J. Ind. Soc. Agril. Statist.
62(2), 2008 : 113-119

Using Ring Theory to Construct Complete Sets of Sum of Squares Orthogonal
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SUMMARY

Ring theory is used to construct a complete set of sum of squares orthogonal F-squares (SSOFSs
or SSOF-squares) for n = 6. Sum of squares orthogonality of this set is exhibited with a numerical
example. Previous methods involved field theoretic methods together with trial and error with computer
codes. Sum of squares orthogonal Latin squares have been constructed for any value of n, SSOLS
(n, n— 1), not just prime powers as in Projective Geometry. Attempts to construct a SSOLS (6, 5) set

using ring theory are discussed.
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1. INTRODUCTION

Raktoe and Federer (1985) have given a method for
constructing F-squares using ring theory. The method
applies to mixed prime numbers. It is shown here how
to extend their results to obtain complete sets of sum of
squares orthogonal F-squares for mixed primes.

In the next section, row (column) frequency
F-squares are defined. A regular F-square is both a row
and column frequency square. For convenience in this
paper, the term F-square will be used to refer to any row
frequency, column frequency, or regular F-square.

The concept of SSOFSs of order n and the
completeness of such sets were defined by Federer
(2004) and complete sets of SSOFSs were constructed
for various values of n. Subsequently, Federer (2005,
2006) defined a field theoretic approach to obtain a sum
of squares orthogonal geometry that may be used to
construct complete sets of sum of squares orthogonal F-
squares and F-rectangles for n, a product of distinct
primes. As shown by the above authors, an r-row by c-
column array may be related to the main effects and
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interactions of a factorial arrangement. Sum of squares
orthogonality results when the sum of squares of the F-
square(s) or F-rectangle(s) equals the sum of squares for
the corresponding factorial effect. If the sum of the sums
of squares for a set of F-squares and/or
F-rectangles equals that for the row by column
interaction, the set is said to be complete. All of the row
by column interaction sum of squares and degrees of
freedom are accounted for by the complete set of SSOF-
squares and/or SSOF-rectangles. All of the variation for
the row by column interaction is taken into account.

Methods for constructing complete sets of
F-squares and F-rectangles have been given by Federer
(2004, 2005, 2006). These results were used to obtain
a class of sum of squares orthogonal fractional replicates
(Federer 2007). Trial and error computer codes using
field theoretic ideas were utilized for the construction.
It is desirable to investigate other methods for
constructing a complete set. This is the purpose of this
paper. Ring theory will be used to accomplish this goal.
A detailed explanation is given for the case of a
6 x 6 = (2 x 3)x (2 x 3) array for a factorial
arrangement of four factors A, B, C, and D. The case
of a complete set of sum of squares orthogonal Latin
squares for n =6, SSOLS (6, 5) is discussed using ideas
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from ring theory. Finally, some comments on the general
case are presented.

2. COMPLETE SET OF SUM OF SQUARES
ORTHOGONAL F-SQUARES FOR A
nxn=6x6=(2 x3)x (2 x3) ARRAY FOR
FACTORS (A AND B) AND (C AND D)

The purpose of this section is to develop a
construction procedure which assigns to each factorial
interaction pertaining to a (2 x 3) x (2 x 3) factorial
arrangement a set of F-squares of order six with either
two or three symbols such that each set so assigned is a
set of SSOF-squares thereby resulting in a complete set
of SSOF-squares of order six. We develop the
construction procedure, which involves ring theoretic
concepts, in the remainder of this section.

The rows and columns of a six-row by six-column
arrangement are considered to be a four factor factorial
arrangement with factors A = {0, 1} at two levels,
B = {0, 1, 2} at three levels for rows, C = {0, 1} at
two levels and D = {0, 1, 2} at three levels for columns.
The row x column interaction S is composed of the
following set of interactions

S={AxC,AxD,AxCxD,BxC,BxD,
BxCxD,AxBxC,AxBxD,AxBxC xD}

Let the ring R(6) = {0, 1, 2, 3, 4, 5} under modulus
six arithmetic. The two ideals of R(6) that are of interest
are [(3) = {0, 3} and I(4) = {0, 4, 2}. We shall see below
that R(6) is isomorphic to the direct product I(3) + 1(4)
= {00, 30, 04, 34, 02, 32}, where the symbol + is used
to denote the direct product of 1(3) and 1(4).

We now specifically display the isomorphism
mentioned above. The elements of the ring R(6) map into
the direct product of I(3) + 1(4) as follows.
0—>00,1—>34,2—>02,3 —>30,4— 04,5 — 32.
The levels of the factors in the factorial map into the
elements of I(3) and I(4) as follows

Map: A B C D
0—>0 0—>0 0—>0 0—-0
1 >3 1 >4 1 >3 1 >4
252 22

Finally, the mapping f : R(6) — {0, 1, 2} defined
by

£(0) = f(5) = 0, f(3) = f(4) = 1, and f(1) = f(2) =2

will be used in the construction process. Note that facts
on the elements of 1(3) reducing them modulus two and
on the elements of 1(4) reducing them modulus three.

Table 1. Combinations of
1(6) < 1(6) = [I(3) + I(4)] x [I(3) + 1(4)]

Column

Row

00 30 04 34 02 32

00 | 0000 [0030 0004 | 0034 |0002 (0032

30 | 3000 3030 3004 | 3034 |3002 (3032

04 | 0400 [0430 0404 | 0434 | 0402 (0432

34 | 3400 3430 3404 | 3434 |3402 | 3432

02 | 0200 0230 0204 | 0234 |0202 [ 0232

32 | 3200 |3230 3204 | 3234 |3202 | 3232

The row effects may be partitioned into the factorial
main effects A and B and the interaction effect A x B.
Likewise, the column effects may be partitioned into the
main effects C and D and the interaction effect C x D.
The row x column interaction may be partitioned into
the factorial interactions A x C,Ax D, Ax C x D, B x
C,BxD,BxCxD,AxBxC,AxB xD,
A x B x C x D. This partitioning for the degrees of
freedom and the sums of squares is given in Table 2.
Moreover, Table 2 also lists the F-square(s) assigned to
each of the preceding set of factorial interactions making
up the row by column interaction.

To form F-squares using ring theory, the following
steps are involved:

Step 1: Construct Table 1.

Step 2: Let z, correspond to the elements of I(3), z, the
elements of I(4), z, the elements of I(3), and z;
to the elements of 1(4). For any choice of a
quartet, (z,, z,, Z,, z,), with at least one non-
zero z, construct the 6 x 6 square by replacing
each quartet (x x,x x,) in Table 1 by z x_ +7,x,
+z X, tz,X, , the arithmetic being modulus six.

Step 3: Apply to each entry of the square obtained in
Step 2 the map f defined above thereby
obtaining a square of order six in at most three
symbols. A two symbol square will occur if all
the entries of the original square are in the set
{0, 3, 4, 5}.
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A square obtained by using Steps 1 to 3 will be
denoted as L(x,x,x x,). We shall show below that
L(x,x,x.X,) is an F-square in either two or three
symbols. There are precisely three F-squares in two
symbols, namely, L(3000), L.(0030), and [.(3030). The
remaining F-squares have three symbols. Below we list
19 F-squares together with each defining quartet.

F1 is obtained from 3x,, L(3000).

F2 is obtained from 4x;, [(0400).

F3 is obtained from 3x, + 4x; ., [(3400).

F4 is obtained from 3x, L(0030).

F5 is obtained from 4x,, [(0004).

F6 is obtained from 3x_+ 4x, L(0034).

F7 is obtained from 3x, + 3x_, [(3030).

F8 is obtained from 3x, + 4x, L(3004).

F9 is obtained from 3x_ + 3x_+ 4x,, L(3034).

F10 is obtained from 4x, + 3x_, L(0430).

F11 is obtained from 4x, + 4x, L(0404).

F12 is obtained from 4x, + 2x,, L(0402).

F13 is obtained from 4x, + 3x_+ 4x,, L(0434).

F14 is obtained from 4x, + 3x_+ 2x,, L(0432).

F15 is obtained from 3x, + 4x, + 3xc, L(3430).

F16 is obtained from 3x, + 4x, + 4x,, L(3404).

F17 is obtained from 3x, + 4x, + 2x,, L(3402).

F18 is obtained from 3x_ + 4x, + 3x_+ 4x,, L(3434).

F19 is obtained from 3x, + 4x, + 3x_ +2x,, L(3432).
Thirteen of these F-squares (F7 to F19) correspond

to the factorial interactions making up the row by

column interaction and F1, F2, and F3 correspond to

rows and F4, F5, and F6 correspond to columns. These

19 F-squares are given in the data set and code presented

in Appendix 1. F-squares 7 to 19 form a complete set

of SSOF-squares as the sum of the sums of squares for

this set of the F-squares adds to that for the row by

column interaction. Note in Table 2 the equality of the

sums of squares for the factorial effects and those of the

corresponding F-squares. This satisfies the definition of

sum of squares orthogonality. A regular F-square has the

elements occurring an equal number of times in rows

and in columns. F7, F11, F12, F13, F14, F16, F17, F18,

and F19 are regular F-squares. A semi-F-square (Federer

2004), or a row (column) frequency F-square (Pesotan

et al. 2005) is one with the symbols appearing equally

frequent in the rows (columns) but not in the columns

(rows). F8 and F9 are row frequency F-squares. F10 and

F15 are column frequency F-squares. This set differs

from the one obtained by Federer (2004) indicating that
more than one complete set is possible.

The Type I and Type Il sums of squares for F1,
F3, F4, F7, F8, F9, F10, F15, F17, F18, and F19 are
identical. Type I is a nested analysis eliminating only the
categories listed above a category and Type Il eliminates
the effect of all other categories. The degrees of freedom
and the sum of squares for the last category listed in
Type I and Type 111 analyses are always identical.

We conclude this section by showing that a square
L(z,z,z,z;) produced by employing steps 1-3 is a
F-square. Let s and n be positive integers with s dividing
n and let T be a set of s symbols. For convenience, we
will refer to a row(column) frequency F-square of order
n with s symbols from T as a RF(n, s)-square
[CF(n, s)-square] on T, and a regular F-frequency square
of order n as a F(n, s)-square on T.

Table 2. Degrees of freedom and sums of squares for a
row-column, a factorial, and a F-square arrangement

Source of | Deg. of | Sum of | F-sq.|Deg. of| Sum of
variation | freedom | squares freed. | Squares
Row 5 24.1389
A 1 0.0278 F1 1 0.0278
B 2 8.7222 F2 2 8.7222
AxB 2 15.3889  F3 2 15.3889
Column 5 12.4722
C 1 1.3611 F4 1.3611
D 2 7.3889  F5 2 7.3889
CxD 2 3.7222  Fé6 3.7222
Row x Col 25 96.3611
AxC 1 6.2500  F7 1 6.2500
AxD 2 1.7222  F8 2 1.7222
AxCxD 2 3.1667 F9 2 3.1667
BxC 2 3.7222  F10 2 3.7222
BxD 4 6.6111 FI1 2 1.5556
F12 2 5.0556
BxCxD 4 21.9444  F13 2 8.8556
F14 2 13.0889
AxBxC 2 9.5000 F15 2 9.5000
AxBxD 4 28.6111 F16 2 4.2222
F17 2 24.3889
AxBxCxD 4 14.8333 F18 2 8.6667
F19 2 6.1667

Let U be any square of order three on R(6) and let
x e R(6). By U + x, f(U) we mean the squares obtained
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from U by replacing each entry u in U by u + x, f(u)
respectively, where f is the mapping defined above.
Lemma 1 is easily verified and Lemma 2 follows from
1t.

Lemma 1: Let U be a RF(3, 3)-square[CF(3, 3)-
square]on the ideal I(4) = {0, 4, 2}. Then for any
element x in R(6) —1(4), U + x and f(U) are RF(3, 3)-
squares[CF(3,3)-squares)] on the coset x + [(4) =
{1, 3, 5} of I(4) and on the set {0, 1, 2} respectively.

Lemma 2: Let U be a RF(3, 3)-square[CF(3, 3)-square]
on I(4) and let

T f) f(U+x)
_[f(U+y) f(U+(x+y))}

for any x, y in I(3) = {0, 3). Then V is a RF(6, 3)-square
[CF(6, 3)-square] on the set {0, 1, 2).

We subdivide the lattice square of 36 treatment
combinations presented in Table 1 into four subsquares
as follows:

00 04 02
00 0000 0004 0002
G** = 04 0400 0404 0402
02 0200 0204 0202

30 34 32
00 0030 0034 0032
H** = 04 0430 0434 0432
02 0230 0234 0232

00 04 02
30 3000 3004 3002
J¥* =34 3400 3404 3402
32 3200 3204 3202

30 34 32
30 3030 3034 3032
K** =34 3430 3434 3432
32 3230 3234 3232

Let (z,2,z.z,) be any quartet with at least one z
nonzero and with z and z_ in I(3) and z, and z, in I(4).
Use this quartet together with step 2 of the construction
procedure on each of the above four subsquares to obtain
the corresponding subsquares G*, H*, J*, and K*.
Finally let G = f(G*), H = f(H*), J = f(J*), and
K = f(K*). We note the following:

(a) Since I(4) is an ideal, all the entries of G* are
from 1(4)

(b) H* = G* + 37, J* = G* +3z,
K* = G* + (32, + 37,

(c) Up to a rearrangement of its rows and columns

L = L(zazpzezg) = G H
a‘bcc4d/ — J K
Theorem: L(z,z,7 z,) is a F-square of order six on
{0, 1, 2} when at least one of the z, or z; is nonzero
and it is a F-square on {0, 1} when z, =z, = 0. Further

(i) when z, # 0, z, # 0, then L is a regular
F(6, 3)-square on {0, 1, 2}

(i) when z, =0, z; # 0, then L is RF(6, 3)-square
and when z, # 0, z, = 0, then L is a CF(6, 3)-
square on the set {0, 1, 2}

(i) when z, =z =z, =0, then L is a RF(6, 2)-
square on the set {0, 1}, and whenz =z =z,
=0, then L is a CF(6, 2)-square each on the set
{0, 1}, and

(iv) finally, if z, =z; =0 butz, # 0, z_ # 0, then L
is a regular F(6, 2)-square on {0, 1}

Proof: Due to (a), (b), (¢c) and Lemma 2 to prove the
theorem, it suffices to show that G* is a F-square of
order three on I(4) and that in case (i) of the theorem,
G* is a regular F(3,3)-square, in case (ii) that G* is a
RF(3, 3)-square[CF(3, 3)-square] depending on the
assumptions on z,, z,, and that in case (iii) G* is the
zero square all of whose elements are zero. All of this
is easily verified by imposing various conditions in (i)
to (iv) on the entries of G* which we now fully display

0 4zy 274
G* = 4Zb 4Zb + 4Zd 4Zb + sz
ZZb 22b + 4Zd ZZb + sz

This completes the proof.

Remark: An equivalent set of sum of squares orthogonal
F-squares is given by the set L(3030), L(3002), L(3032),
L(0230), L(0204), L(0234), L(0202), L(0232), L(3230),
L(3204), L.(3202), L.(3234), and L(3232). The set of F-
squares is given in Appendix 2. The set merely permutes
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the rows of F-squares F7 to F19 and this does not
change the sum of squares orthogonality.

A SSOLS(6, 5) SET

Federer (2005) has shown how to construct a
complete set of sum of squares orthogonal Latin squares
and illustrated the method for SSOLS(6, 5) and
SSOLS(10, 9) sets. The method given is to start with
any Latin square and cyclically permute the last n x 1
rows to obtain the n x 1 Latin squares of the set. This
field theoretic method produces a connected incomplete
block design for any pair of Latin squares with
parameters v =n, k =2, and b = n’. An SSOLS(15,
14) set is available from the author.

Using the sums for 3x + 4x, + 3x_+ 4x, and
3x, +4x, +3x_+ 2x, , modulus 6, results in two Latin
squares. Likewise, using the sums for 3x, + 2x, + 3x_
+4x, and 3x, +2x, +3x_+ 2x , modulus 6, results in
another pair of Latin squares. The four Latin squares
obtained are

3Xa+4xb+3xc+4xd 3xa+4xb+3xc+2xd

034125 032541
301452 305214
412503 410325
145230 143052
250341 254103
523014 521430

3xa + 2xb + 3xC + 4xd 3xa + 2xb +3xC + 2xd

034125 032541
301452 305214
250341 254103
523014 521430
412503 410325
145230 143052

These Latin squares are not sum of squares
orthogonal as the first pair has two identical columns.
The first and third and the second and fourth Latin
squares have the same rows when permuted. Such
conditions do not result in a set of sum of squares
orthogonal Latin squares. If row 1 and row 2 of one
Latin square of a pair are interchanged, the two Latin

squares are sum of squares orthogonal. However, this
method only produces two distinct Latin squares and five
are required for the set SSOLS(6, 5). None of the other
combinations of factors modulus 6 resulted in a Latin
square. An open question is whether or not ring theory
can be used to produce a set of five sum of squares
orthogonal Latin squares.

COMMENTS

Ring theory and field theory can both be used to
construct complete sets of sum of squares orthogonal F-
squares and F-rectangles. Ring theory is more general.
An open question pertains to which method is optimal
for constructing fractional replicates and/or codes. Are
there other methods for constructing complete sets? How
many such sets of SSOFSs are there for various values
of n? The sum of squares orthogonal geometry involves
statistical concepts. What are the equivalent
mathematical concepts?

The procedures discussed herein are extendable for
values of n in general. The results of Federer (2004,
2005, 2006) may be extended in a straightforward
manner to include cubes and hypercubes. The ideals of
a ring with n elements are required as a starting point.

REFERENCES

Federer, W.T. (2004). Complete sets of F-squares of order n.
Utilitas Mathematica, 66, 3-14.

Federer, W.T. (2005). Extending the number of complete sets
of SSOFSs. J. Comb. Info. Sys. Sci., 30(1-4), 25-39.

Federer, W.T. (2006). Complete sets of sums of squares
orthogonal F-rectangles for rectangular arrays. J. Comb.
Info. Sys. Sci., 31, (in the process of publication).

Federer, W.T. (2007). Sum of squares orthogonal fractional
replicates. Int. J. Stat. Manag. Sys., 2(1-2), 161-179.

Pesotan, H., Federer, W.T. and Raktoe, B.L. (2005). On the
maximum number of pairwise orthogonal row frequency
squares. J. Comb. Info. Sys. Sci., 30(1-4), 41-52.

Raktoe, B. L. and Federer W. T. (1985). Lattice square
approach to construction of mutually orthogonal F-
squares. Ann. Inst. Statist. Math., 37(2), 329-336.



118 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

APPENDIX 1

SAS PROC GLM CODES AND DATA FOR
OBTAINING TABLE 2

DATA RINGG6;

/*F1 = A3, F2 = B4, F3 = A3B4, F4 = C3, F5 = D4,
F6 = C3D4, F7 = A3C3, F8 = A3D4, F9 = A3C3D4,
F10 = B4C3, F11 = B4D4, F12 = B4D2, F13 =
B4C3D4,F14 = B4C3D2, F15 = A3B4C3, F16 =
A3B4D4, F17 = A3B4D2, F18 = A3B4C3D4,F19
A3B4C3D2, L1= A3B4C3D4, L2 = A3B4C3D2%*/

input ROW COL Y A B C D F1 F2 F3 F4 F5 F6 F7
F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
L1 L2; lines;

1190000000000000000000000000
1230010000101101100111001133
1370001000011011012120121242
1480011000112112112201122015
1550002000022022021210212124
1660012000120120121021210251
2161000101000111000001111133
2261010101101010100110112000
2361001101011122012121202015
2461011101112021112200200242
2561002101022100021211020251
2661012101120002121020021124
3160100011000000111111111144
3220110011101101211222112211
3330101011011011120201202020
3440111011112112220012200153
3550102011022022102021020202
3660112011120120202102021035
4191100112000111111112222211
4281110112101010211221220144
4371101112011122120202010153
4451111112112021220011011020
4541102112022100102022101035
4631112112120002202101102202
5160200022000000222222222222
5280210022101101022000220055

5370201022011011201112010104
5450211022112112001220011231
5570202022022022210002101040
5620212022120120010110102113
6121200120000111222220000055
6251210120101010022002001222
6331201120011122201110121231
6481211120112021001222122104
6541202120022100210000212113
6641212120120002010112210040
proc glm data = RING6;

class AB C D;

model Y=ABA*B CD C*D A*C A*D A*C*D

B*C B*D B*C*D A*B*C A*B*D
A*B*C*D;

run;
proc glm data = RING®6;

class ROW COL;

model Y = ROW COL;
run;
proc glm data = RING®6;

class F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
F12 F13 F14 F15 F16 F17 F18 F19;

model Y= FI1 F2 F3 F4 F5 F6 F7 F8 F9 F10
F11 F12 F13 F14 F15 F16 F17
F18 F19;

run;

proc glm data = RING6;
class ROW COL L1 L2;
model Y = ROW COL L1 L2;

run;
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APPENDIX 2
SAS PROC GLM CODES AND DATA FOR AN
EQUIVALENT SET OF SUM OF SQUARES
ORTHOGONAL F-SQUARES

data RING62;

/* F1 = L(3030), F2 = L(3002), F3 = L(3032),
F4 = L(0230), F5 = L(0204), F6 = L(0202),
F7 = L(0234), F8 = L(0232), F9 = L(3230),
F10 = L(3204), F11 = L(3202), F12 = L(3234),
F13 = L(3232)*/

input ROW COLY AB C D FI F2 F3 F4 F5 F6 F7
F8 F9 F10 F11 F12 F13;

lines;

1 1T90000000000000000°0
12300101011001 110011
13700010220121201212
148001 11201122011220
1 55000201 10212102121
16 600121121210212102
216100011 10000O0T1T11T11
2261 0100101001 101100
2361 0011000121212020
246101 1002112200201 2
25610021220212110202
26 610120211210200221
31601000002222222222
32201101010220002200
3330101022201012010°1
3440111120001 1200112
355010201 12101021010
36601 121120102 10102°1
419110011 12222200000

42811100100220020022
43711011002010102212
44511110020011222201
45411021222101001121
46311120210102121110
5160200000111 1T 111111
52802101012112221122
53702010221202012020
54502111202200122001
55702020111020210202
56202121122021020210
61 212001111111 122222
62512100102112212211
6331201100120202010°1
64812110022200110120
6 5412021221020221010
6 6412120212021011002

proc glm data = RING62;
class AB C D;

model Y= A B A*B C D C*D A*C A*D
A*C*D B*C B*D B*C*D A*B*C
A*B*D A*B*C*D;

run;
proc glm data = RING62;

class ROW COL F1 F2 F3 F4 F5 F6 F7 F8 F9
F10 F11 F12 F13;

model Y = ROW COL F1 F2 F3 F4 F5 F6 F7
F8 F9 F10 F11 F12 F13;

run;



