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SUMMARY

Approximate expressions for probability ofmisclassification (PMC) are derived for sample linear
discriminant function (SLDF) when training samples have misallocated observations. The PMC of
SLDF using misallocated training samples is also obtained through simulated samples from two
multivariate nC:-lnalpopulations for examining the validity of derived expressions for practical
applications. The numerical results reveal that the misallocation in training samples increases PMC.
The effect is small for low level of misallocation and moderate correlation and serious for high level
of misallocation and high correlation among component variables. Further, the derived expressions
for PMC provide numerical results close to the simulated values for small and moderate values of N
(Mahalanobis distance).
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1. INTRODUCTION

Fisher's Iinear discriminant function is the popular

techniqueinthe field of discriminantanalysis.Thisyields
optimal results in the sense of smallest probability of
misclassification (PMC) when parameters are known.

The performanceof Fisher's lineardiscriminantfunction
has been studied by Singh (2001) when parameters are
unknown.The assumptions involved in the construction
of LDF include that the training samples are correctly

classified. Sometimes the training samples may have
misallocatedobservations.Lachenbruch(1966)has given

largesample expression for PMC when training samples
have misallocated observations. McLachlan (1972)

obtained the asymptotic results for the same model. In
this paper,we derive approximate expressions for PMC
of sample linear discriminant function (SLDF) when
training samples have misallocated observations and
examine its validity for practical applications by using
the simulated samples from. multivariate normal
populations.

2. SAMPLE LINEAR DISCRIMINANT
FUNCTION

Consider two p-variate normal populations 7t] and

7t2' Suppose that we have a sample x(~, (ex = 1,2, . . .,
N]) from population 7t]with distribution N(/ll' L) and a
sample x(~ , ( ex= 1,2, . . .,N2) from population 7t2with

distribution N( J..l2, L:). These are taken as training

samples to obtain estimates of J..ll' J..l2and L:. The
estimates are defined as

1 N]X = - ~ x(l)
1 N.£..J a,1 a=1

respectively and

I N2
- - - ~ (2)
X2 - N2 .£..JXa for J..l] and J..l2,a=1

I Nj
S = - L(x~) -XI)(X~) -XI)']

n a=1

N2
~ (2) - (2)-

+ .£..J(Xix - X2 )( xa - X2)'] for L:
a=1

where n = (N] + N2- 2)
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The classification statistic is defined as

, -I - - 1 - -, -I - -
W=XS (XI- X2)- - (Xl + X2) S (XI - X2)2

(2.1 )

Suppose that some of the observations in two

training samples are misallocated. It is assumed that a]
is the proportion of the N] observations in training sample
one that really belong to population 1t2and a2 is the
proportion of the N2 observations in training sample two
that really belong to population 1t1.

Let XjT is the mean of those members correctly

classified as coming from population 1tjand XiM is the

mean of those members from 1tjincorrectly classified as
member of1t3-j, i = 1,2. The sum and difference of the
sample means can be expressed as

XI +X2= (1-al)XIT+aIX2M+a2XIM+(I-a2)X2T

X, -X2= (1-al)Xn +a]X2M -<X2XIM-(1-<X2)X2T

The sample covariance matrix is expressed as

Cl - - -,
S = ST + - (XIT - X2M)(XIT - X2M)n

c - - - -
+-2(X1M - X2T )(XIM - X2T)' (2.2)n

where Cj= ai (I-a) Ni' i = 1,2 and STis the true sample
covariance matrix.

Lachenbruch (1966), observing the expressions
(2.1 and 2.2) to be quite difficult to analyse, performed a
series of sampling experiments to study the effects of
misallocation in training samples. His results are not
useful in computing PMC from numerical data. Here,
we develop approximate theoretical expressions for PMC
of SLDF using misallocated training samples in the
following section.

3. PROBABILITY OF MISCLASSIFICATION

The two probabilities of misclassification are defined
as

P(2Il)=P(W:S;OIXE1tj) and

P(11 2) = P(W > 0 I X E 1t2) (3.1)

We write W in (2.1) approximately (see, McLachlan
1972) as
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W = u'S-lv/tT
where

u = (XI-X2)

= (1- al)XIT + al X2M - a2XIM -(1- (2)X2T

1 - -

v = X- "2 (XI + X2)

1 - - -
= X --[(1 -al)XIT + alX2M +a2XIM

2

+ (1- (2)X2T]

c- - 1--
t = 1+ --1(XIT - X2M)'Si (XIT - X2M)

n

c - - . 1- -
+-2(XIM - X2T)'Si (XIM- X2T)n

and verity the validity of this approximation through
simulationtechnique.

Now t:.- : and Sil is positive definite. Hence, for

obtaining PMC, we express W equivalent to

W = u'Si'y (3.2)

Suppose X E 1t1'then

u ~N[(IlI-1l2)(1-al-a2),(Nl] + N2')L] and

Let

v ~ N[(1l1 -1l2)(1+al -(2)/2,

(1+ (4NI)-1 +(4N2)-I)L]

ul = F [NIN2 / (N1+N2)] u and

vI = F[4NIN2 /(NI+N2 +4NIN2)] v

then

u, ~ N[(IlI-1l2)(1-al-a2)~{N]N2/(N, +N2)},L]

Vj ~ N[(1l1 - 1l2)(1+ al - (2)

~{Nj N2 /(N, + N2 + 4NIN2)}L]

W= k[(uj +vI)'Si1(Ul +Vl)-(Ul-Vl)'Sil(uj -vI)]

(3.3)

where k = (1/8NIN2)~[(NI +N2) (Nt +N2 + 4N]N2)]
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Note that (UI+ vI) and (uI- v I) are independently normally
distributed (see Moran 1975) as

(UI+VI) ~ N(°l' kl1:) and (ul - vI) ~ N(Oz' kz1:)

where

°1= (Ill -l1z)[{(l- al - az)/(NI + Nz)-l/z}

+{(l+a( -az)/(NI +Nz +4NINz)-I/Z}]J(N(Nz)

kl =2 [1 +(Nj-NZ)/{(NI+Nz)(NI+Nz+4NINz)}I/Z]

8z=(I1I-l1z)[{(1- al- az)/(N (+Nztl/Z}

- {(I + al- az)/(NI + Nz+ 4NINztI/Z}] .j(NINz)

and

kz = 2 [1- (NI- Nz) /{(NI+ Nz )(NI+ Nz + 4NINz)}I/Z]
Now let

t = (u + v ) k -1/Z and L = (u - v ) k -I/ZI I I 1 '2 I I z

Then, one writes

W = k[kl tI' slhl- kz tz/ STIS]

where tl and S are independently distributed as

(3.4)

tl ~ N(8( / Jk;,1:) and tz ~ N(8z / )k;,1:)

Now, by using Theorem (5.2.2) of Anderson (1984,
p-163), we write the classification statistic W as

W= (UINj)-(UzNz) (3.5)

where U I and Uz are independent to V I and Vz,

U I~ glXZp(~D, Uz ~ gzx~(~f) and V I and Vz are
identically distributed as chi-square on (n - p + 1) degrees

of freedom. The constants gj = (nkk), and ~?, i = 1,2
are defined as

gl = (n/4N INz)[N I-Nz+ {(NI+Nz)(N I+Nz+4N INz )} 1/Z]
and

gz= (n/4NINz)[Nz-NI+{(NI+Nz)(NI+Nz+4NINz)}1/z]

~? = (1lki tI8j' L-I 8j' i =1, 2, that is

~IZ= (NINzlkl)[(1-aj- az) (Nj + NztI/Z

+ (1+a -a )(N +N +4N N )
-1/z]z~zI Z I Z I z

~/ = (NIN/kz)[(1-al- az) (NI + NztI/Z
- ( 1+ a -a )(N +N + 4N N )-I/Z]Z~zI Z I Z I Z

and ~z, the Mahalanobis distance between two
multivariate populations, is defined as
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~z = (Ill -l1z)' 1:-1(111-l1z)

The exact distribution ofW (3.5) is difficult to obtain

since V I and Vz are not necessarily same except that they
are identically distributed. Thus V I and Vz are
asymptotically same. So one can assume VI and Vz as
approximatelyequal (say,V) for all valuesof p andderive
the approximate expressions for PMC of SLDF from
misallocated training samples. We examine the validity
of this approximation by comparing with corresponding
results based on simulated samples. These simulated
results may not be correct but provide quite good results
for practical purposes.

So, with the assumption of same denominator in (3.5)
we write W as

W=(UI- U2)N (3.6)

Since V, a chi-square variate, is positive so for
obtaining PMC, W (3.6) is equivalently expressed as

W = UI - Uz (3.7)

The exact distribution ofU I and Uz can be expressed
as linear combination of chi-square probabilities (see
Johnson and Kotz 1970). These expressions would be
computation ally tedious for practical applications. For

simplicity, we assume that U j and Uz are approximately
distributed as ax~ and cXJ respectively, where the
constants a, b, c and d are obtained by using the Patnaik's
two moments approximation (Patnaik 1949) as under

a = Var(UI)/2E(UI), b = 2E2(UI)/ Var(UI)

c = Var(U2)/2E(Uz) and d = 2EZ(Uz)/ Var(U2)

By using the expression for r-th raw moment of a
non-central chi-square variate (Johnson and Kotz 1970)
we obtain that

E(UI) = gj(p + ~D, Var (U I) = 2glZ(p+ 2~f)

E(U2) = gz{p +~), Var (Uz) = 2gf(p + 2~i)

The probability of misclassifying X to ~2' when it
actually belongs to nl' is given by

P(2 11) = P(W ~ 0 Inl)

= P(UI ~ Uzlnl)

= P(ax~ ~ cX~ Inl)

= Iwo(b/2, d/2 ) (3.8)

where, Ix (a, b) is the value of incomplete beta and
wo=c/(a+c).
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Similarly, the expression for X E 1t2can be obtained
as

P(I 12) = peW > 0 11t2)

= P(U 1> U211t2)

= 1 - P(U I::; U211t2)

= 1 - Iwl(b*/2, d*/2 )

= Iw(d*/2, b*/2) (3.9)

By interchanging Ll2j by Ll2i*, i = 1,2 as

Ll1*2= (NIN/kl)[(I- a]- (2) (NI+N2t1/2

+ ( 1+ a -a ) (N +N +4N N )-1/2
]2 Ll21 2 1 2 1 2

Ll2*2 = (N IN/k2)[(I-al- (2) (N]+N2tI/2

- ( 1+ a - a ) (N +N + 4N N )-1/2
]2 Ll21 2 1 2 1 2

where

w = 1- w]

= a*1(a*+ co)

and a*,b*,c*,d* are constants corresponding to the case

when X E 1t2'

4. NUMERICAL RESULTS

Here, we generate N1 + N2 + 2 observations from
two p-variate normal populations, N 1+ 1 from 1t1and
N2+ 1 from 1t2'with certain apriori values of parameters.
The first N 1+ N2' p-variate observations are used to obtain
SLOF. The remaining two observations, one from each
population were used to get numerical value for SLOF
for each group, separately. This process was repeated
1000 times to get PMC for SLOF for each group,

separately, for one fixed set of parameters p, N 1and N2'
These values for PMC are for training samples with no
misallocation. The results corresponding to misallocation
are obtained by interchanging some observations (say,
C) in two training samples, randomly. The corresponding
theoretical values are computed from the formulae
(3.7, 3.8) for necessary comparison with simulated
results.
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Since the PMCs are invariant under linear

transformations, so the numerical results presented in
Tables 1and 2 are obtained for following apriori values

L = I, J.11= (0, 0, ...,0), J.12=(Ll,0, 0,...,0), P = 3,5
Ll2= 1(2)7, N1= N2= 20, N1= 25, N2= 15, al= ClNp
a2 = CIN2,C = 0, 2, 4, 6

The numerical results reveal that the misallocation

in training samples increases PMC. The effect is small
for low levelof misallocation(10%) and serious for high
levelof misallocation(30%)and highcorrelation.Further,
the simulated (S) values of PMC for SLOF agree with
the corresponding theoretical (T) values for small and
moderate values of Mahalanobis distance (Ll2)between
the two multivariate normal populations. This implies
that the derived expressions for PMC give good results
and hence may be used for practical applications when
training samples have misallocated observations.
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Table 1. Probability of misclassitication under equal misal1ocation

Table 2. Probability of misclassitication under unequal misallocation

P /).4 Popula (XI= (X2=.00 (XI= (X2=.10 (XI= =.20 (XI= (X2=.30

-tion T S T S T S T S

3 1 Tel .328 .333 .343 .347 .352 .367 .393 .386

1t2 .328 .347 .343 .352 .352 .392 .393 .406

3 1t1 .212 .195 .210 .207 .220 .230 .254 .282

1t2 .212 .222 .210 .242 .220 .274 .254 .300

5 1t] .140 .138 .141 .151 .150 .182 .168 .232

1t2 .140 .154 .141 .173 .150 .202 .168 .242

7 1t1 .099 .100 .099 .119 .103 .149 .117 .199

1t2 .099 .114 .099 .124 .103 .143 .117 .213

5 1 1t1 .344 .335 .356 .366 .368 .394 .411 .410

1t2 .344 .354 .356 .378 .368 .402 .411 .421

3 1t] .210 .215 .222 .247 .238 .285 .281 .314

1t2 .210 .215 .222 .263 .238 .306 .281 .343

5 7t1 .144 .153 .151 .185 .163 .232 .193 .282

1t2 .144 .149 .151 .189 .163 .252 .193 .296

7 1t1 .102 .114 .105 .141 .112 .193 .140 .255

1t2 .102 .116 .105 .144 .112 .214 .140 .264

P /).2 Popula (Xl= (X2=.00 (Xl= .13, (X2=.08 (XI=.27, (X2=.16 (XI=.40, (X2=.24

-tion T S T S T S T S

3 I 1tj .323 .319 .340 .339 .361 .377 .405 .421

1t2 .340 .371 .350 .361 .362 .365 .408 .422

3 1tj .201 .218 .215 .220 .237 .271 .281 .349

1t2 .207 .229 .206 .232 .209 .251 .251 .312

5 1t1 .137 .138 .152 .155 .170 .209 .218 .304

1t2 .142 .166 .134 .167 .132 .190 .!52 .245

7 1t1 .097 .097 .111 .118 .129 .176 .161 .259

1t2 .102 .121 .091 .120 .086 .144 .102 .208

5 I 1t1 .331 .334 .344 .371 .378 .389 .405 .412

1t2 .362 .375 .372 .387 .396 .415 .436 .475

3 1t, .205 .217 .222 .271 .254 .305 .300 .360

1t2 .221 .253 .224 .276 .236 .293 .288 .383

5 1t, .140 .148 .157 .190 .182 .247 .236 .324

1t2 .149 .183 .146 .193 .150 .228 .193 .313

7 1t] .099 .110 .114 .152 .135 .211 .178 .301

1t2 .107 .127 .098 .153 .101 .189 .130 .292


