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SUMMARY

In regression models when the errors are correlated, the sample residuals contain some
information about the future observations. This information, which is generally ignored, has been
used in this paper to improve the precision of predicting the post-sample observations. The best linear
unbiased predictor for an m-equation linear SURE model has been obtained under the assumption
that the errors in each equation follow first-order autoregressive scheme. The gain in efficiency of
the proposed predictor over the usual generalized least squares predictor has been obtained and the
method is illustrated for a two-equation acreage response model. Small sample properties of the
predictor have been studied by using a Monte-Carlo experiment.

Key words: Seemingly unrelated regression equations, Best linear unbiased predictor, GLS

predictor, Autoregressive errors.

1. INTRODUCTION

Seemingly Unrelated Regression Equations
(SURE), introduced by Zellner (1962), are a set of
interrelated statistical equations that have wide
applicability in the analysis of data in social sciences
and other fields. These models take care of hidden
interactions that are present in different equations of the
model each one of which describes a certain aspect of
behavior (Srivastava and Giles 1987). The equations of
the model are linked statistically, through the joint
distribution of the error terms in different equations and
through the non-diagonality of the associated variance-
covariance matrix. This possibility of nonzero
covariances between error terms of different equations
of the model was first visualized by Zellner (1962), who
coined the term “Seemingly Unrelated Regression
Equations” (SURE) to reflect the fact that equations
which are apparently not connected or related
structurally are, in fact, related to each other statistically.

On one hand, simultaneous estimation of the non-
apparently related regression equations of the model
improves the precision of the estimation of regression
parameters over the situations in which the individual

equations are estimated independently of each other. On
the other hand, this also ensures the validity of test
procedures. It was recognition of this fact, especially
with regard to the asymptotic efficiency of the
estimators of the parameters of SURE model, which
motivated Zellner’s original work.

The i regression equation of a SURE model
consisting of m equations, may be written as

Yi =XiBi+ €i 1= 1, 2, e, M (11)

where y; is T X 1 vector of time series observations on
the dependent variable, X; is T x p; matrix of
observations on non-stochastic explanatory variables
with full column rank, f3; is the vector of parameters of
order p;, and g is the error term of order T x 1 with
E(g) = 0 and E (g; €j) = Q;; a matrix of order T x T;
Q;; being positive definite symmetric matrices (i, j = 1,
2, ..., m).

In compact form the model (1.1) can be written as

y=Xp+e (12)

where y = (Y7 Y5 - Y7,)" is an mT dimensional

column vector.
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X =diag (Xi, Xy, ... X) is the matrix of order

m
mT x Y pi
i=1

B=(B1 B5 ... Bm)” is a column vector of dimension
m
2 P
i=1

€=(€1 €5 ... €r)" is a column vector of dimension mT,

with E(e) = 0
Qll 912 aen le

and E(ee) = | 2+ % 2M 1= Q (say), is a
le Qm2 Qmm

positive definite symmetric matrix of dimension
mT xmT.

Zellner’s work stimulated extensive theoretical
work and many empirical applications in econometrics
and other areas (see e.g., Richard and Steel 1988,
Sharma 1993, Chib and Greenberg 1995, Smith and
Kohn 2000, Deo and Rong 2000, Srivastava and Wan
2002). Percy (1992) studied the problem of prediction
for SURE model from the Bayesian perspective. Using
Jeffreys’ invariant prior Percy obtained the posterior
density function of post sample observations through
Gibbs sampling procedure.

If errors in each equation follow a first order
autoregressive process, then

git = P&ty + &t Pj <1

i=1,...,mandt=2, ..., T (1.3)

where ¢, is the " element of ¢, e, is white noise such
that

E(e;)=0,i=1,...,mandt=1,.. T

Oij fort=si,j=1,..,m

and E(egey) =
(€it ) {0 fort #si,j=1,..,m
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It is easily seen that

T-1]
1 pj P
, | Pi 1 T-1
E(eie]) = Qjj = ojj P (1.4)
DR
« Oj
where Gij = 1_pp
i

When the observations are correlated, the least-
squares residuals from (1.1) contain information about
the future observations. This information, which is
generally ignored, has been exploited here in predicting
post-sample observations. Best linear unbiased predictor
has been obtained from classical theory point of view
assuming that the errors in each equation follow AR (1).
The gain in efficiency of the proposed predictor over
the usual generalized least-squares predictor has been
obtained. The method of obtaining prediction is
illustrated using a two-equation acreage response model.
To observe the effect of magnitude of correlation
between explanatory variables across the equations and
of covariance between the error terms of the two
equations on the prediction efficiency, a Monte-Carlo
experiment has also been carried out using a two-
equation model given in Kmenta and Gilbert (1968)
incorporating first order autocorrelation structure in
errors.

2. BEST LINEAR UNBIASED PREDICTION

Our problem is to predict a single drawing of the

response y;, for given X? , the row vector of regressors
with p; components (i = 1, 2, ..., m).

Denoting the (T + 1)th observation from i

regression equation as y?, i=1,..,m from equation
(1.1), this can be modeled as

*

y, = XiBi+ei=1,m 2.1

where €; is the scalar value of the prediction disturbance
with

E(g)=0
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x Gijj LI
E(g &) = ——=0;;,1,]=1,... m 2.2
(€ €)= 1oy =00 ) 2.2)
In general, it is not reasonable to assume that the

out of sample error is independent of the sample errors.
A more reasonable assumption is one which allows the

out of sample disturbance, 8? to be correlated with the

sample disturbances ¢; in (1.3) in the same fashion as
in the sample.

It can be seen that

3
* Gjj T-1 .
Cov(e;, Si)zl—g;l-p- pJ‘ = jj, say;i,j =1, .., m
iP]
L Pi ]

(2.3)

Here, w;;, (i, j = 1, ..., m) represent T x 1 vectors
of covariance between post-sample error and sample
errors.

Defining €* as an m x 1 vector of 8? 'S, it is easy
to see that E(e*) = 0 and

* * *
611 O12 ™ Oim
* * *
o o s o *
E(E*E*’) — ?1 ?2 ‘ ?m = mxm
* * *
1Om1 Om2 ™ Omm |
and
€
, 82 * * *
E(ee*’)= E|| 7 |(e1 &2 €m)
€m
[ Tx1 Tx1 Tx1]
W11~ @12~ 7 O
Tx1 Tx1 Tx1
Wp1~ W~ v Wom x
= i . C = WM (gay)
Tx1 Tx1 Tx1
| Om1 Om2 7 Opp |

Q2.4)

. . *
where superscripts in Q ™™ and W'™™ denote the
dimensions of the matrices.

Let Ypi = C{1Y1+C{aY2 + ..t CinYmi (i=1, ... m)

. . *
be an unbaised predicator for y; , where ¢;’s are T x 1

vector of constants. Now, from (1.1)
m m
Ypi = ZC;]XJBJ +2Ci/j8j (25)
=1 =1
This gives

m
E(y,)= D CiXiBj
=1

m
= i XiBi+ Y, CiXB
(-1

(2.6)

= X BV, iff i’ X =x
and ¢ X; =0Vj(#i)=1..., m (2.6b)

Thus for unbiased predictions, the prediction errors

are
m *
ypl — yI = ZC(JE] —Si , =1,...,m (27)
=1
Stacking in equations in (2.7) together, we get
‘h G Cm || &1 “1
. | fa S22 Coam ||| _ |8
Yoo ¥ T : :
c. C c *
ml “m2 mm _em_ _Sm_
=Ce—¢* (2.8)
where yp = (ypl yp2 ypm),
and y¥ =M1 Y2 « Ym)
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From (2.8) the variance-covariance matrix of the
prediction error is

Q, = var(y, — y*)
= E(Ce — €*)(Ce — e*)

=CQC" —CW - W'C" + Q*
Then trace of Qp is

MQ,) = t(CQC) - 2r(CW) ~tr(Q)

(2.9)

m m m

= 22 D Cik G

i=1j=1k=1

- 22 chlmll + 2 Gii

i=1 j=1

(2.10)

Now to obtain the best predictor in the sense of
minimizing tr(€2,), we minimize (2.10) subject to the
conditions (2.6b). That is, for best linear unbiased
predictor we minimize the function

m m m

m m
D=, D D ChQCij— 2>, D chioj
i=1j=1k=1 i=1 j=1
m
+20u 22}\’“ (Xi'ci —xi) - 22 2 Afj X{ G
-1 i=1j(i)=1

where Aji’s (i, j = 1, ..., m) are p; x 1 vectors of
Lagrangian multipliers. The first order conditions for
minimization of ¢ with respect to ¢;;’s and A;’s, after
re-arrangement of terms, can be written as

[gng Xod}[—éx}:m

where

@2.11)

Qg4 = 1,,®Q, (I, being an indentity matrix of order m)

m® X
o=(0] wz’...m}n)’ , o; being the i™ column of W

*7 */ */

X* = (x(l) X(2) ...x(m)),
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(where x*j) is the i column of
X* = diag(xl Xo . Xm )

0= (& - iy €1 oo Copy oo Clyg e Elyy) 18 MTX1

vector, and

~

o= (Ma A Ar e Ao Ay A s

m
m[z pij x1 vector.

i=1
Solution of (2.11) yields

0 = Qg'%y(Xq Qg X)X

+Q'1[1—X (x ‘01X )_1x ’9‘1}
d d|Ad *<d Ad d=sed |@

QIX(XQX) Xy + 9‘1[1— X(X’Q‘1X)_l}w1
QX XQX) g + Q_l[l XX ‘1X)‘1X’Q‘1]m2
QX XQX) Xy + Q‘l[l - X(X’Q_lx)_lX’Q_l]com
(2.12)

Therefore, the best linear unbiased predictor for y;

is given by

ypi =qy (2.13)

where & = (& ... &) is the i sub-vector of §.

Substitution of the value of € from (2.12), yields

* -1 -
pi = X(i) (X/Q_]'X) X/Q_ly-l-(,l)i Q 1y

o QX (X X)Ix'aly
= X Be +0f Q7' (2.14)
where éG = (X’Q_l)()x’g_ly is the generalized least-

squares (GLS) estimator and €g is the mT x 1 vector
of sample residuals from the GLS regression.
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Substituting the values of ¢;(i = I, ..., m) (2.9)
yields the error variance due to y,; as

Ggi = é(Qél +G?i _Zéiwi
7 r~—1 -1 * *
= X(i) (X Q X) X(i) + Ojj
—2x(y (X)X Qo
—of| @ - X X)X e oy

(2.15)
3. GAIN IN EFFICIENCY
The conventional linear unbiased predictor

ignoring the correlation between sampled and post-
sample unobserved error is

Yoi = XEi)'BG i=1,.,m (3.1)

Now, we work out the gain in efficiency of the
proposed predictor, y,;, over the predictor ¥p;.

Considering, ¥ = f;i’y (3.1) amounts to choosing €; as
" Iy iy ro-Iy -1y *
¢ =Q X(X"QX) X iy (3.2)
and the error variance due to the predictor
Ypi (i=1,....,m) is seen to be

2 Y - *
Gy = Ci/QCi - 2Ci,(,0i + Gjj

pi
-1

i (@) xy + oy - 21 (k@ X ) xe Ty

- o +wi[ Q- (eI e ™) o,

- 6§ +0% 6

where {; = [I - X(X’Q_lx)_lx’g_l}mi is the column
vector with mT elements. The second term in (3.3)
indicates the gain in efficiency over ¥pi (i=1, ..., m)

as this term is seen to be non-negative.

When o;;’s and p;’s are known, we obtain the best
linear unbiased predictions along with their variances.
The parameters 0;;’s and p;’s when unknown, may be
replaced by their consistent estimates in (2.14) and
(2.15) to yield predictions that are asymptotically
efficient.

Kmenta and Gilbert (1970) examined the small-
sample efficiency of four different methods of
estimation of regression and autocorrelation coefficients
by conducting a Monte Carlo experiment and found that
the Joint Nonlinear Estimation method performs better
for small samples in their setup.

In the following section, an experiment has been
carried out using a two-equation model given in Kmenta
and Gilbert (1968) incorporating first-order
autoregressive structure in errors, to observe the effect
of magnitude of correlation between explanatory
variables across the equations on the prediction
efficiency. Estimates of 6,’s and p/’s obtained by the
Joint Nonlinear Estimation method have been used in
(2.14) and (2.15) for obtaining the predictions and their
estimated variances. Thus, the present paper extends the
scope of Kmenta and Gilbert work in the context of
joint predictions.

4. ILLUSTRATION

We obtain predictions from a two-equation acreage
response model for two competing winter crops viz.,
rapeseed and wheat (data given in Appendix) using the
results of Section 2 for Haryana State of India. The
current acreages under rapeseed (AR,) and wheat (AW))
have been considered as the dependent variables and
time series data have been taken from 1983-84 to 1998-
99 from various published sources. For rapeseed crop
explanatory variables were: one year lagged yield
(YR{;) and one year lagged price (PR_;). The
explanatory variables for the wheat crop were also taken
as one year lagged yield (YW, _ ) and one year lagged
price (PW_;). The proposed two-equation acreage
response SURE model for rapeseed and wheat is

AR =0+ oy YR_| t oy PR _ | + ¢

AW = Bo+ B YW1+ B PW_ +ey  (41)

where suffix t denotes the value of the variable in year
t, and €; (i =1, 2) are the stochastic error terms in the
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two equations which follow first order autoregressive
process given in (1.3).

As the first step, ordinary least squares method was
applied to each of the equations in (4.1) to obtain the
initial estimates of Py, Py, G}y, G2y and G5 (= 6,;). Then,
Joint Nonlinear Estimation method (Kmenta and
Gilbert, 1970) was used to estimate the parameters of
the model (4.1) by replacing the quantities in with their
respective initial estimates. The final estimates obtained
were

Py =0612, p, =—0.082, (&, Gy, Gy, Bo, B, B2) =
(11.517, 1.260, 0.026, 142.562, 0.906, 0.062)
G611 =36.657, Gy, = 22.954 and Gyp =Gy =15.760.

. * . AK Ak Ak
The estimated values of ©jj, Viz. 51, Gpp,01p Were

computed by replacing the parametric values in (2.2)
with their estimates which were found to be

611 = 58.608, G,y = 23.109, 61, = 15.006.

For given X; = (1, 16.5, 1200) and X, = (I, 42,
520) vectors for the year 1999-2000, the predicted

values from (2.14) are seen to be Yy = 600.40

thousand hectares and ¥ =2103.50 thousand hectares

with estimated error variances from (2.15) as, 3974.10
and 3070.95 square thousand hectare respectively. In
view of the available data, the predicted values based
on the proposed predictors seem to be quite reasonable
for all practical purposes.

5. MONTE CARLO EXPERIMENT FOR
PREDICTIONS

We considered the following two-equation model
(Kmenta and Gilbert, 1968)

Yie = 10+ 2x45 + 5xpp + €y
yar == 10+ 6xy5 — 3Xgp + €x (5.1

with E = 0.5810_ 1)+ €1t and Er = -0.5 82(‘[— 1 + €t

Two different sets of X’s were used. The first is
the set given in Kmenta and Gilbert (1968, p.1186) for
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their experiment 1, and the second set is given in
Kmenta and Gilbert (1968, p.1187) for their experiment
2. Ten observations are listed in each case for x;;, X1,
X,1 and X,,; and these are repeated as many times as
necessary to generate the required number of
observations. The difference between the two sets of X’s
is in the correlation between x;; and X5;, and x;, and
X,,. These correlations are low for the first set of X’s
and high for the second set of X’s. Zellner and Huang
(1962) have shown that the asymptotic variance of the
Seemingly Unrelated Regression estimator is low when
this correlation is low. As a result it may be worthwhile
to use these two different sets of X’s to see if it makes
a difference in the present context. In all the cases the
variances of e; and e, are taken as one, and three values
of the correlation between e, and e, were used, namely,
0.3, 0.5 and 0.9. Four sample sizes were considered

T =15, 20, 30 and 50 and x* was taken as
x;=(14 1), and X= (1 5 1)

For each given model specification (X matrix,
value of G, and value of T) a sample from bi-variate
normal distribution was generated using IML in SAS
software. Using the autoregressive scheme in Section
2, we generated the series of it g, i=1,2;t=1,.., T

From each sample, autocorrelation coefficients
were first calculated using the Joint Nonlinear
Estimation (JOINTEST) method (Kmenta and Gilbert,
1970) and the estimated values of p;, i =1, 2; were used
to generate the series using the autoregressive scheme
in (5.1). The estimates of 6y;, 61, and G,, were
calculated by using the sample variance-covariance
matrix of e; and e, . The prediction and prediction
variance were calculated as described in Section 2.

Table 1 gives the estimated variances of BLUP and
GLS predictor. Zellner (1962) showed that the
asymptotic variance of the SURE estimator was smaller
when the correlation between the white noise it ;s of
the two equations was larger. A glance at Table 1 reveals
that this is also true for BLUP, as proposed in this paper.
It has also been found that the BLUP is far more
superior to GLS prediction estimator when errors in
each equation follow AR(1) with value of auto-
correlation 0.5 and —0.5 for 1°' and 2™ equation
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Table 1. Variances of BLUP, GLS prediction with autocorrelated errors

Correlation Error No. of Prediction variances x 100
Between covariance | Observations| BLUP for | BLUP for| GLS for | GLS for
X’s between (T) Ist Eq. 2nd Eq. | 1st Eq. 2nd Eq.
equations ) )

(o, (Ggl) (ng) (Gypl) (Gypz)

Low 0.9 15 89.9 77.5 106.0 104.2

20 89.2 71.7 105.8 99.7

30 86.5 70.1 103.8 99.5

50 84.3 68.8 102.3 96.2

0.5 15 96.4 90.6 112.0 113.5

20 94.2 73.2 111.5 107.9

30 92.4 71.1 108.9 101.5

50 87.8 69.4 105.3 98.6

0.3 15 97.9 93.8 113.4 114.3

20 95.4 73.6 112.4 110.9

30 92.8 71.3 110.1 108.5

50 88.6 69.5 106.0 99.1

High 0.9 15 97.9 86.8 113.3 113.1

20 97.5 84.7 113.1 112.7

30 92.0 78.7 108.7 108.3

50 87.5 73.9 105.2 104.9

0.5 15 98.5 88.8 114.0 115.1

20 96.0 86.1 112.0 113.9

30 94.2 81.6 110.5 111.1

50 88.9 75.6 106.2 106.6

0.3 15 98.6 88.9 114.0 115.3

20 96.4 86.5 112.3 113.3

30 94.5 81.9 110.7 111.4

50 89.0 75.8 106.4 106.8

respectively, in (5.1). The result is also similar to that
reported by Zellner and Huang (1962) in case of
estimation of a SURE model that with low correlation
between X’s across equations, the estimated variances
of BLUP is smaller.

REFERENCES

Chib, S. and Greenberg, E. (1995). Hierarchical analysis of
SURE models with extensions to correlated serial errors
and time-varying parameter models. J. Eco., 68,
339- 360.

Dao de, G. and Rong, B.H. (2000). Some finite sample
properties of Zellner estimator in the context of m
seemingly unrelated regression equations. J. Statist.
Plann. Inf, 88, 267-283.

Kmenta, J. and Gilbert, R.F. (1968). Small sample properties
of alternative estimators of seemingly unrelated
regression. J. Amer. Statist. Assoc., 63, 1180-1200.

Kmenta, J. and Gilbert, R.F. (1970). Estimation of seemingly
unrelated regression with autoregressive disturbance.
J. Amer. Statist. Assoc., 65, 186-196.

Percy, D.F. (1992). Prediction for seemingly unrelated
regressions. J. Roy. Statist. Soc., B54, 243-252.

Richard, J.F. and Steel, M.J.F. (1988). Bayesian analysis of
system of SURE under a recursive extended natural
conjugate prior density. J. Eco., 38, 7-37.

Sharma, V.K. (1993). Estimation of seemingly unrelated
regressions with unequal numbers of observations.
Sankhya, B55, 135-138.

Srivastava, V.K and Giles, D.E.A. (1987). Seemingly
Unrelated Regression Equation Models-Estimation and
Inference. Marcel Dekker, New York.

Srivastava, V.K. and Wam, A.T.K. (2002). Separate versus
system methods of Stein-Rule estimation in seemingly
unrelated regression models. Comm. Statist.- Theory
Methods, 31, 2007-2099.



PREDICTION FOR SEEMINGLY UNRELATED REGRESSIONS 41

Zellner, A. (1962). An efficient method of estimating Zellner, A. and Huang, D.S. (1962). Further properties of

seemingly unrelated regression and tests for aggregation efficient estimators for seemingly unrelated regression
bias. J. Amer. Statist. Assoc., 57, 348-368. equations. /ntt. Rev., 3, 300-313.
APPENDIX

Current area (thousand hectare), lagged* yield (quintal per hectare) and lagged* prices (rupees per quintal) of
rapeseed and wheat in Haryana State

Vear Current area Lagged yield Lagged price

Rapeseed Wheat Rapeseed Wheat Rapeseed Wheat
1983-84 307 1789 8.26 26.62 318.74 135.20
1984-85 328 1705 9.87 24.89 340.86 151.55
1985-86 345 1699 10.76 25.56 368.61 150.59
1986-87 342 1782 9.99 26.46 393.59 163.97
1987-88 276 1731 8.49 31.15 546.17 163.22
1988-89 328 1827 8.68 28.61 802.11 167.43
1989-90 383 1859 13.36 28.69 528.23 180.47
1990-91 429 1850 11.01 33.79 664.43 185.31
1991-92 474 1808 13.54 33.25 814.71 214.62
1992-93 638 1956 11.83 35.99 888.18 236.48
1993-94 567 1998 10.94 36.95 848.86 291.55
1994-95 579 1986 11.88 38.29 953.99 365.51
1995-96 580 2003 12.81 38.56 1043.77 359.35
1996-97 617 2020 12.90 38.85 959.76 382.65
1997-98 610 2060 15.54 40.80 1094.58 477.40
1998-99 625 2084 16.83 36.57 1174.39 517.62

* lagged by one year



