When ny, is even it is quite often possible to write

ME as (L, — Ly). Suppose such a decomposition is

possible for all even ny,’s. Then we can halve the number
of samples needed for second order balance. To do this,
when constructing N}, use only half the number of copies

of My if n, is odd and use Ly, instead of My, if ny is

even. The only precaution that needs to be taken is to
use a standard Hadamard matrix H and arrange n;,’s
such that n; is odd. If all ny’s are even, omit the first
row of H.

Example 1. Suppose L = 3 and n;, = 3 for all h. Then t
=3, m=1and B=12.

Example 2. Suppose L =3, n; =3 and n, =n; =4. In
this case t = 24 but we use only t/2 = 12 copies and use
L;, when ny, is even. We have B = 48.
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