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SUMMARY

For reliable policy planning at micro-level, estimates of crop yield at small area level, say block
level, is required. Application of existing crop-cutting methodology would not be feasible in view of
prohibitive cost involved. One possible alternative is to employ “Fuzzy regression methodology”.
Accordingly, in this paper Possibility and Necessity measures for obtaining reliable fuzzy estimates
of crop yield have been thoroughly studied. Estimation of parameters is carried out using “Fuzzy
least-squares” procedure. As an illustration, the methodology is applied to Pearl Millet crop yield
data in order to build block level estimates for Bhiwani district, Haryana based on farmers’ estimates
at the same level. Performance evaluation criterion is used to compare results of Possibility and
Necessity approaches at optimal value of fitness level.
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1. INTRODUCTION

Estimation of crop production is an essential input
in the process of planning and policy formulation for
agricultural sector. In India, estimation of yield is carried
out through carefully planned experiments known as
Crop-cutting experiments (CCE) on sampled fields. At
present, estimates of yield and crop production in country
are available at somewhat higher level, such as State or
district. With progress in agricultural sector, there is a
growing demand for estimation of crop yield at lower
level, such as Community development block and in some
cases even Gram panchayat. One alternative for meeting
requirement of building up precise estimators at small
area level is to increase number of crop cutting
experiments. However, this is usually not possible due to
cost constraints. Therefore, a new cost effective technique
needs to be developed, which may be adopted for
implementation for estimation of yield of various crops
at small area level (Rao, 2003).

Sud et al. (2006) carried out a detailed study for
developing crop yield estimates at small area level using
farmers’ estimates with the objective to develop precise

block level estimates. However, this would be meaningful
only when inquiry based farmers’ estimates can be used
successfully for modelling actual yield based on CCE.
Ghosh et al. (2007) applied “Possibilistic linear regression
model” considering yield data as fuzzy while farmers’
estimate as ‘crisp’ value. Linear programming (LP)
approach of Tanaka et al. (1982) for modelling of fuzzy
variable was used for its inherent simplicity in terms of
computation.

The main shortcoming of Tanaka’s LP approach is
that it is not based on sound statistical concepts (Chang
and Ayyub 2001). Therefore, another method for handling
fuzzy data was developed by Diamond (1988), where
Fuzzy least-squares (FLS) criterion was considered.
Kandala and Prajneshu (2004) applied FLS method to
some data. From a view point of risk, Modarres et al.
(2004) developed fuzzy linear regression model by
considering Necessity measures of inclusion of observed
fuzzy numbers in estimated fuzzy numbers. Further,
Modarres et al. (2005) also extended a FLS with high
fitness level of estimated model by incorporating the
concept of Possibility theory. In this paper, an attempt
has been made to study FLS model using both the
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approaches of Possibility and Necessity measures. As an
illustration, the above-mentioned methodology is applied
for estimation of yield of Pearl Millet crop at block level
of Bhiwani district in Haryana State using data given in
Sud et al. (2006). Further, comparison has been done for
performance evaluation of FLS with optimal fitness level
of the estimated model expressed in terms of Possibility
and Necessity measures.

2. POSSIBILITY AND NECESSITY OF EVENTS

2.1 Possibility measure

Let U be a universal set of elementary events. Any

subset of U is called an event. An event ACU is said to
occur when some elementary event in A occurs. A
possibility measure (Zadeh, 1965) on U is a set function

IT from go(U) , the set of crisp subsets of U, to the unit
interval [0, 1], such that

IT (0)=0, IT(U)=1 and V A, Begp(U)

IT (A UB)=max (II (A),TI (B)) 2.1)

Let F be a normalized fuzzy set with membership

function ug(u) such that pg (u)=1for some ue U. Then,

quantity IIg(A)derived from membership function
W (u)by

Mg (A) = Supug (U) VvV AcU

ueA

(2.2)

defines a possibility measure. Eq. (2.2) is interpreted as
possibility of realizing event A when possibility of
elementary events is expressed by fuzzy set F. Now, if
[1f iscrisp (i.e., [[r(u) € {0, 1}), then[[r(A)=1< A
N F # ¢. When both A and F are fuzzy, (2.2) can be
readily extended, using fuzzy set intersection, into

M (A) = Sup min (ue(U), pa(W)  (23)

Eq. (2.2) is a special case of eq. (2.3) and such an
extension can be interpreted in terms of the intersection
of the level cuts of F and A.

2.2 Necessity measure

A necessity measure (Dubois and Prade, 1980) is a

set function N:@(U)—[0, 1] such that
N($)=0,N (U)= 1, and
N(ANB)=min(N(A) ,N(B)), V A,BcU (24)

Let A be the complementary set of A, and [ be a
possibility measure. Then it is easy to check that the set
function N defined by

N(A)=1-TI(A), ¥ AcU 2.5)
is a necessity measure. If [[ derives from a normalized
membership function Y, then it is obvious that v A,

Ng(A) = 1-TI¢ (A)=inf (1- 2.6
F(A) F()Lé(up(u)) (2.6)
When and are crisp, then
1 if FCA
Ni(A) = { 0 otherwise 2.7)

Hence, while possibility is related to intersection, necessity
refers to set inclusion. Eq. (2.5) can be extended,
consistently with eq. (2.3), by defining

Np(A) = 1-Sup min (ue(u) , 1ua (U))

= inf max(l-pe() . uaW) @8

This is a measure of fuzzy set F contained in fuzzy set A.

2.3 Possibilistic regression model

In the conventional regression model, deviations
between observed and estimated values are supposed to
be due to measurement errors. However, in many real
world situations, the response/explanatory variables may
not be taken as crisp values. Now, in modelling yield of
Pearl Millet crop at block level, it is always meaningful
to consider yield as a fuzzy variable because there are
many representative values of yield of a particular block
from several villages obtained by CCE. Also, significance
of yield to be expressed as fuzzy variables is that it
facilitates gradual transitions of actual yield and possesses
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anatural capability to express and deal with measurement
uncertainties. In possibility theory, these deviations are
characterized as fluctuation of system parameters, which
can be represented by a fuzzy number. Accordingly, it
has become important to deal with fuzzy data originated
from a fuzzy phenomenon. The formulation of
Possibilistic linear regression model has been introduced
by Tanaka et al. (1982). There are m explanatory non-
fuzzy variables, x;, 1= 1, 2, . .., m, while the response

variables are symmetric fuzzy number, Y, = (yi € ) The

objective is to estimate a fuzzy linear regression model,
expressed as follows

\:(i = Ay Xig+A Xij+..+A, Xip (2.9)

In model (2.9), A= (Ao,Al,...,An) is a vector of

fuzzy parameters where A i= (oc iC J—) is a symmetric fuzzy
number with o as center and ¢, as spread. Fuzzy
parameters of model are estimated for a certain fitness

level h, 0<h<1 such that h-level cut of the estimated
fuzzy number contains the h-level cut of observed values.
Problem is formulated as Minimization problem, which
is given as follows

A= MinJo=Yrc" |x| (2.10)

T (e
where Ct| X | is spread of estimated fuzzy output @i ,

subject to following three constraints

Y +€ ‘L‘l(h)‘ <a'xj+ o' || ‘L‘l(h)‘

Y-8 \ L (h) \ >atxi—c '] | \L—l(h) \

c>0, i=l,...m 2.11)

The main shortcoming of Tanaka’s linear
programming approach as noticed by Chang and Ayyub
(2001) is that, “As the number of data sets increase, the
number of constraints (of the linear programming method)
increases proportionally. This increase might result in
computational difficulties”. The other drawback of the
above method is that the concept of least-squares is not
considered; therefore a natural extension of fuzzy
regression would be the integration of the least-square

21

criterion into fuzzy regression as described in the next
section.

3. FUZZY LEAST-SQUARES MODELS

In 1988, Diamond proposed the FLS method to
determine fuzzy parameters by adopting concept of
minimum fuzziness between observed and estimated
values, minimization criteria similar to least squares
method in Statistics was used. Working on the principle
of Diamond’s FLS criterion, a model is constructed in
this paper based on following concepts:

(i) The objective function is to minimize total square
of difference between estimated regression spread
and observed spread of given data.

(ii) The degree of fitness of the FLS model, based on
possibility measure, is greater than or equal to a
threshold h, 0 <h <.

(i) The degree of fitness of the FL.S model, based on
necessity measure, is greater than or equal to a
threshold h, 0 <h <.

3.1 Fitness of FLS Model Based on Possibility
Measures

In fuzzy linear regression model \:(i =A X;, let @i

and ?i be estimated and observed data for a vector of

independent variables x;, respectively. Fori=1, 2, ...,
m, we define possibility of degree of fitness of estimated

\:(i for given observed data Y, as
f, = Pos(\?iz\?i) 3.1

The degree of fitness of estimated FLS model to all
data X, X ..., X_is defined by
f =min {fi,i=1,2,..,m} (3.2)

A relation for possibility of equality of two fuzzy
numbers as obtained by Modarres et al. (2005) is stated.
If A=(o,) and B =(8,d), then

Pos(A=B) = L(Q__BJ (3.3)

c+d

By applying extension Principle for fuzzy linear

regression model @iz,& Xi and for a vector of
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independent variables x, the center and spread of
estimated symmetry fuzzy output is o x. and ¢' x|,
respectively. Therefore, following membership function

of @i is derived

Lz XDl Lo
¢! fxi

¥i)=1 1 if x,=0, y,=0 B4

0 otherwise

<o

Onother hand, Y;=(y; , g). By substituting center

and spread of \:(i =A X; and Y. in eq. (3.4), degree of

|
fitness of estimated FLR model, f is calculated as follows:

f, = Pos (Y=Y, )- L {?X—y] Xi#0 (35)
c || + ¢

where o = (Oco, Ol seees ocn)
Ct = (Co, Cly oees Cn)
,
and ;| = ( il [Xial + e Xin] )

The objective function of FLS model is to minimize
square of total difference between observed spread, e;,
and estimated spread, ¢' [x|. This can be achieved by
minimizing following objective function

n 2
Minimize Z (h) = Z(Ct |Xi |_Q)

i=1

(3.6)

The problem in FLS regression model is to determine
fuzzy parameters A such that fi=h, Vi. On
substituting the value of f from eq. (3.2) and solving the
above inequality, constraints of FLS regression model
are as follows

*(h) \gc,. [ |2y -] LA () |

o3 xij+‘L

M= TM-

oai Xij ~ ‘L_l ‘ZCJ‘X'J‘< i+t ‘ (h)‘q

x| = 0 (3.7

Decision maker selects a threshold 0 <h <1, as the
least value for fitness of the FLS regression model.
Therefore, optimal solution depends on the threshold
value, h. The model is a quadratic programming model
and can be solved by any nonlinear optimization solver.

3.2 Fitness of FLS Model Based on Necessity
Measures

Let h-level set of two fuzzy numbers say A and F
be L, (A)or Ly (IE) respectively for which degree of its

membership function exceeds level h :
Ln(A) = {ueR ;s (u)zh}=[ A}, AR ]
Ln(F) = { ueR'Y/pz(u)2 h}:[ﬁ'; : FhR]

where Ap ( ﬁ';) and AR} ( FhR) are left and right side

(3.8)

extreme points of h-level set of A (IE) respectively. It is

already pointed out (in Sections 2.1 and 2.2) that
possibility is related to intersection and necessity refers
to set inclusion. Using notations for h-level sets

L (A)and Ly (f:), and eq. (2.8), the following results

are obtained:
Nes (Fc A)>hifandonlyif Al <F-,and AR < RS,
(3.9)

Considering, fuzzy linear regression model

n n
Y; =AX Z(Zaixii ' ZCJ-‘ Xij U , and using the results
=0 =0

obtained in eq. (3.9) for Nes(\?i - \:(i )2 h, the following

inequality is obtained

Zn:,] ‘ ‘ZCJ‘XIJ‘<Y| ‘ 1 h)‘q
i=

gn: + L ‘ZCJ‘X'J‘> i+ =) [e

(3.10)
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Now, based on concepts of fuzzy least-squares the
objective function (3.6) is minimized with respect to
necessity conditions of (3.10) to yield fuzzy least-squares
results under necessity measure.

3.3 Performance Evaluation

To determine fuzzy parameters such that estimation
error is minimized, the following bisection algorithm is
suggested : (i) Seth=0, h; =0 and hj;= 1, where h; and
hy; are upper and lower bounds for h, respectively.(ii)
Solve quadratic problem (3.6) and denote value of optimal
objective function by 2. (iii) Set h = (hy + hy)/2 and
solve the problem (3.6), again. Denote the value of optimal
objective function by z*. Update values of h; and hy; as
h; =h, ifz* =2"and hy =h, otherwise. (iv) If difference
between two consecutive values of h is less than €, then
algorithm is finished and fuzzy parameters are determined
where € is an acceptable tolerance; otherwise go to (iii).

In a fuzzy linear regression model, values of response
variable are represented as fuzzy numbers with
membership functions characterized by explanatory
variable. In order to evaluate the closeness of observed
and estimated fuzzy numbers, support of both fuzzy
numbers should be close to each other, where support of
afuzzy set Ais defined by S, = {u:u,(u)> 0} . Therefore,
for performance evaluation of a fuzzy regression model,
Kim and Bishu (1998) used ratio of difference between
membership values to observed membership values as
follows :

[ 1%m-%0) |
=5, Ui
J' Y, dy
%
where S\?i and Sqi are the support of \:(i and \?i ,

E = (3.11)

respectively.
4. RESULTS AND DISCUSSION

As an illustration, a part of data given in Sud et al.
(2006) concerned with yield of Pearl Millet crop at block
levels of Bhiwani district of Haryana State is considered
here to develop a fuzzy estimate of Pearl Millet yield.
Nine blocks in the district are: B. Khera, Bhiwani, Kairu,
Tosham, Siwani, Loharu, Badhra, Dadri-I and Dadri-II.
The explanatory variable at block level is farmers’
estimate while response variable at the same level is
actual Pearl Millet crop yield based on Crop-cutting
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experiments, and are fuzzy numbers. Entire data analysis
is carried out using LINGO, Version 8, software package
(LINDO, 2002) available at I.A.S.R.I., New Delhi. The
data for present investigation, culled from Sud et al.
(2006), is reproduced in Table 1 for ready reference.

Table 1. Pearl Millet yield (based on CCE) as triangular
fuzzy numbers with farmers’ estimates for Bhiwani district

Block | Blocks Farmers® | Lowerlimit | Upper limit of
Number Estimate of yield yield
(quintals/ (quintals / (quintals/
hectare) hectare) hectare)
1 B. Khera 13.36 10.00 15.00
2 Bhiwani 19.69 12.50 20.00
3 Kairu 10.01 6.00 12.42
4 Tosham 10.66 5.00 10.80
5 Siwan 9.98 6.25 12.01
6 Loharu 11.93 9.09 14.51
7 Badhra 11.96 7.33 15.01
8 Dadri-I 10.08 8.75 13.75
9 Dadri-I1 9.75 11.43 15.01

Yield as function of farmers’ estimates can be
expressed as

Vo= (o, )+ (o, &)X i=1,...9 @1
4.1 Fuzzy least-squares regression model
4.1.1 Possibility approach

When POS(Vi =Vi), the fuzzy linear regression

model with least-squares error can be formulated with
following objective function to be minimized

Min Z(h) = {(0 + 01 ) - 2.50}°
+{(og + 1) - 3.75}2 S (o ocz)—1.79}2 (4.2)
subject to
12.50+2.50 | L™ (h) |> (o * 1+ 1, *13.36)
~(c*1+¢,*13.36)| L™ (h)
1250-2.50 | L™ (h) | < (0 * 1+ 01, * 13.36)
(e *1+6,*1336) L (h)

1322 +1.79 L7} ()] > (o * 1+ e, * 9.75)
~(a*1+c,* 975 L (h)



24 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

13.22-1.79 L7 (h)] < (o, * 1+ 1, * 9.75)
+(c ¥ 1+ ¢y * 9.75)‘ L‘l(h)‘

¢, *14¢,*13.3620..., ¢;*1+ ¢,*9.7520  (4.3)

The above nonlinear quadratic optimization problem
is solved to obtain FLS regression model. The optimal
value of fitness level is obtained using bisection algorithm
as discussed in Section 3.3. A program is written in
LINGO and objective function value z° is obtained by
taking h = 0. Then, the value of h is updated according to
bisection algorithm to obtain subsequent values of
objective function. At last iteration, the optimal value of
fitness level h is determined. The optimum value of fitness
level at tolerance level, € =0.001, ish=0.451. Using the
above fitness level and solving quadratic optimization
problem, the model constructed is as follows

¥, = (9.66, 1.60)+(0.13, 0.11) X;,i=12...9 (4.4)

4.1.2 Necessity approach

For Nes (Vi C ?i), the fuzzy linear regression

model with least-squares error can be formulated with
following objective function to be minimized

Min Z(h) ={(0 + 0t ) - 2.50}2 +{(og + 1) - 3.75}2

ot (o +0p)-179Y (45)
subject to

1250~ 250 | L™} (1-h) |> (o *1+ a1, *13.36)

(o
~(cy*1+¢,*13.36) L7 (h)
1250+250 | L™} (1-h)|< (04 * 1+ 0, *13.36)

+(c 1+ & *13.36) L™ (h)

13.22-1.79|L"*(1-h) |2(oc1*1+0c2*9.75)
—(c*1+¢,*9.75)|L 7 (h))|

13.22+1.79|L (1~ h) K (01 * 1+ 01, * 9.75)
+(C*1+¢,*9.75) L7 (h)|

¢ *1+¢c,*13.3620,..., c;*1+C,*9.75=20 (4.6)

The above problem is solved similarly and the
optimal value for h is 0.003 at tolerance level of
€=0.001. The model constructed is as follows

¥,= (853,1.73)+(0.20,0.10) L9 (47)

4.2 Minimization Approach

The problem is formulated as follows

9

MinlJ(h)= Y (c;*1 + cy%X;).i=

i=1

.9 (4.8)
subject to
12.50+2.50| L™ (n) < (o, * 1+ a1, *13.36)

+(cy*1+¢,*13.36)| L (n)
12.50-2.50| L™ (n)| > (o, * 1+ 1, *13.36)
~(cy*1+¢,*13.36) L7 (h)

h) |< (a;*1+ oLy * 9.75)
+(c* 1+ ¢,*9.75) L7 ()
h) > (04*1+0,*9.75)
~(c*1+¢,*9.75) L7 ()
(4.9)

Now, solving the above linear programming problem
forh=0.451, fuzzy linear regression model constructed
is as follows :

V,= (6.04,7.53)+(041, 0)x;,i=

13.22+1.79] L)

13.22-1.79| L™)(

c,Cc, =20

1,2,...9 (4.10)

Substituting values of farmers’ estimates as given
in Table 1 to (4.4), (4.7) and (4.10), the estimated fuzzy
Pearl Millet yield corresponding to Possibility, Necessity,
and Minimization methods are computed and reported in
Table 2.

Table 2. Estimated fuzzy yield corresponding to
Possibility, Necessity and Minmization methods

Estimated Yields

Blocks Possibility Necessity Minimization

Yit | Yim | Yiu | Yil | Yim | Yiu | Yil|Yim| Yiu

B.Khera {829 | 11.34| 1440 | 8.14 | 11.20 | 14.27 | 4.02|11.56| 19.09
Bhiwani (8.40 | 12.14| 15.88 | 8.77 | 12.47 | 16.17 | 6.64|14.17| 21.71
Kairu 8.23110.92|13.61|7.80[10.53|13.26| 2.64|10.17 | 17.71
Tosham [8.25 | 11.00 | 13.76 | 7.87 | 10.66 | 13.46 | 2.91|10.44| 17.98
Siwan  |8.23 {10.92| 13.60 | 7.80 | 10.53 | 13.26 | 2.63|10.16 | 17.70
Loharu (827 |11.16|14.06|7.99|10.92 | 13.84 | 3.43(10.97| 18.50
Badhra [8.27 | 11.17 | 14.07 | 8.00 [ 10.92 | 13.85 | 3.44|10.98| 18.52
Dadri-l {824 |10.93|13.63|7.81|10.55|13.28 | 2.67(10.20| 17.74
Dadri-1I {8.23 [ 10.89 | 13.55]7.78 | 10.48 | 13.19 | 2.53|10.07 | 17.60
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Further, using eq. (3.12), errors in estimation for
optimal fitness level are computed for all approaches
and are reported in Table 3.

Table 3. Error in estimation for Least-squares
(Possibility and Necessity) and Minimization methods

Blocks Errors in estimation of yield for different methods
Possibility Necessity Minimization
B. Khera] 0.83 1.76 2.01
Bhiwani 1.59 1.81 1.01
Kairu 0.91 0.73 1.35
Tosham 1.56 1.45 1.60
Siwan 1.05 0.85 1.62
Loharu 0.44 1.51 1.79
Badhra 0.24 0.25 0.97
Dadri-I 0.25 1.51 2.01
Dadri-II 1.92 2.41 3.22
Total 8.79 12.28 15.84

A perusal shows that values of sums of errors for
Possibility and Necessity methods are lower than those
for Minimization method for all the blocks. In other
words, least-squares approach gives more reliable
estimates for crop yield vis-a-vis linear programming
approach. To get a visual idea, observed and estimated
Pearl Millet yields obtained from using Possibility
approach with h=0.451 are depicted in Fig. 3. Evidently,
the observed yields (in solid lines) and estimated yields
(in dotted lines) are found to be quite close to each other,
thereby indicating that farmers’ estimates are able to
explain actual crop yield with high fitness levels.

A

21
19
17
15
13
11

Yield of Pearl Millet (Quintals/hectares)

5 »Block Number
9

Fig. 3: Observed (in solid lines) and estimated (in doted lines)
Pearl Millet crop yield based on Possibility
approach at optimal fitness level
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5. CONCLUDING REMARK

The extension of above work when explanatory
variable is also fuzzy is in progress and shall be reported
separately in due course of time.
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