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SUMMARY

The article investigates the effect on the disturbance variance estimation in linear regression
model when Stein-rule instead of least squares estimation is used. Using small sigma asymptotics, it
is demonstrated that the iterative Stein-rule estimator is not only asymptotically biased but is also
dominated by its counterpart stemming from ordinary least squares.
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1. INTRODUCTION

FollowingStein'selegantproofof the inadmissibility
of the usual estimator of variance, Maatta and Casella
(1990) and Wan (1999) reviewed and examined the
developments in variance estimation under decision
theoretic setup. Earlier,inthe context oflinear regression
model, Ohtani (1987, 2001) demonstrated that the
iterative Stein-ruleestimator of the disturbance variance

is dominated by the usual estimator of the disturbance
variancebased on OLSunder squarederror loss criterion
but the pre-test variance estimator dominates if the
number of regressors is greater than or equal to five. In
this article, using small sigma asymptotics, it is
demonstrated that the iterative Stein-rule estimator of

disturbance variance is not only asymptotically biased
but isalsodominatedby the usualestimatorof disturbance
vanance.

The plan of the paper is as follows. Section 2
describes the model and the estimators. In Section 3 the
properties of the disturbance variance estimators are
studied and a comparison is made. Lastly, in Appendix,
the proof ofthe theorem is outlined.
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2. THE MODEL AND THE ESTIMATORS

Let the true model be

y=X~+u (2.1)

where y is an n x 1vectorof observations on the variable
to be explained, X is an n x p full column rank matrix of
n observations on p explanatory variables, ~ is a p x 1
vector of regression coefficients and u is an n x 1vector
of disturbances. The elements of the disturbance vector

u are assumed to be independently and identically
distributed each following normal distribution with mean
0 and variance cr2,(cr2being unknown) so that

(2.2)E(u) = 0

E(uu') = cr2In

Application of least squares to (2.1) yields the
ordinary least squares (OLS) estimator of ~given by

b = (X'X)-l X'y (2.3)

Using it, the estimator of the disturbance variance
is constructed as

I '
S2 = -(y-Xb) (y-Xb)m (2.4)
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where m is any arbitrary scalar. The Stein- rule estimator
of ~proposed by James and Stein (1961) is given by

[

2

]
A - 1- k ms b
~ - b'X'Xb (2.5)

where k is any positive characterizing scalar. The iterative
Stein-rule estimator is constructed with the help of
residuals obtained by SR estimation of the regression
coefficients and is given by

62 = ~ (Y-X~)'(Y-X~) (2.6)

where m is any arbitrary scalar and the properties of s"

and that of 62 can be studied for various values ofm.

3. PROPERTIES OF DISTURBANCE
VARIANCE ESTIMATORS

Wenotice from (2.3) that

S2 = ~Y'Pxy and Px=1- X(X'X)-I X' (3.1)m

so that the bias and the mean squared error of s" are
given by

a2
B(s") = -(n-p-m)m (3.2)

a4 r
and M(s2) = m2 L(n-p-m)2 +2(n-p)]

(3.3)

respectively. To study the properties of the iterative Stein-
rule estimator of disturbance, we notice that

A kms2
y-X~ = y-Xb+ Xb (3.4)

from which it is easy to see that

k2ms4
A 2 2 = s2-a2 +
a -a b'X'Xb

so that B(62) = E(62 -(2)2B(s2)

(3.5)

(3.6)

clearly indicating that the Stein-rule based estimator is
rather more biased than its counterpart stemming from
least squares. In order to derive the magnitude of bias
and mean squared error of 62 , small sigma asymptotics
is used which simply requires a to be small so that the
samplingerrorof the estimatormaybe expandedin higher
orders of a and then taking term by term expectation of
each term in the expansion. Assuming a to be small is
justifiable from the fact that if it is large, the model (2.1)

JOURlvAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

will not be well explained by the explanatory variables
in X. This technique was first suggested by Kadane (1971)
and later used by many, to cite a few see; e.g. Vinod and
et af. Ullah (1980), Dube et af. (1991), Srivastava and
Dube (1993), Srivastava et af. (1996) and the references
therein. In the following theorem, small sigma asymptotics

is used to find the magnitude of bias and MSE of 62 .

Theorem. When disturbances are small, the bias to order

0(a4) and the mean squared error to order 0 (a4) of the
estimator 62 are given by

(
A2

)
a2

( )
a4k2(n-p)(n-p+2)

Ba =-n-p-m+ (37 )
m ill WX'X~ .

4

M(62) = :2 [(n-p-m)2 +2(n-p)]

2a6 k2(n-p)(n -p+ 2)(n-p+4)+
m2 WX'X~

Proof. SeeAppendix

Let us now compare the performance of the usual
(2.4) and the SR based (2.6) estimator of disturbance for
various values of scalar m. It can be easily verified that
S2is an unbiased estimator of a2 if m = (n - p), has the
smallest mean squared error if m =(n - p + 2) and the
choice m = n yields the maximum likelihood estimate of
a2 when errors are normally distributed. Interestingly,
for all the above choices ofm yield consistent estimates
of a". However, from (3.7) it is clearly evident that 62
is a biasedestimatoreven if we choosem =(n - p). In
fact, this bias does not vanish even if the number of
observations is very large,clearly indicatingthe iterative
SR estimator of the disturbance variance to be

asymptotically biased. Also, the comparison of the
expressions (3.3) with (3.8) establishes that the OLS
based estimator of disturbance variance estimator
uniformlydnminatesthe Stein-rulebasedestimatorunder
mean squarederrorcriterionat least in small sigmasense.

(3.8)

4. CONCLUSION

The present article demonstrated that the iterative
Stein-rule estimator of disturbance variance is not only
asymptotically biased but is also dominated by the usual
estimator of disturbance variance. As we know in

experimentaldesignsof agriculturalstudies,minimization
and estimation of disturbance variance is an important
issue. The result derived here will prove to be helpful in
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this direction with the advantage of minimum risk attached
to this approach as opposed to the classical approach in
which failure of distributional assumption of disturbances
can seriously affect the quality of the inferences.

ACKNOWLEDGEMENT

The authors wish to acknowledge the referees helpful
comments leading to the revision of the article.

REFERENCES

Dube, M., Srivastava, Y.K., Toutenburg, H. and Wijekoon,
P. (1991). Stein rule estimator under inclusion of
superfluousvariables in linear regression models. Comm.
Statist. - Theory Methods, 20(7), 2009-2022.

James, W. and Stein, C. (1961). Estimation with quadratic
loss. Proc. of fourth Berkley Symposium, 1 (Univ. of
California Press, Berkley, CA), 361-379.

Kadane, lB. (1971) Comparison ofK- class estimatorswhen.
the disturbances are small. Econometrica, 39,723-738.

Maatta, J .M. and Casella, G. (1990). Developments in
decision"theoreticvariance estimation. Statist. Sci., 5(1),
90-120.

Ohtani, K. (1987). Inadmissibility of the iterative Stein-rule
estimatorof the disturbance. Variancein linear regression
Eco. Lett., 24, 51-55.

Ohtani, K. (200I). MSE dominance of the pretest iterative
variance estimator over the iterative variance estimator
in regression. Statist. Probab. Left., 54, 331-340.

Srivastava, Y.K.and Dube M. (1993). Properties of the OLS
and Stein-rule predictions in linear regression models
withproxyvariables.StatisticalPapers,34, 27-41.

Srivastava,V.K., Dube, M. and Singh, V. (1996). Ordinary
least squares and Stein rule predictions in regression
models under inclusion of some superfluous variables.
Statistical Papers, 37, 253-265.

Vinod, H.D. and Ullah, A. (1981). Recent Advances in
Regression Analysis. Marcel Dekker.

Wan, A.T.K. and Kurumai, H. (1999). An iterative feasible
minimum mean squared error estimator of the
disturbance variance in linear regression under
asymmetricloss.Statist.Probab.Left, 45, 253-259.

343

APPENDIX

For application of small sigma asymptotic
approximations, let us write the model (2.1) as

y = X~+u; u=w (A.I)
so that w follows a multivariate normal distribution

having mean vector 0 and variance-covariance matrix In'
Thus we have

E (w' A w) = (tr A)

E(w' A wf = (tr A )[(tr A)+2]

E(w' A W)3 = (tr A )[(tr A)+2][(tr A)+4]

where A is any n x n symmetric matrix with non-stochastic
elements. Using (2.3) and (A. 1) we get

b'X'Xb= WX'X~+2crWX' +cr2w'pxw glvmg

]

-1
1 WX'w 2 w'Pxw

(b'X'Xb)-1 = WX'X~[1+2cr WX'X~ +cr WX'X~

Expanding and retaining terms to order o(cr) gives

1

[
WX'w

](b'X'Xb)-1 = ~'X'X~ 1-2crWX'X~
From (3.1) and (A. 1) we can also write

cr2 -
S2 = -w'Pxwm

(A.2)

(A.3)

so that using (A.2) and (A.3) gives

S4

b'X'Xb

cr4 (W'pxw)2

m2 WX'X~
(AA)

to order 0 (cr4).Now using (A.4) in (3.5) gives the bias

of &2. For mean squared error of &2, we notice that

M( &2) = E( &2-cr2)

(

4
(

2 2

») (

k4m2s8

)
= M(s2)+2k2mE s s -cr +E (A.S)

b'X'Xb (b'X'Xb)2

Using (A.3) along with (AA), we get to order o( cr6)

E
(

S4(S2-cr2»

)
= cr6

[
~E(W'P W)3-E(w'P W)2

]b'X'Xb m2WX'X~ m x x

while the contribution of the last term on the right hand

side of (A.S) up to order o( cr6) is O.


