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SUMMARY

Classification is an important research topic in the field of data mining and knowledge discovery.
There have been many data classification methods including decision tree methods, statistical methods,
neural networks, rough sets, etc. A reduct in the rough set theory refers to a set of dominant attributes
in the dataset. A dataset may have zero, one or multiple reducts. A classification problem utilizing
information contained in a single reduct is well examined in rough set literature. However, it means
ignoring the available knowledge from the multiple reducts. An approximate core is proposed as an
important tool to deal with the datasets which are having multiple reducts. In this paper, Forest cover
type, a large benchmarking dataset having multiple reducts is used for experiments. The performance
parameters - accuracy, complexity, number of rules and number of attributes in the resulting classifiers
are compared among various algorithms employed. The results using approximate core are comparable

with the other published results for this dataset.
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1. INTRODUCTION

Classification is an important research topic in the
field of data mining and knowledge discovery. It finds
the common properties among a set of objects in a dataset
and classifies them into different pre-identified classes.
There have been many data classification methods
including Decision Tree (DT) methods, statistical
methods, neural networks, rough sets etc. (Han and
Kamber 2001, Pawlak 1991, Murthy 1998, Witten and
Frank 2000).

In machine learning studies, a decision tree
classification method, developed by Quinlan (1993) has
been influential. A typical decision tree learning system
is ID-3 (Iterative Dichotmiser) which adopts a top-down
irrevocable strategy that searches only part of the search
space. C4.5 algorithm is an extension to ID-3 and extends
the domain of classification from categorical attributes
to numerical ones (Quinlan 1993). Shan et al. (1996)
proposed a novel approach, which uses rough sets to
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ensure the completeness of the classification and the
reliability of the probability estimate prior to rule
induction. Minz and Jain (2003) proposed Rough set
based Decision Tree (RDT) model which uses reducts
to refine decision trees. Jain and Minz (2003) proposed
approximate core as a tool to deal with a dataset having
large number of correlated attributes. It facilitates less
memory requirements for the subsequent steps of
learning and classification. This paper further explores
approximate core for handling a very large benchmarking
dataset called Forest cover type (Murphy).

The Forest cover type data from the UCI repository
is one of the large datasets containing 581012 examples.
The 54 attributes of this dataset actually represent 12
features. The classification task is to predict the Forest
cover type (7 classes) given only cartographic data. The
actual forest cover type for a given observation (30 x 30
meter cell) was determined from US Forest Service
(USFS) Region 2 Resource Information System (RIS)
data. Independent variables were derived from data
originally obtained from US Geological Survey (USGS)
and USFS data. Data is in raw form (not scaled) and
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contains binary (0 or 1) columns of data for qualitative
independent variables (wilderness areas and soil types).
This dataset is a representative instance of a domain of
problems common in data mining and thus provide a
useful benchmark for comparing classifiers. There are
no missing values in this dataset. The characteristics that
make it of particular interest are - a large number of cases;
arelatively large number of attributes and large number
of target class values; an unequal class distribution
(36.46, 48.76, 6.15, 0.47, 1.63, 2.99, 3.53) for the
response classes; and both continuous and categorical
variables.

This paper proceeds as follows. Section 2 deals with
the essential preliminaries required to understand the
paper. Section 3 presents the experimental details. Results
are discussed in Section 4, followed by conclusions in
Section 5.

2. PRELIMINARIES

Rough Set theory was introduced in early 1980s
by Z. Pawlak and since has come into focus as alternative
to the more widely used methods of machine learning
and statistical data analysis (Pawlak 1991, Ziarko 1999,
Witten et al. (2000)).

2.1 RDT Model

Rough Set theory (RS) offers a simplified search
for dominant attributes in datasets, called reducts.
Reducts are the optimal number of attributes which
preserve the indiscernibility between the objects in the
dataset. Reducts are further used by Minz and Jain (2003)
in the Rough set-based Decision Tree (RDT) model for
classification. RDT model combines merits of both RS
and DT induction algorithm. Thus, it aims to improve
efficiency, simplicity and generalization capabilities of
both the base algorithms (Minz and Jain 2005).

Algorithm RDT
1. Input the training data set T1.

2. Discretize the numeric or continuous attributes and
label the modified data set as T2.

3. Obtain the minimal decision relative reduct of T2,
say R.

4. Reduce T2 based on reduct R and label reduced
data set as T3.

5. Apply ID3 algorithm on T3 to induce decision tree.

6. If needed, convert decision tree to rules by
traversing all the possible paths from root to each
leaf node.

In step 3 of the RDT algorithm for computation of
a minimal decision relative reduct Johnson’s algorithm
(1974) can be directly used (Pawlak 1991, Ohrn 1999).
Alternatively one can generate population of reducts
using Genetic Algorithm (GA) followed by random
selection of a reduct from the population (Wroblewski
1995). Genetic algorithm gives a good approximation
to a problem of multiple reduct computation with very
little effort. This provides flexibility to the data miner
for choosing the desired set of attributes in the induction
of the decision tree. For this, the reducts may be ranked
in terms of the cost of obtaining the values of the required
attributes. The reduct having least cost are preferable
for further steps (Ziarko 1999).

2.2 RDT Variants

Basic RDT model as discussed above is suitable
for small datasets. RDT variants are first proposed by
Minz and Jain (2005) for improving the suitability of
RDT model for large datasets. RDT variants are produced
by modifying at least one step of the RDT algorithm.
For example, if smallest reduct is selected from the
population of reducts the corresponding algorithm is
referred as RDTGAsmallest. Similarly, replacing D3
algorithm in step 5 by J4.8 (Witten and Frank 2000)
algorithm - Java implementation of C4.5 algorithm
produces a variant called RJU or RJP depending on
whether decision tree is unpruned or pruned. Other RDT
variants can be produced using approximate core
discussed below.

2.3 Approximate Core

For datasets having large number of reducts, the
core instead of reduct is useful (Pawlak 1991). Such a
variation is motivated by the desire to analyze and
identify data patterns which represent strong statistical
trends rather than only strict ones identified by a reduct
(Jain and Minz 2003). The classical definition of

i=n
Core= ﬂ Ri where R; is the i reduct in the population
i=1
of reduct of the information system. However, it is
observed that for some domains, some of the relevant
attributes may be missed by using this classical definition
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of core. In order to address this issue, approximate core,
denoted by Core,, instead of core may be used for
relevant features of the information system. Let

R= {R1, Ry, ..., R} and | R | =n. Let a set of attributes

n
A= U Ri and |A|= m. Consider a Boolean matrix C
i=1

of the dimension m x n, where matrix element Cj; is a
Boolean variable to indicate the presence of the jth

attribute from A in the i reduct. In other words

0 if aj %Ri
L= ji=1..n,i=1..m
Ci 1if a€eR, : M

_Using matrix of (1), occurrences of all the attributes
in R can be summarized by a characterization vector
R as given below in (2). The purpose of the
characterization vector is to indicate the importance or

relevance of each attribute in A with respect to R.

R= (W3 ... Wy ... Wap,) ()

n
where W = %Ecik and 1<k<m
i=1

In equation (2), 0 <w, < 1 is called the relative

frequency of the attribute a, with respect to | R | Let o
denote the measure of the approximation of the core then
using (2), approximate core with the value o can be
expressed as

Core,_, = {ak " EA} €)

|
where o’'= pin(wy) iff |Core,_,:| =1
k=1

Approximate core with approximation level of o,

denoted by Core,_,-, consists of all attributes which

have at least a relative frequency of value o . If o” is
one then approximate core is same as the core. The
parameter o determines the degree of the accuracy of
the approximate core relative to the classical core. Use
of approximate core allows identifying relevant attributes
that would be missed if only the classical definition of
core were used for the purpose. An algorithm,
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Compute CoreAlpha, is given below for the computation
of approximate core for a given threshold of
performance, followed by description of some of the
identifiers used in the algorithm.

Algorithm ComputeCoreAlpha

Input SortAttrStack, SortAttrRelFreqStack,
ValidationData, TrainingData, SmallestReductLength,
Core, PerformanceThreshold

Output CoreAlpha, Alpha

Method
1. CoreAlpha = Core; i = 0; Alpha=1

2. Do steps 3-7 while
|CoreAlphal < Smallest Reduct Length

3. InduceRDTclassifier(CoreAlpha, TrainingData)

4. CS = ComputePerformance(DTclassifier,
ValidationData)

5. If CS>PerformanceThreshold then ArrayCS [i]
= CS; ArrayCoreAlpha[i] = CoreAlpha;
ArrayAlpha[i] = alpha; i=1+ 1

6. a=POP(SortAttrStack); Add a to CoreAlpha
7. Alpha=POP(SortAttrRelFreqStack)

8. Compute index corresponding to maximum
value in ArrayCS.

9. Return ArrayCoreAlpha[index],
ArrayAlpha[index]

The relative frequencies w; are sorted in the
decreasing order and stored in the SortAttrRelFreqStack.
SortAttrStack stores attribute elements from A
corresponding the elements of the stack
SortAttrRelFreqStack so that the attribute corresponding
the maximum w; is pointed to by the top and the
following ones corresponding the decreasing values of
w; in the order of increasing value of w; from bottom to
top of the stack. PerformanceThreshold is the input value
of performance in order to ensure the acceptable
performance of the final classifier from the approximate
core. InduceRDTClassifier follows RDT algorithm by
replacing the reduct by the CoreAlpha using the training
data. Procedure ComputePerformance returns a common
performance score after measuring performance
parameters of induced DT on validation data. Procedure
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Table 1. Learning schemes and their descriptions used for Forest cover type dataset

RDTGA-smallest
RJUGA-smallest
RJPGA-smallest
RJUcore_

RJPcore

Algorithm Descdription

RS Classical Rough set approach with full discernibility decision relative reduct

CJU Continuous data, J4.8 algorithm, Unpruned - Java implementation of Quinlan’s C4.5 algorithm
cJp Continuous data, J4.8 Algorithm, Pruned - Java implementation of Quinaln’s C4.5 with pruning
RJU Discretized, Filtered using Reducts, J4.8 unpruned

RJP Discretized, Filtered using Reducts, J4.8 pruned

Discretized, Filtered using smallest reduct selected from the population of reducts from GA, ID3
Discretized, Filtered using smallest reduct selected from the population of reducts from GA, J4.8 unpruned
Discretized, Filtered using smallest reduct selected from the population of reducts from GA, J4.8 pruned
Discretized, filtered using approx. core with o, > ¢, J4.8 unpruned

Discretized, filtered using approx. core with o > ¢, J4.8 pruned

ComputePerformance may be defined by the user as
per preferences among the performance parameters
(Minz and Jain 2005). Use of approximate core in RDT
algorithm generates RDT variants namely RDTcore,,
RJUcore, and RJPcore,,.

3. EXPERIMENTAL DETAILS

Some of the previously reported experiments with
Forest cover type dataset have used first 11340 records
for training data, the next 3780 records for validation
data and last 565892 records for testing data (Blackard
and Dean 1999). The data were so arranged that the class
frequencies are equal in training and validation data (thus
significantly reducing the number of rare classes in the
testing data). Balancing the data by sampling such that
classes are equally represented in the training data, can
make the final accuracy measure unrepresentative of the
true model, therefore balancing of the class values was
not done for experiments in this study. In (Bagnall and
Cawley 2003) the experiments were carried out by
modifying the classification task from predicting all 7
cover types to only majority cover type identification,
thus reducing the problem to binary class identification.
RDT and its variants (Table 1) can be directly applied to
classification problems having multiple class values;
hence no such modifications are required for experiments
with RDT.

For experiments in this study, the dataset was
randomly split into two parts (one for sampling training
data and the other for sampling test data) using SPSS

software. Five random samples for training data and five
random samples for test data are drawn using stratified
random sampling from the corresponding part such that
distribution of the class values is nearly the same. Each
training sample (total 5) is randomly associated to one
of the test sample out of 5. This is referred as train-test
pair or a sample for further reference in the chapter. The
size and the distribution of the class values for each of
the train-test pair is kept same as in the original data
(Table 2).

The data has numeric attributes which requires
discretization for employing rough sets. Discretization
of continuous attribute values is done by using the
Fayyad and Irani (1993) method. RS, CJU (C4.5 without
pruning), CJP (C4.5 with pruning), RJU and RJP
algorithms are explored for classification. On applying
GA based algorithm to the training sample of this dataset,
a population of reducts (RED) is obtained. To select the
most suitable attributes from multiple reducts, RJUGA-
smallest, RJIPGA-smallest, RIUcore, and RJPcore,, are
also employed for learning from this dataset (Table 1).

Tuning of parameters of algorithms is identified as
an important step in the classification experiments. For
example, the parameter M (the minimum number of
leaves allowed in a leaf of the DT) is required to be tuned
so as to avoid any output variations because of its
variability. In this dataset as considerable variations in
accuracy are observed with the change in values of the
parameter M, hence parameter M was tuned. Due to the
large number of reducts from this dataset, parameter
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Table 2. Size of samples and the distribution of their class values for cover type dataset
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Sample pairs Number of records Class Value Class value distribution
Training Test
Training Test Records % Records %
1 29024 29051 1 10573 36.43 10526 36.23
2 14164 48.80 14259 49.08
3 1773 6.11 1750 6.02
4 125 0.43 123 0.42
5 487 1.68 468 1.61
6 878 3.03 864 2.97
7 1024 3.53 1061 3.65
2 28760 28961 1 10412 36.20 10565 36.48
2 14073 48.93 14127 48.78
3 1737 6.04 1760 6.08
4 146 0.51 151 0.52
5 486 1.69 501 1.73
6 857 2.98 827 2.86
7 1049 3.65 1030 3.56
3 28789 29206 1 10444 36.28 10703 36.65
2 14129 49.08 14262 48.83
3 1766 6.13 1725 5.91
4 123 0.43 124 0.42
5 442 1.54 472 1.62
6 851 2.96 910 3.12
7 1034 3.59 1010 3.46
4 29207 28928 1 10643 36.44 10509 36.33
2 14219 48.68 14065 48.62
3 1811 6.20 1779 6.15
4 144 0.49 138 0.48
5 466 1.60 518 1.79
6 858 2.94 857 2.96
7 1066 3.65 1062 3.67
5 29056 28934 1 10753 37.01 10669 36.87
2 14081 48.46 14022 48.46
3 1744 6.00 1776 6.14
4 126 0.43 134 0.46
5 468 1.61 469 1.62
6 869 2.99 821 2.84
7 1015 3.49 1043 3.60
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tuning for each reduct will be very time consuming. Thus,
instead of taking each reduct in turn for tuning of
parameters in classification algorithms, a tool, called
Maximum Possible Combined Reduct (MPCR),
representing attributes from all reducts is expected to be
useful and convenient for implementation. For the
experiments, MPCR is computed from training data of

Sample-1. However, not much variation is expected even
by choosing MPCR from any other sample because any
attribute that belongs to at least one of the reducts in the
population of reducts from GA (Table 3) also belongs to
MPCR. Note that MPCR s referred as A in Section 2.
For example, MPCR for the Sample-1 is {1-14,16,
18-20, 23-28, 30, 31, 33-38, 41, 43-47, 49, 52-54}

Table 3. Frequencies of attributes in population of reducts from 5 randomly selected samples of training data
for approximate core identification

Training set | Training set 2 Training set 3 Training set 4 Training set 5
#1 wl #2 w2 #3 w3 #4 w4 #5 w5
1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
2 1.00 2 1.00 2 1.00 2 1.00 2 1.00
3 1.00 3 1.00 3 1.00 3 1.00 3 1.00
4 1.00 4 1.00 4 1.00 4 1.00 4 1.00
5 1.00 5 1.00 5 1.00 5 1.00 5 1.00
6 1.00 6 1.00 6 1.00 6 1.00 6 1.00
7 1.00 7 1.00 7 1.00 7 1.00 7 1.00
8 1.00 8 1.00 8 1.00 8 1.00 8 1.00
9 1.00 9 1.00 9 1.00 9 1.00 9 1.00
10 1.00 10 1.00 10 1.00 10 1.00 10 1.00
37 0.99 52 0.99 26 1.00 24 1.00 46 1.00
45 0.96 25 0.97 43 0.97 43 0.99 47 0.99
44 0.96 26 0.97 20 0.97 36 0.98 25 0.98
52 0.96 43 0.97 30 0.96 52 0.98 37 0.98
34 0.95 45 0.97 36 0.96 47 0.97 34 0.97
36 0.96 46 0.97 37 0.96 26 0.97 24 0.96
46 0.96 36 0.96 53 0.95 34 0.97 43 0.96
47 0.94 47 0.96 24 0.93 25 0.95 26 0.93
30 0.93 37 0.95 45 0.93 37 0.95 13 0.90
43 0.93 53 0.95 16 0.90 38 0.91 36 0.89
26 0.91 28 0.92 34 0.90 45 0.91 33 0.87
16 0.89 44 0.92 46 0.90 46 0.91 38 0.84
24 0.89 24 0.91 38 0.89 16 0.88 18 0.82
20 0.87 16 0.90 27 0.87 33 0.85 20 0.82
33 0.86 19 0.90 44 0.87 30 0.72 44 0.82
27 0.83 31 0.90 33 0.84 14 0.71 19 0.82
13 0.80 34 0.89 52 0.82 27 0.66 52 0.81
25 0.79 38 0.88 13 0.80 11 0.65 53 0.81
38 0.78 13 0.86 49 0.80 35 0.65 45 0.80
28 0.77 33 0.81 47 0.75 44 0.65 30 0.79
23 0.76 54 0.81 28 0.70 13 0.61 40 0.75
11 0.75 27 0.80 31 0.70 12 0.60 31 0.71
12 0.71 11 0.79 19 0.65 31 0.54 11 0.70
31 0.67 12 0.75 25 0.63 28 0.53 15 0.68
53 0.62 18 0.74 11 0.61 40 0.47 12 0.60
41 0.58 20 0.62 12 0.59 53 0.47 27 0.55
14 0.56 48 0.60 40 0.55 19 0.42 54 0.54
35 0.54 30 0.57 18 0.40 41 0.42 35 0.53
54 0.51 49 0.50 17 0.30 18 0.22 49 0.51
18 0.40 35 0.48 54 0.28 20 0.22 28 0.51
19 0.39 15 0.43 14 0.09 14 0.41
49 0.31 17 0.41 17 0.32
14 0.22 16 0.31
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(Table 3). Due to the nature of MPCR which is union of
all reducts, the identified value of M = 1 is expected to
be suitable for further experiments with any single reduct

or core because the cardinality of core or a single reduct
would be lower than the MPCR (Table 4).

Table 4. Tuning of parameter M using MPCR

Accuracy (%)
M RJU RJP
1 81.37 79.85
2 80.70 79.25
5 77.95 77.37
10 76.53 76.02
25 74.35 73.99
Table 5. Sizes and number of reducts from 5 samples
Id # Red |Rsmallest| |RLargest| |Corea: 1|
1 160 30 37 10
2 145 32 38 10
3 115 28 35 11
4 116 27 34 11
5 148 30 36 11

Size of a reduct in the population of reducts obtained
using the training data varies from 27 to 37 (Table 5).
Experiments using RJU algorithm show that training as
well as test accuracy performance is stable among the
reducts of varying sizes. This observation supports the
selection of smallest reduct from each population for
experiments with RDT variants (Fig. 3).

Further in quest of simpler classifier, approximate
core is employed. The experiments are performed by
varying values of parameter o in approximate core to
observe the corresponding trend in the variation of the
performance measures. However, the most suitable
approximate core as produced by the algorithm
ComputeCoreAlpha is used for comparison with other
learning algorithms (Fig. 1, Fig. 2).

Performance parameters accuracy (fraction of test
instances correctly classified), complexity (number of
selectors), number of rules and number of attributes in
the classifier are used for comparison of algorithms.
Cumulative Score (CS) is used for ranking of algorithms
(Minz and Jain 2005).
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4. RESULTS

The performance measures obtained from using
RJUcore, and RJPcore, on Sample-1 is presented in Fig.
1 and Fig. 2. Results from Sample-2 to Sample-5 also
showed similar trends. Table 6 compares the average
performance measures for all the algorithms employed
for this dataset. The observations as noted are discussed
below.

During the initial experiments with Sample-1 for
tuning the value of the parameter M, it is observed that
by decreasing the value of M from 25 to 1, test accuracy
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of RJP improves from 73.99% to 79.85%. Under the
same variations of M test accuracy of RJU improves
from 74.35% to 81.37% (Table 4). This implies that for
Forest cover type dataset the efforts towards generalised
classifier either by pruning or by using the higher values
of M results in loss of some information (refer
Appendix 1 for details on decision tree induction
algorithm). This loss of information is due to the
generalization of specific example cases in the training
data for higher values of M (for M = 25). Hence, this
loss of information is minimized by choosingM = 1. In
general, higher values of M are preferred to avoid
overfitting of the decision tree for the training data unless
it causes decrease in prediction accuracy for the test
cases. However, proper value of M is chosen by
predicting the error on the test cases. Decrease in
accuracy with increasing values of M is a reflection of
the information loss. Some times, depending on the
preference for simple model, small information loss may
be accepted at the cost of little decrease in accuracy.

By using reducts of varying cardinality in RJU
experiments, it is observed that training as well as test
accuracy is independent of the cardinality of the reduct
(Fig. 3).

In the results of experiments involving RJUcore,,
and RJPcore, it is observed that by increasing alpha not
only number of attributes in the classifier decreases but
number of rules as well as complexity steadily decreases.
However, this is at the cost of slight degradation of training
as well as test accuracy (Fig. 1, Fig. 2). The decrease in
accuracy is due to the loss in information that was
imparted by some attributes present in an approximate
core having lower alpha. The quantification for loss of
information is not attempted in this work. However such
quantification can be attempted by employing entropy
measures for the information as defined by Shanon
(Shanon 1948). However, this loss in information is
acceptable because of the desire to have the reduced
complexity for this very large dataset.

The attributes 1-10 are observed as the most
relevant attributes because of their occurrence in all the
reducts from each of the samples (Table 3). It is to be
noted that 80% reduction of number of attributes in the
induced classifier has resulted in 5% loss of accuracy
(as observed for RJUcore,, :1 and RJPcore,, : 1 in Table

Table 6. Comparison of CS for the dataset

# Rules|#Selectors
Algorithm [Accuracy (%) |Attributes| (10°)| (10%) |CS
RS 134 29 24 70 1004
CJU 823 53 28 73 021
Clp 825 51 2 551021
RDTGA 74.1 29 11 5 1019
RIUGA 79.8 29 30 29 1021
RIPGA 784 29 78 6 020
RJUcore, , 776 10 35 18 022
RIPcore | 75.6 10 6 2 021

6). This strengthens the notion regarding capabilities of
approximate core in inducing the simpler classifier.

On using MPCR in place of approximate core, the
performance measure accuracy is observed to improve
along with undesirable increase in the complexity, the
number of rules, and number of attributes as well. This
is being shown by the points corresponding to the smallest
value of alpha (Fig. 1, 2). This implies that inclusion of
all attributes in the DT induction does not produce the
desirable simpler classifier.

For RJPcore,, average rule coverage (number of
training objects divided by number of rules) is computed
to be in the interval 4-5 while it is less than one for
RJUcore,. Hence, the rules from RJPcore,, seem to offer
some generalization as compared to rules from RJUcore,,
at the cost of small degradation in accuracy (Table 6).

Comparison of some selected RDT variants with
classical approaches (RS,CJU and CJP) shows that RDT
variants - RIUGAsmallest and RJPGAsmallest are
comparable to benchmarking algorithms CJU and CJP
in terms of test accuracy estimates (Table 6). CJU and
CJP show the highest average test accuracy of 82.32%
and 82.56% respectively by utilizing 51 and 53 attributes
respectively. On the other hand RJUGA-smallest and
RJIPGAsmallest could provide an average test accuracy
of 79.81% and 78.48% by utilizing 29 attributes only.
The number of rules from CJP is lesser but the complexity
is higher than that of RJPcore, : 1. This suggests that
the length of the rules induced by CJP are greater than
those induced by RJPcore,, : 1 (Table 6).
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It is observed that for Forest cover type dataset
none of the algorithms could be ranked best in terms of
all the performance parameters; hence Cumulative Score
(CS) (Minz and Jain 2005) is applied to rank the
algorithms. By assigning equal weights to the
performance measures - accuracy, complexity, number
of rules and number of attributes, CS is computed and
presented in Table 6. As per the comparison of computed
values of CS, hybridized RDT variant RJUcore,, : 1 is
ranked highest while classical RS approach is ranked
lowest. Thus, induced ruleset using RS is a poor model
for this dataset with the test accuracy less than 20%.

All RDT variants also compare well with the
previously published benchmarking accuracy results
(Table 7) for the Forest cover type dataset (Bagnall and
Cawley 2003). Three grades of performance are
recommended for this dataset: less than 70% is poor,
70-75% is adequate, and greater than 75% is good.
Following this recommendation RDT variants
RJUGAsmallest, RIPGAsmallest, RJUcore,: 1,
RJPcore,, : 1 are good models however RDTGAsmallest
is adequate with an accuracy of 74.1%.

Table 7. Comparison of accuracy with previously reported
results for Forest cover type dataset

Model Accuracy (%)
Back Propagation 70.0
Linear Discriminant Analysis 58.0
SVM 71.0
SVM modified for unrepresentative class 73.4
Cs 83.7
CHAID 72.7
CART 68.9
XCs 66.9
cJu 823
CJp 82.6
RDTGA-smallest 74.1
RJUGA-smallest 79.8
RIPGA-smallest 78.5
RJUcore : 1 77.0
RJPcore , : 1 75.0
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5. CONCLUSIONS

The experiments with the benchmarking large
dataset having continuous attributes, suggest that
classical RS alone is not suitable because of a very high
complexity as well as a very low accuracy. Classical
decision tree approach results in good accuracy but
number of attribute requirements is high. RDT variants
using approximate core generates simpler rules and
removes irrelevant attributes at a stage prior to the tree
induction to facilitate lesser memory requirements for
the subsequent steps of learning and classification. This
hybridized framework also provides mechanism to trade
off between complexity and accuracy as per the
requirements. Validity of approximate core on Forest
cover type dataset suggests that the tool is useful for
classification problems involving real time large datasets.
In future, there is a need for the software integrating
approximate core and other rough set tools with decision
tree induction algorithms to encourage the application
of approximate core for real time problems.

REFERENCES

Bagnall, A.J. and Cawley, G.C. (2003). Learning classifier systems
for data mining: A comparison of XCS with other
classifiers for the forest cover data set. Proc. International
Joint Conference on Artificial Neural Networks (IJCNN-
2003), 3,1802-1807. Portland, Oregon, USA.

Blackard, J.A. and Dean, D.J. (1999). Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables.
Compu. Electron. J. Agric.,24,131-151.

Fayyad, U.M. and Irani, K.B. (1993). Multi-interval
discretization of continuous valued attributes for
classification learning. Proc. 13" Intl. Joint Conf. on Al
Morgan Kaufmann, 1022-1027.

Han, J. and Kamber, M. (2001). Data Mining: Concepts and
Techniques. Morgan Kaufmann, 279-325.

Jain, R. and Minz, S. (2003). Classifying mushrooms in the
hybridized rough sets framework. Proc. 1*' Indian
International Conference on Artificial Intelligence
(1ICAI-03), Hyderabad, 554-567.

Johnson, D.S. (1974). Approximation algorithms for
combinatorial problems. J. Compu. Sys. Sci.,9,256-278.

Minz, S. and Jain, R. (2003). Rough set based decision tree
model for classification. Proc. of Fifth International
Conference DaWaK 03, Prague Czech Republic. LNCS
2737, Springer-Verlag, Berlin Heidelberg, 172-181.



84 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Mingz, S. and Jain, R. (2005). Refining decision tree classifiers
using rough set tools. Int. J. Hybrid Intell. Sys., 2(2),
133-148.

Murphy, P. M. UCI repository of machine learning databases.
University of California, Irvine, available at http://
www.ics.uci.edu/~mlearn/.

Murthy, S. K. (1998). Automatic construction of decision trees
from data: A multidisciplinary survey. Data Mining and
Knowledge Discovery, 2,345-389.

Ohrn, A. (1999). Discernibility and Rough Sets in Medicine:
Tools and Applications, Ph.D. Thesis. Norwegian
University of Science and Technology.

Pawlak, Z. (1991). Rough Sets: Theoretical Aspects of
Reasoning about Data. Kluwer.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning.
Morgan Kauffman.

Shan, N., Ziarko, W., Hamilton, H.J. and Cercone (1996).
Discovery classification knowledge in databases using
rough sets. Proc. Second International Conference on
Knowledge Discovery & Data Mining, Menlo Park, CA:
AAALI Press.

Shanon, C. (1948). A mathematical theory of communication.
The Bell Systems Technical Journal, 27, 379-423, 623-
656.

Witten, I.LH. and Frank, E.(2000). Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann Publishers.

Wroblewski, J. (1995). Finding minimal reduct using genetic
algorithms. Warsaw University of Technology, Institute
of Computer Science Reports - 16/95.

Ziarko, W. (1999). Discovery through rough set theory.
Communications of ACM, 42(11), 55-57.

APPENDIX 1: BUILDING SIMPLE DECISION TREES

Decision Tree Algorithm by Quinlan creates binary
splits on interval inputs and multi-way splits on nominal
inputs for a nominal target. The split is chosen that
maximizes the gain ratio: Gain ratio = reduction in
entropy / entropy of split. (Let P(b) denote the proportion
of training cases a split assigns to branch b, b =1 to B.
The entropy of a split is defined as the entropy function
applied to {P(b): b=1to B}.)

For nominal inputs, each category is first assigned
to a unique branch, and then, in steps, two branches are
merged, until only two branches exist. The split with the
maximum gain ratio among splits examined becomes
the candidate split for the input. This search method, of
course, is heuristic and might not find the nominal split
with the largest gain ratio. The search on an interval input
will find the best split. Cases with missing values are
excluded from the split search on that input and also
from the numerator of the gain ratio. The entropy of the
split is computed as if missing values constitute an

additional branch. When a missing value prevents applying
a splitting rule to a case, the case is replaced by B new
ones, each being assigned to a different branch, and each
is assigned a weight equal to the proportion of non-missing
training cases assigned to that branch. The posterior
probability of the original case equals the weighted sum
of the probabilities of the generated observations.

Ross Quinlan advocates retrospective pruning
instead of stopping rules. If enough data were available,
the pruning process would use data withheld from
training the tree to compare error rates of candidate sub
tree. The software does not assume data may be withheld
from training, so it implements “pessimistic” pruning.
In each node, an upper confidence limit of the number
of misclassified data is estimated assuming a binomial
distribution around the observed number misclassified.
The confidence limit serves as an estimate of the error
rate on future data. The pruned tree minimizes the sum
over leaves of upper confidences.



