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SUMMARY

Since the Pearson’s linear correlation coefficient is not a complete and accurate description of
dependence structure between variables even when there exists a straight-line relationship between
them, copula as an alternative dependence measure is described. Copulas allow modelling linear and
non-linear dependence using any choice of marginal distributions. Since many families of copulas are
known, copula based approach provides flexibility in modelling and simulating the data. We have
illustrated how to compute copula functions and use them to simulate data by considering a clinical trial
of epileptic patients suffering from simple or complex partial seizures. A comparison with the correlation
based analysis has indicated that the suggested copula based methodology is more appropriate and is
capable of modelling the skewed behavior of measurements which correlation model fails to do.
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1. INTRODUCTION

Clinical data may arise primarily from a prospective,
retrospective, case-control, clinical or longitudinal study.
A particular study may result from a sequence of
experiments, each one leading to the next. Possible
studies may range from small laboratory experiments to
the large and expensive experiments involving humans,
to observational studies. Statistical methodologies are
helpful in placing interpretations and inferences in their
proper context. Appreciation of statistical methodology
often leads to the design of study with increased precision
and consequently a smaller sample size. Most biomedical
or clinical data are multivariate (multifactor). In the
multivariate situation, in addition to describing the
frequency with which each value of each variable occurs,
it is also of interest to study the association and
relationship among the risk factors. Pearson’s correlation
coefficient, non parametric correlations like Kendall’s
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and Spearman’s rank correlations and multiple
regressions are often applied to study the association
and relationship. Embrechts ez al. (1999) have critically
examined that the Pearson’s correlation and hence the
methodologies based on this measure do not possess the
desired properties of a good dependence measure. In
particular, this measure fails to describe the tail-end
(skewed) behavior of data or the extreme endpoints. In
most survival and clinical studies, data distributions are
fat-tailed and non-elliptical and thus the usual analyses
based on the Pearson’s correlation are not appropriate.
There are number of ways to discuss and to measure
dependence between random variables. Jogdeo (1982)
states: “Dependence relation between random variables
is one of the most widely studied subject in probability
and statistics. The nature of the dependence can take a
variety of forms and unless some specific assumptions
are made about the dependence, no meaningful statistical
model can be contemplated.”

To study the dependence structure, Sklar (1959)
used copula to describe functions which join together
one-dimensional distribution functions to form multivariate
distribution functions. Copulas, however, are a recent
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phenomenon. There is no entry in the nine volumes of
the encyclopedia of statistical sciences or in the
supplement volume. The first update volume published
in 1997 does show an entry (Fisher 1997). Only eleven
papers mention copulas in the first eighteen volumes
(1975-92) of the current index to statistics (CIS) and
twenty references in the four recent volumes (1993-96).
During 1995-2000, the search of copula in CIS has
resulted in 61 hits, 17 being in year 2000 only. It may,
however, be noted that the search in CIS does not extend
to the working/discussion papers and unpublished
research material which are often found in the
homepages of researchers. The earliest paper explicitly
relating copulas to the study of dependence among
random variables is due to Schweizer and Wolff (1981).
Copulas appear implicitly in earlier works on dependence,
foremost being Hoeffding (1940, 1941). Deheuvels (1979,
1981 a, b, c) used empirical dependence functions
(empirical copulas) to estimate the population copula and
to construct various nonparametric tests of
independence. A large and growing statistical literature
. on copulas have developed over the past few years
[Nelsen (1995, 1999), Fisher (1997), Genest (1987),
Schweizer and Sklar (1961), Schweizer (1991),
Schweizer and Wolff (1981), Whitt (1976)]. Copulas are
of interest to statisticians for two main reasons: Firstly,
as a way of studying scale-free measures of dependence;
and secondly as a starting point for constructing families
of bivariate distributions with a view to simulation (Fisher
1997). Zheng and Klein (1995) proposed a copula-graphic
estimator where the dependence between lifetime and
censoring variable is described by copula. Rivest and
Wells (2001) derived an explicit form for this estimator
of the copula as Archimedean. Recently, Kumar and
Shoukri (2007 a, b) have shown the advantages of copula
based methodology in analyzing the correlated data and
Herath and Kumar (2007) discussed the new research
directions in engineering economics based on modeling
dependence with copulas.

In this paper, we describe copula functions as a
means of modelling the dependence measure and illustrate
their applications in the analysis of clinical studies by
simulating multivariate data. Section 2 describes
shortcomings of correlation coefficient as dependence
measure, desirable properties of the dependence
measures and some parametric and non-parametric
dependence measures. Copula functions and the
Archimedean copulas are discussed in Section 3. In

Section 4, we present an epilepsy trial and analyze
patients’ seizures data using the copula based
methodology. Concluding remarks follow in Section 5.

2. DEPENDENCE MEASURES AND
PROPERTIES

Let for two real-valued, non-degenerate random
variables X and Y with finite variances o-f( and 03 and
marginal distributions F(x) and G(y) their joint behavior
is described by the joint distribution H (x, y) =P(X <x,
Y <y). Linear correlation or simply correlation (r)
between X and Y is only one particular measure of
stochastic dependence among many dependence
measures. It is the canonical measure in the world of
multivariate normal distributions, and for spherical and
elliptical distributions. Pitfalls and fallacies associated with
correlation arise from the naive assumption that
dependence properties of the elliptical world also hold in
the non-elliptical world. An excellent paper by Embrechts
et al. (1999) highlights problems of correlation and
discusses alternative dependence measures and
simulation algorithms avoiding correlation shortcomings.
Correlation is favored by practitioners since for many
bivariate distributions it is simple to calculate variances
and covariance and hence the correlation coefficient.
The generalization of correlation to more than two random
variables is straightforward. Correlation and covariance
are easy to manipulate under linear operations. However,
the shortcomings of correlation are: Variances of X and
Y must be finite else the linear correlation is not defined.
Independence of two random variables implies they are
uncorrelated (linear correlation equal to zero) but zero
correlation does not in general imply independence. It is
not invariant under nonlinear strictly increasing
transformations. Non-parametric correlations often used
are the Spearman’s rank correlation p and Kendall’s rank
correlation 1. The rank correlation p is defined as
r(F(x), G(y)) where r is the Pearson’s correlation. Let
(X}, Y ) and (X,, Y,) be two independent pairs of random
variables from joint distribution of X and Y, then the
Kendall’s rank correlation

T=P[(X; = X,))(Y, - Y,) > 0]
= PI(X; = X)(Y, -Y,) <0]

Both p and t measure the degree of monotonic
dependence of X and Y, whereas linear correlation r
measures the degree of linear dependence only.
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We now describe the desired properties of
dependence measures. A measure of dependence, like
linear correlation, summarizes the dependence structure
of two random variables in a single number. Let d(.,.) be
a dependence measure which assigns a real number to
any pair of real-valued random variables X and Y. Then
ideally, we desire a dependence measure to fulfill the
following properties :

P1. Symmetry: d(X,Y)=d(Y, X)
P2. Normalization: —1<d(X,Y)<+1

P3. (i) d(X,Y)= +1& X,Y comonotonic
(i1) d(X,Y) =-1< X,Y countermonotonic

P4. Foratransformation T:9% — 9% strictly monotonic
on the range of X
() A(T(X),Y)=d(X,Y), if T increasing
(i) d(T(X),Y)=-d(X,Y), if T decreasing
These properties could be altered or extended in
various ways (Hutchinson and Lai 1990, Chapter 11).
Another property we might desire is:

PS. d(X.Y)= 0« X,Yare independent

Unfortunately, this contradicts property P4. There
is no dependence measure satisfying P4 and P5. If we
require P5, then we can consider dependence measures
with the amended properties:

2. 0<d(XY)<1
P3b. d(X.,Y)= 1< X,Y comonotonic

P4b. Fora T::R — R strictly monotonic
d(T(X),Y)=d(X.Y)

Linear correlation (r) fulfills properties P1 and P2
only. Both rank correlations p and t have the properties
P1, P2, P3 and P4. As far as P5 is concerned, the
spherical distributions provide examples where pairwise
rank correlations are ‘zero, despite the presence of
dependence (Embrechts ef al. 1999).

A measure which satisfies all of P1, P2b, P3b, P4b
and P5 (with the exception of the implication
diX, Y) =1 & X, Y comonotonic) is monotone

correlation, d(X,Y)=supr[f(X), g(Y)], where r
f

b

represents linear correlation and the supreme is taken

over all monotonic functions f and g such that

0< 0,2(, 0‘3 < oo (Kimeldorf and Sampson 1989). The

disadvantage of all these measures is that they are
constrained to give nonnegative values and as such
cannot differentiate between positive and negative
dependence. It is often not clear how to estimate them.
An overview of dependence measures and their statistical
estimation is given by Tjostheim (1996). Schweizer and
Wolff (1981) used distance criterion for measuring
dependence and proposed

d;(X.Y)=12 [ Jy | C(u,v)~uv) | du dv 2.1)
dy (X, Y)= (90 [; Ji |C((u, v) = uv) [ du dv)"*(2.2)

d; (X, Y)=4 sup [C(u,v)—uv| (23)

u,v € [O.I]

where C(u, v) is the joint distribution function of F(x)
and G(y) called the copula of random variables X and Y
or the bivariate distribution H(x, y) . Next section is
devoted to further discussions of copula functions.
Copulas are the measures that satisfy amended set of
properties including PS5 but are constrained to give non-
negative measurements and as such cannot differentiate
between positive and negative dependence. A further
disadvantage of these measures is statistical. Whereas
statistical estimation of p and t from data is
straightforward [Gibbons (1988) for the estimators and
Tjostheim (1996) for asymptotic estimation theory] it is
much less clear how we estimate measures like d,(X,Y),
dy(X,Y), d3(X,Y). The following theorem summarizes
the properties of p and 1 (Embrecht ef al. 1999).

Theorem 2.1. Let X and Y be random variables with
continuous distributions F(x) and G(y), joint distribution
H(x, y) and copula C(u,v) which is the joint distribution
function of F(x) and G(y) where U, V~Uniform (0, 1)
then the following hold

0 p(X, Y)=p(Y, X), ©(X, Y)=1(Y, X)
(i) If X and Y are independent
p(X, Y)=1(X, Y)=0

i) —1<p(X, Y).7(X, Y)<+1
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(v) p=12 j; j; [C(u,v)—u,v] du dv

W t=4] [ Cuv)dCuv)-1

(vi) For T:R—R strictly monotonic on the range of
X, both p and 7 satisfy P4.

i) p(X,Y)=1(X,Y)=1
&C (xy)=PU=x,1-U=y)

& Y =T(X) as. with T increasing

(vii)) p(X,Y)=1(X,Y)=-1

a

@Cu(x,y) =P(U=x,U=y)

&Y =T(X) as. with T decreasing

The lower bound C|(.,.) and upper bound Cy(.,.)
are bivariate distribution functions of the vectors
(U, 1-U) and (U, U), where U~Uniform (0,1). C(...)
and Cyy(.,.) describe perfect positive and perfect negative
dependence respectively. These bounds are well known
as the Fréchet (1951)-Hoeffding (1940, 1941) copula
boundaries are as follows.

Minimum copula: The lower bound for all copulas. In
the bivariate case, it represents perfect negative
dependence and is

Cp (u,v)=max(0,u+v-1) 2.4)

Maximum copula: This is the upper bound for all
copulas. It represents perfect positive dependence and
is

Cy (u,v) =min(u,v) 2.5)

For all copulas C(u, v)
max(0,u+v-1) < C(u,v) < min(u,v) (2.6)

3. COPULA FUNCTIONS

Copulas are functions that join or couple multivariate
distribution functions to their one-dimensional marginal
distribution functions. Alternatively, copulas are

multivariate distributions whose one-dimensional margins -

are uniform on the interval [0, 1]. For two random

variables X and Y with respective marginal distributions
F(x) and G(y), their joint behavior is described by joint
distribution H(x,y). Then, the joint distribution for every

(u, v) €[0,1]* can be expressed by copula function as
C(u,v) = P[F(x) <u,G(y)< v]

=P(X<F'(u),Y<G™(v))

=H[F (u),6™(v)] G.1)

where F‘](u) and G_l(v) are the quantile functions.
Some copula properties:

() C(u,0)=C(0,v)=0
(i) C(u,1)=C(1,v)=v

If F(x) and G(y) are continuous then C(u, v) is
unique. An important feature of copulas is that any choice
of marginal distributions can be used. Hence, copulas
are constructed based on the assumption that marginal
distribution functions are known. The two standard non-
parametric rank correlations, Kendall’s T and
Spearman’s p are expressed in copula form as

t=4 [[ C(u,v) dC(u,v)-1
2

: (3.2)

p=12 [] C(u,v) du dv-3
2

: (3.3)

The explicit expressions for t and p for
Archimedean copulas considered in this paper are
presented in Subsection 3.3.

3.1 How to Construct Copula Functions?

There are several methods of constructing copulas
or specifying families of copulas. We consider the
following:

3.1.1 Inversion method

This method for constructing bivariate copula is
based on the Sklar (1959) theorem to construct copulas
directly from the joint distribution functions. To illustrate
the construction, we adapt an example from Nelsen
(1999). Let X and Y be random variables with joint
distribution function
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GHED (yyell, (0]
x+2e’ —1

H(X:y)Z‘ 1 —-e_y (X,y)e(l, oo])([o’oo]
0 elsewhere

34

The marginal distribution functions F(x) and G(y)
are given by

0 x<-1
x+1
F(x)= 5 xe[-1, 1] 3.5)
1 x>1
_ 0 y<0
G(y)= {1 —eY y20 (3.6)

x+1 = .
Let u= —2—— andv=1-e y, then the inverse of

Fand Gare F (u)=2u—1and G (v) =—In(1 —v) for
u, v € [0, 1]. The copula function C(u, v) is
Clu,v)=HEF (@),67 (V) =——— 3.7)
u+v-uyv
In the inversion method one has to know the joint
density function. See Nelsen (1999) and Frees and Valdez
(1998) for other limitations.

3.1.2 Archimedean approach

Archimedean approach is a general method of
constructing both bivariate and multivariate copulas.
These copulas are called Archimedean copulas and arise
from mathematical theory of associativity. Archimedean
copulas are an important class of copulas which are
easier to construct. They possess nice properties and
many known copula families belong to this class (Nelson
1999).

Let @ be a continuous decreasing function from

1=[0,1] to [0,0] such that ¢(1)=0 and ¢~ its
inverse given by

-1 _ =1 t
¢ (t)_{q) O( )

Then the function

0<t< o0
<p(0)t 2 g(l (-8)

C (u,v)=¢ ' (@(u)+ (V) (3.9

for u,ve [O,l] is a copula. A copula of the form (3.9) |

is called an Archimedean copula. The function @ is called
a generator of the copula C(u, v). In order to construct
Archimedean copulas using Equation (3.9) we need to
find functions which serve as generators, i.e., continuous

decreasing functions from 1 to [0,e] such that ¢ (1) =0.

Different choices of generator function give different
families of copulas. To illustrate this method, we use the
same example as considered above. Consider the

generator function as (p(t):]—_i. Then the inverse
t

- 1 . .
function is @ 1(t) = rEh Substituting in equation (3.9),

we have Archimedean copula

C (u,v) = ¢ (9(u) + (V)

I (B
g+ —H = = (3.10)

u v u—uv+yv

3.1.3 Compound method

The Marshall and Olkin (1988) suggested the
method for construction of copulas which involves the

Laplace transform and its inverse function. Let y(t)
denote the Laplace transform of a positive random
variable Y then

VO =E, )= [ dE,(©) G
0

where F,(8) is the distribution function of y. Notice

that y(—t) is the moment generating function of F,.

Let X and Y be random variables whose conditional

distributions given positive latent variables Yx and Yy
are specified by H,(x|y,)=H, (x)YX and

Hy(ylyy)=Hy(y)Yy where H, and H, are baseline

distribution functions. Consider a bivariate distribution
function of the form

H(x,y) = E[K(Hy, (0", Hy (5)")]

where K(.,.) is a distribution function with uniform

(3.12)

marginals and the expectation is over Yx and Yy.Asa
special case consider both the latent variables equal i.e.
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Yx =7y =7 and use distribution functions corresponding

to independent marginals. Marshall and Olkin (1988)
showed that

Hx, y) = E[(H ()" Hy (y) )]
E[(H, (). Hy (1)")]

vy F)+y TGy (3.13)

where F(.) and G(.) are marginal distribution functions

and W(.) is the Laplace transform of y. We consider
an example (Marshall and Olkin 1988 and Joe 1993) in
which convex sums lead to copulas constructed from
Laplace transforms of distribution functions. Let H(u, v)
be a convex sum (or mixture) of powers of distribution
function. Set

H(u, V) = TF"(u) G%(v) dA(®)

(3.14)
0

and assume that A(®)=0. Further let

F(u)=exp[-¢~'(u)] and G(v)=exp[-¢~'(v)]. Then
from (3.13)

H(u, v) = | exp[-8(¢™" (1) + ¢! (v)dA(®)
0

= glo”'(W+97 (V)] (.15)

Thus H(u,v) is a copula C(u,v). Notice that the
right hand side represents the broader class of
Archimedean copulas. Laplace transform of a distribution
function ¥ have well defined inverse functions. As seen

from (3.9) and (3.14) the inverse function (p_1 (u) serves
as a generator for Archimedean copulas.

Once the copulas are known then as a consequence
of Sklar (1959) theorem, we obtain bivariate or
multivariate distributions with whatever marginal
distributions we want. This is an elegant property that
can be exploited. There are several ways to generate
observations (x, y) of a pair of random variables (X,Y)
whose joint distribution function is H(x, y). Copulas,
however, express the non-parametric nature of
dependence between two random variables and as such
are a powerful tool for modelling dependencies among
random variables.

3.2 Archimedean Copulas

We consider three one parameter (9 ) Archimedean
copulas namely Frank copula (1979), Clayton copula
(1978) and Gumbel copula (1960). Nelsen (1999, p.
94-97) tabulates one parameter families of the
Archimedean copulas. Archimedean copulas are easy
to apply and have nice properties. The parameter 8 in
each case measures the degree of dependence and
controls the association between the two variables.
When 6 — 0 , there is no dependence and if 6 — oo,
there is perfect dependence. Schweizer and Wolff (1981)
showed that the dependence parameter 6 which
characterizes each family of Archimedean copulas can
be related to Kendall’s T . This property can be used to
empirically determine the applicable copula form.

3.2.1 Frank copula
(a) Generator

-0t _

e
(t)=-1In
¢ e =1
(b) Bivariate Copula
-6u _ -Bv _
& e —in| 14+ &€ =D
0 e ®—1

(c) Laplace Transform
o)=0"'(t)=0" ln[l +el(e® - 1)]
(d)Kendall’s ©
4
; :1—5[1—1)1(9)]

where D, (x) is the Debye function for any positive integer
k

dt

X
k, givenby D, (x) = | :
oe —1

3.2.2 Clayton copula

~ (a) Generator

¢ ()=1t"-1
(b) Bivariate Copula

C (u,v)= (u_e 8 —1) %
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(c) Laplace Transform

1
o= ()=(01-1) ®
(d)Kendall’s T

0

T =
6+2
3.2.3 Gumbel copula
(a) Generator

¢ (= (-In(1))°
(b) Bivariate Copula

. L
C(u,v)= exp{—[(— In u)9 +(=In v)e]e }

(c) Laplace Transform

o) =07 (t)=exp(-t""?)

(d) Kendall’s T

0-1
T =—
0

3.3 Normal Copula

Normal (Gaussian) copula is constructed from the
bivariate normal distribution using the Sklar's theorem.
For the random variables X and Y which are distributed
as standard bivariate normal with correlation r, the normal
copula function is

C (uv)=@ (@7 (u),@7 (v)) (3.16)

where the marginals U and V are N(0,1) distributions

and @ denotes the cumulative normal probability
distribution.

3.4 Choosing Right Copula

The first step in modelling and simulation is
identifying the appropriate copula form. The procedure
(Genest and Rivest 1993) involves verifying how close

different copulas fit the data by comparing the closeness
of the copula with the empirical copula. The steps follow

Step 1: Estimate the Kendall’s T from the data by

Step 2: Construct an empirical copula function as
follows

(i) Determine the pseudo observations

T, = {Number of (x; <x;) such that x; <x;

and y;<y;}/(n—1)

(it) The empirical copula

K (t)=proportionof T;'s<t, 0<t<l1

Step 3: Construct the Archimedean copula function

O(t
Kc(t):t—ip,-(-—l, where @'(t) is the first

¢ (1)
derivative of @(t).

In order to select the Archimedean copula which
best fits the application data, we choose that copula which
minimizes the non-parametric distance measure

DM := J[Kc (1) - Kg (D] dK g (1) (3.17)

We derive the expressions of for the above described
three Archimedean copulas in Table 1.

Table 1. Archimedean copula functions

Copula Kc(®)
(-6 1)1
6 t—[1-exp(® t)]ln{eXAp____u
Frank P exp(—0)
0
48
Clayton t_(lie__t__l
0
Gumbel &;lnt)
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3.4 Tail-Dependence and Copula Functions

Tail-Dependence refers to the degree of
dependence in the corner of the lower-left quadrant or
upper-right quadrant of a bivariate distribution. It
describes the limiting proportion that one margin exceeds
acertain threshold given that the other margin has already
exceeded that threshold. For two random variables X
and Y with marginal distributions F(x) and F(y), the upper
tail-dependence is defined as

A

wpper =M PIY 2R () IX 2K ()] (3.18)

and the lower tail dependence
Mowez = lim Pr(Y < F'IX<K' @] ((3.19)
u—>

. .. . =l ; e gl
provided limit exists where F  (.) is the inverse distribution
function and U is a uniform random variable defined over

(0,1). A distribution is upper tail dependent if A,per >0

and upper tail independent if Aypper = 0. Similarly we

interpret A, ... -

The following representation shows that tail
dependence is a copula property. An equivalent definition
(for continuous random variables) of tail dependence in
terms of a bivariate copula function C(u, v) is

70

;\' = hmM 3 70
s 1-u (3:20)
and
. C(u,u)
Mower = ulg)no u (3.21)

4. ILLUSTRATION: EPILEPSY TRIAL

For illustration we consider data from a clinical trial
of 59 epileptics (Leppik et al. 1985). Patients suffering
from simple or complex partial seizures were randomized
to receive either the anti-epileptic drug progabide or a
placebo as an adjuvant to standard chemotherapy. At
each of the four successive post randomization clinic
visits, the number of seizures occurring over the previous
two weeks was recorded. Each patient subsequently was
crossed over to the other treatment. For the purpose of
illustration, we analyze data on 30 patients from the
treatment group only. Let the random variable X denote
the number of seizures during base period and Y the
number of seizures end of the treatment. We apply the
copula simulation to generate data sets and obtain the
confidence intervals for difference in mean number of
pre- and post- treatment seizures to conclude that the
treatment was effective in reducing the number of
seizures. The data and summary statistics are given in

60
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Post Treatment Seizures

20 -
L4 *

*
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ormpo’:’ 8
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T T T |
80 100 120 140 160
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Fig 1. Scatter plot of pre-and post-treatment seizures from 30 patients
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Table 2. Data on the number of pre (X)- and post (Y)-
treatment seizures and summary statistics

Patient Pre-treatment (X) | Post-Treatment (Y)
1 76 8
2 38 4
3 19 0
Bl 10 3
5 19 4
6 24 3
7 3] 16
8 14 4
9 11 4
10 67 7
11 41 5
12 7 0
13 22 0
14 13 3
15 46 15
16 36 8
17 38 7
18 7 3
19 36 8
20 11 0
21 22 4
22 41 7
23 32 5
24 56 13
25 24 0
26 16 3
27 22 8
28 25 1
29 13 0
30 12 2
Mean 27.63 4.83
Standard Error 3.17 0.78
Skewness 1.15 1.15
Standard Error 0.43 043
Kurtosis 1.11 1.00
Standard Error 0.83 0.83
Pearson Correlation 0.616
p-value 0.0001
Kendall Rank 0.495
Correlatidn
p-value 0.0001

Table 2. A scatter plot of the pre- and post-treatment
seizure counts is shown in Fig. 1. The descriptive analysis
in Table 2 indicates that the distributions of both the pre-
and post-treatment seizures are not symmetrical
(skewness coefficients being 1.147 and 1.107,
respectively), cluster more and have longer tails (kurtosis
coefficients being 1.108 and 1.402, respectively). From

Lognormal P-P Plot of X

1.0

o o o
S D [0}
1 1 L

Expected Cum Prob

ot
N
1
o
o

0.0

| I 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Observed Cum Prob
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Fig. 2. Probability plots of pre (X)-and
post (Y)-treatment seizures
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the probability plots of X and Y in Fig. 2, we estimate
that X ~ lognormal (22.88, 0.637) and Y ~ exponential
(0.207). The conventional measure of dependence
between X and Y, the correlation coefficient r = 0.616
(p < 0.0001) and non-parametric Kendall’s rank
correlation 1= 0.495 (p < 0.0001). For making
comparisons, we assume that the distributions X and Y
are normal. The estimates (M.) and 95% confidence
intervals (CI) of mean of X and Y and their difference
are

M, = 4.83

(p <0.0001; 95%CI = 21.14, 37.12)
(p<0.0001; 95%CI = 3.23, 6.43)
D : =My _y =22.8(p<0.0001; 95%CI = 16.14, 29.45)

4.1 Choosing the Best Copula

Three copulas of the Archimedean family, Gumbel,
Clayton and Frank copulas, and empirical copula are
estimated from the data. The estimated copula parameters
are given in Table 3 and copulas are plotted in Fig. 3.
The non  parametric distance  measure

Table 3. Estimated copula parameters and distance measure

Gumbel | Clayton| Frank

T 0495 04950 |0495

0 19957 |1.6924 |5.0276

DM = [[Ko()-Ke(@['dKg() | 0143 0233 [0.150

—a— Empirical --m— Gumbel

—&— Clayton —>— Frank

T T T

T T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u

Fig. 3. Which copula is the right one?

DM = [[Kc(t) - K5 ()]’dKg (1) for the Gumbel,
Clayton and Frank copulas are respectively 0.143, 0.233
and 0.150. According to the minimum distance criterion
for choosing the copula, we find that the minimum
distance 0.143 is for the Gumbel copula implying that
the Gumbel copula is the best fit to the given data.

4.2 Tail Dependence

We use the Gumbel and normal copulas to study
tail dependence. It is seen from Fig. 4a that when

u — 0, the lower tail dependence tends to zero for both

— normal and Gumbel copulas. When u —1, Fig. 4b
shows that the upper tail dependence for the normal
copula tends to zero, however, it remains almost constant
for the Gumbel copula.

The tail dependence analysis thus indicates that the
Gumbel copula have upper tail dependence but does not
have the lower tail dependence whereas the normal
copula have neither. Therefore, the conventional statistical

0.3

Lower Tail Dependence —— Normal

0.25 —— Gumbel

0.2+

0.15

Lambda

0.1+

0.05 4

u—>0

Fig. 4a. Lower Tail Dependence ) \ower

Upper Tail Dependence

——Normal

0.3 —— Gumbel
0.2 \
0.1

u—>1

Fig. 4b. Upper Tail Dependence Kupper
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analysis based on the normality assumption and
correlation as the measure of dependence is not
appropriate. A Gumbel copula based analysis which
models the tail dependence as well, is a right choice for
the analysis.

Further, a question may occur whether one needs
to carry out exercise, as done in Subsections 4.1 and
4.2, every time one has a data set and then decide on
which copula to choose? Or, there is a better way? As
an answer, it may be noted that one doesn’t need to
carry out calculations as done in both Subsections 4.1
and 4.2 to decide on which copula is appropriate for a
given data set. What is required is to calculate distance
measure DM for copulas and then to select one which
has the minimum value of DM, as shown in Subsection
4.1. Calculations of measures of tail dependence in
Subsection 4.2 additionally give an insight into the
direction of dependence whether dependence is in right
or left tail. There is no other better quantitative way right
now to choose the best copula. This is a point worth
further investigation.

4.3 Simulation

We carry out 50 and 100 Monte Carlo simulations
of size 30, 50 and 75 using the Gumbel copula with the
estimated marginal distributions X ~ lognormal
(22.88,0.637) and Y ~ exponential (0.207). The VBA
codes (Melchiori 2003) are used for executing the
algorithm. The point and interval estimates of mean and
of difference in mean numbers of the pre-and post-
treatment seizures are presented in Table 4. The following
indicative conclusions from the results may be noted:

(1) The null hypothesis of no difference, i.e.

H, :D=My_y =0, is rejected on the basis of

all the estimated confidence intervals.

(i) For fixed sample size, increase in the number of
simulations affects no significant changes in the
point and interval estimates and consequently
the width of the confidence intervals. Therefore,
we report results from 50 and 100 simulations
only.

(iii) For fixed number of simulations, increase in
sample size (n =30, 50, 75) like (ii) above brings
no significant changes in the estimates.

(iv) Thus, there is strong evidence that the
anti-epileptic drug progabide has been effective
in reducing the number of seizures in the
epileptic patients.

[t is interesting to note that the copula based analysis
performed better than the correlation based analysis since
the width of the confidence intervals from copula
simulation was smaller than the width of the confidence
interval from the conventional method. Another
noteworthy observation is that it is not necessary to carry
out a large number of simulations when using the copula
based methodology. Since the estimates are consistent
and not affected by the sample size, copula based
simulation provides a robust alternative for the analysis.

5. CONCLUDING REMARKS

We have emphasized that in modelling dependency,
the Pearson’s linear correlation coefficient is not a
complete and accurate description of dependence
structure between variables even when there exists a
straight-line relationship between them. An alternative
is to model the dependence structure using copulas that
overcome the limitations of correlation. Copulas allow
modelling linear and non-linear dependence. Using
copulas any choice of marginal distribution functions can
be used and extreme endpoints can be modeled too. We
have illustrated how to compute copula functions and
simulate data using a clinical trial of epileptic patients
suffering from simple or complex partial seizures. A
comparison with the conventional correlation based
analysis has indicated that the suggested copula based
methodology is more appropriate and is capable to capture
and model the skewed behavior of the measurements
which correlation model fails to do. Since many families
of copulas are known to exist in literature, copula based
approach provides flexibility in modelling various
categories of clinical studies and simulating the data. In
clinical trials and experiments, sample size is often an
important consideration and is relatively small for scarce
experimental units. Copula based analysis overcomes this
limitation as well, because as described above, simulation
algorithm can be applied to replicate any number of
patients data. The copula simulation methodology
discussed in this paper is simple and easy to implement
in any computing environment.
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Table 4. Point estimates and the 95% confidence intervals of mean number of pre (X)- and

post(Y)- treatment seizures and of mean difference

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Sample Size 30 75 30 50 5]
Simulations 50 50 100 100 100
My
Mean 2949 2947 29.59 29.52 29.62 29.63
Standard Deviation 6.74 6.68 6.84 6.78 6.86 7.00
95% Lower Confidence Limit 2922 2921 2932 2938 2948 2949
95% Upper Confidence Limit 29.76 29.74 29.86 29.65 29.76 29.77
Width of Confidence Interval 0.54 0.53 0.54 027 028 028
My
Mean 528 521 527 524 5.18 525
Standard Deviation 2.19 205 222 2.15 205 2.18
95% Lower Confidence Limit 5.19 5.12 5.18 520 5.14 521
95% Upper Confidence Limit 537 529 536 528 522 530
Width of Confidence Interval 0.18 0.17 0.18 0.08 0.08 0.09
My.y
Mean 24.18 2273 2432 2426 23.67 2438
Standard Deviation 824 9.15 832 822 878 844
95% Lower Confidence Limit 21.18 20.23 2242 2131 2125 2245
95% Upper Confidence Limit 27.19 2523 2622 2721 26.08 26.31
Width of Confidence Interval 6.01 5.00 3.80 590 483 3.86
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