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SUMMARY

Approximate expressions for probability of misclassification (PMC) are derived for sample linear
discriminant function (SLDF) when training samples have misallocated observations. The PMC of
SLDF using misallocated training samples is also obtained through simulated samples from two
multivariate ncrinal populations for examining the validity of derived expressions for practical
applications. The numerical results reveal that the misallocation in training samples increases PMC.
The effect is small for low level of misallocation and moderate correlation and serious for high level
of misallocation and high correlation among component variables. Further, the derived expressions
for PMC provide numerical results close to the simulated values for small and moderate values of A?

(Mahalanobis distance).
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1. INTRODUCTION

Fisher’s linear discriminant function is the popular
technique in the field of discriminant analysis. This yields
optimal results in the sense of smallest probability of
misclassification (PMC) when parameters are known.
The performance of Fisher’s linear discriminant function
has been studied by Singh (2001) when parameters are
unknown. The assumptions involved in the construction
of LDF include that the training samples are correctly
classified. Sometimes the training samples may have
misallocated observations. Lachenbruch (1966) has given
large sample expression for PMC when training samples
have misallocated observations. McLachlan (1972)
obtained the asymptotic results for the same model. In
this paper, we derive approximate expressions for PMC
of sample linear discriminant function (SLDF) when
training samples have misallocated observations and
examine its validity for practical applications by using
the simulated samples from multivariate normal
populations.

2. SAMPLE LINEAR DISCRIMINANT
FUNCTION

Consider two p-variate normal populations = , and
7 ,. Suppose that we have a sample x(). (a=1,2,.. .,
N,) from population 7, with distribution N(it,, Z) and a
sample x2, (a =1, 2,...,N,) from population 7, with
distribution N(K,, 2.). These are taken as training

samples to obtain estimates of W, W, and X . The
estimates are defined as

o 1 Nj _ 1 N2

XI:E—ZXS)’ XZ:N—ZX{‘XD for i, and p,,
1 a=1 2 o=l

respectively and

N o e
§= 13 O =X - Xiy]
n

o=l
N> o .
- Z (x'&‘) -X2 )(x(az) -X2)] for X
=1

where n={Ni+*Ny—2)
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The classification statistic is defined as
i = o | - i o o
W=Xs1(X;- X,)- 5 (Xi+ Xo) SUX = Xs)

2.1)

Suppose that some of the observations in two
training samples are misallocated. It is assumed that 0.,
is the proportion of the N, observations in training sample
one that really belong to population 1, and a, is the
proportion of the N, observations in training sample two
that really belong to population 1t,.

Let X.ris the mean of those members correctly

classified as coming from population 7, and )_{I-M is the
mean of those members from 7, incorrectly classified as
member of T, _,, 1= 1, 2. The sum and difference of the
sample means can be expressed as

X, +X,= (I-o WXyr +0y Xom +0l, Xim +(1-0, )Xot

X, -X,= (-0 )XiT + 0y Xam — 0y Xim — (1 - 0ty) X7
The sample covariance matrix is expressed as

o - c xF ~ v v
S=8;+ ?I (Xt = Xam)(Xat = Xom)'

+C]—12(im - X1 )(Xim - X1’ 2.2)

where ¢, = o, (1-0;) N,,i= 1,2 and S; is the true sample
covariance matrix.

Lachenbruch (1966), observing the expressions
(2.1 and 2.2) to be quite difficult to analyse, performed a
series of sampling experiments to study the effects of
misallocation in training samples. His results are not
useful in computing PMC from numerical data. Here,
we develop approximate theoretical expressions for PMC
of SLDF using misallocated training samples in the
following section.

3. PROBABILITY OF MISCLASSIFICATION

The two probabilities of misclassification are defined
as

PQ|1)=P(W<0|Xe =) and
P(1/2)=P(W>0|Xem,) (3.1)

We write W in (2.1) approximately (see, McLachlan
1972) as

W =u's;ivit
where
u = (X; -Xz)

= (1 —al)in +0L122M —a2§|M —(1 —Oﬂz)S‘ZET
e b
v=X—‘2—(X1+X2)

I =5 — —
=X~ 5[(1 — o) X1t + 0y Xam + 0 Xim
+(1-03)X5r]
e N B e
t= l+?1(Xn' - Xom)'ST (Xit = X2m)
gl e o R
+~;]2—(X]M —Xa1)'S7' (Xim — Xa1)

and verify the validity of this approximation through
simulation technique.

Now t- " and S;l is positive definite. Hence, for

obtaining PMC, we express W equivalent to
W= yis'y (3.2)
Suppose X € 7, then
u ~NI( — )1 -0y = 0). (N7 + N3 )Z] and
v ~ N1 =)+ 0y —0y)/2,
(1+END ™ +(@Ny)HE]

Let = ¥ [N\N, / (N;+N,)] u and

=
I

v

1= v [4N|N, /(N,+N, +4N,N,)] v

then

uy ~ N[(y = p2)(1 = 0 = 0N Ny AN +N,)}L E]
Vi~ NIy =)0+ 0 =)

JININ, ANy + N, + 4N|N,)}Z]

W = K[(u; +v;)'ST' (uy +v) — (u; = v;)'S7 (uy = vy)]
(3.3)

where k = (1/8N;N,)[(N;+N,) (N, +N; + 4N|N,)]
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Note that (u,+v,) and (u —v,) are independently normally
distributed (see Moran 1975) as

(uv,) ~N(S,, k,Z) and (u, - v,) ~ N(3, , k,X)

where

8,= (W —M)[{(1- 0y — 0 )N, +Np) ™2}

+{(1+ 0, —0y) (N, + N, +4N,N,) 2} (N)N,)
Ky =2 [1+ (N, = Ny) H{N#N,) (N #N, + 4N)N,)} 12 ]
8,=(1—,)[{(1- o, — a,)/(N + N,) 2}

—{(1 + 0, = 0,))/(N,; + N, + 4N N,)"'2}] m

and
k,= 2 [1-(N,=N,) {(N;+ N, )(N,+ N, + 4N,N,)} 2]
Now let
t, =@, +v) k2 and t, = (u, - v)) k,;1?

Then, one writes

W= klkt,” S7't;—k, t,” S7't,] (34)

where t, and t, are independently distributed as

t, ~ N8, /\/k;,Z) and t, ~N(5,/./k;,Z)

Now, by using Theorem (5.2.2) of Anderson (1984,
p-163). we write the classification statistic W as

W= (U,/V,)-(U,/V,) (3.5)
where U, and U, are independent to V, and V,,
U~ gx3 (AD), U, ~ g,x3(A}) and V, and V, are
identically distributed as chi-square on (n—p + 1) degrees
of freedom. The constants g, = (nkk,), and A, i=1,2
are defined as

g, = (/4N N[N -N,+{(N,+N,)(N,+N,+4N N, )} i
and

g = (AN Np[N;N H{(N N (N, N, 4N N} 2]
A2 =(1/k )18’ 218, i=1,2,thatis
A2 = (N Nk [(1- 04— o) (N, +N,) 12
+(1+ 0, — o) (N + N, + 4N N,) 122 A2
A7 = (N N/K)[(1- 0= ay) (N, + Ny 2
— (1+ o, —o)(N,+N, + 4N N,) 122 A2

and A?, the Mahalanobis distance between two
multivariate populations, is defined as

Az = ('J1 o uz)l z'i(ll] a5 u;)

The exact distribution of W (3.5) is difficult to obtain
since V, and V, are not necessarily same except that they
are identically distributed. Thus V, and V, are
asymptotically same. So one can assume V, and V, as
approximately equal (say, V) for all values of p and derive
the approximate expressions for PMC of SLDF from
misallocated training samples. We examine the validity
of this approximation by comparing with corresponding
results based on simulated samples. These simulated
results may not be correct but provide quite good results
for practical purposes.

So, with the assumption of same denominator in (3.5)
we write W as

W=(U,-U)V (3.6)

Since V, a chi-square variate, is positive so for
obtaining PMC, W (3.6) is equivalently expressed as

w=U,-U, GB.7

The exact distribution of U, and U, can be expressed
as linear combination of chi-square probabilities (see
Johnson and Kotz 1970). These expressions would be
computationally tedious for practical applications. For
simplicity, we assume that U, and U, are approximately
distributed as ay? and cy3 respectively, where the
constants a, b, c and d are obtained by using the Patnaik’s
two moments approximation (Patnaik 1949) as under

a= Var(U,)/2E(U,), b=2E*(U,)/ Var(U,)
¢ = Var(U,)/2E(U,) and d = 2E*(U,)/ Var(U,)
By using the expression for r-th raw moment of a

non-central chi-square variate (Johnson and Kotz 1970)
we obtain that

E(U,) = g,(p+ A?), Var (U)) =2gX(p +2A3)
E(Uy) = gy(p +A3). Var (Uy) = 2g3(p + 2A9)
The probability of misclassifying X to A,, when it
actually belongs to 7, is given by
P2|1) =P(W<0|m)
=PU,sU,|x,)
= Pax}<cxjlm)
=1 (b/2,d2) (3.8)

WO

where, I_(a, b) is the value of incomplete beta and
wo =c/(a+c).
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Similarly, the expression for X € 1, can be obtained
as

P(1[2)=P(W>0][m,)

=P(U,> U, | )

=1-P(U,<U, | )

=112, d'2)

=1,(d"72,b2) (3.9)
By interchanging A%, by A%, ,i=1,2 as
A]*z =(N,N/k)[(1- o~ 0,) (1'\]1‘f’T\]2)"]‘f2

+ (1+ o= o)) (N, N, +4N N, 12)2 A?

Af_;*z = (N1N2"'{k3)[(1_0‘~]h (12) (N]*'Ng)_m
— (1+ o, — ) (N, #N, + 4N, N,)12]2 A2
where
Rl
= a'/(a"+c)

anda’, b*,c", d” are constants corresponding to the case
when X € T,.

4. NUMERICAL RESULTS

liere, we generate N, + N, + 2 observations from
two p-variate normal populations, N, + 1 from &, and
N,+1 from 7, with certain apriori values of parameters.
The first N TN, p-variate observations are used to obtain
SLDF. The remaining two observations, one from each
population were used to get numerical value for SLDF
for each group, separately. This process was repeated
1000 times to get PMC for SLDF for each group,
separately, for one fixed set of parameters p, N, and N,.
These values for PMC are for training samples with no
misallocation. The results corresponding to misallocation
are obtained by interchanging some observations (say,
C) in two training samples, randomly. The corresponding
theoretical values are computed from the formulae
(3.7, 3.8) for necessary comparison with simulated
results.

Since the PMCs are invariant under linear
transformations, so the numerical results presented in
Tables 1 and 2 are obtained for following apriori values

% TP ) T O W ) e
A2 = 1(2)7, N, =N, =20, N, =25, N, = 15, 0= C/N;
6-CIN, €82 46

The numerical results reveal that the misallocation
in training samples increases PMC. The effect is small
for low level of misallocation (10%) and serious for high
level of misallocation (30%) and high correlation. Further,
the simulated (S) values of PMC for SLDF agree with
the corresponding theoretical (T) values for small and
moderate values of Mahalanobis distance (A?) between
the two multivariate normal populations. This implies
that the derived expressions for PMC give good results
and hence may be used for practical applications when
training samples have misallocated observations.
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Table 1. Probability of misclassification under equal misallocation

p | A Popula | o, =a, =.00 & —o,=10 o, = a,=20 o = 0, =30
-tion ] S T S T S il S
3 1 T, 328 333 343 347 352 367 393 386
n, 328 347 343 352 352 392 393 406
2 T, 212 .195 210 207 220 230 254 282
T, 212 222 210 242 220 274 254 300
5 m, 140 .138 141 151 150 182 .168 232
T, .140 154 141 R o 150 202 168 242
7 T, .099 .100 .099 119 103 .149 o i .199
T, .099 114 .099 124 103 143 A17 213
5 1 TE; 344 335 356 .366 368 394 411 410
T, 344 354 356 378 368 402 411 421
) T, 210 215 222 247 238 285 281 314
T, 210 215 222 263 238 306 281 343
5 T, 144 153 151 185 163 232 193 282
T, 144 149 151 .189 163 222 .193 296
7 rc; 102 114 .105 141 12 193 140 255
T, 102 116 .105 144 A12 214 140 264
Table 2. Probability of misclassification under unequal misallocation
p | A? Popula | o, =0, =.00 o, =.13, 0, =08 a, =27, 0, =16 | «, =40, 0, =24
-tion i S E S iR 2 ik 5
3 1 , 323 319 340 339 361 il 405 421
T, 340 371 350 361 362 363 408 422
3 T, 201 218 215 220 237 271 .281 .349
T, 207 229 206 232 .209 251 251 312
5 T, A3 138 152 155 170 209 218 304
T, 142 .166 134 167 132 .190 152 245
7 m, .097 .097 A11 118 129 176 161 239
T, 102 21 .091 120 .086 .144 102 208
5 1 T, 331 334 344 371 378 389 405 412
m, 362 375 372 387 396 415 436 475
3 T, |.205 217 222 271 254 S0eigese o 300 - 360
, 221 253 224 276 236 .293 288 383
5 T, 140 .148 157 195 182 247 236 324
T, .149 183 146 .193 150 228 193 313
7 T, .099 10 114 2152 135 211 178 301
107 A27 .098 153 101 .189 130 292




