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Optimal Asymmetric Fractional Factorial Plans using Finite Projective Geometry
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SUMMARY

Dey et al. (2005) obtained universally optimal plans for asymmetric factorial experiments under
hierarchical model that includes the mean, all M.E. and a specified set of 2FI, assuming other interactions
are negligible. In this paper, we construct two new asymmetric optimal fractional factorial plans under
new hierarchical models using finite projective geometry. One of the optimal plans permits the estimability
of the mean, all M.E., a specified set of 2FI and a specified set of 3FI. The other plan permits the
estimability of the mean, all M.E. and a specified set of 2F1.

We also construct some new asymmetric optimal fractional factorial plans under a hierarchical
model for estimation of the mean, all M.E. and a specified set of 2FI.
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1 INTRODUCTION

Fractional factorial designs are commonly used in
industrial experiments where a large number of factors
has to be studied. Optimality of fractional factorial plans
has been studied by many researchers in recent years.
In practical situation, all factorial effects involving same
number of factors may not be equally important. The
issue of estimability and optimality in the context of two
level factorials has been studied by Hedayat and Pesotan
(1992, 1997), Wu and Chen (1992), Chiu and John (1998)
and Ke and Tang (2003). Optimality results for arbitrary
factorials including asymmetric ones were obtained by
Dey and Mukerjee (1999). Dey et al. (2005) (we will
abbreviate in the remainder as DSD) obtained optimal
asymmetrical fractional factorial plans for estimation of
the mean, all M.E. and a specified set of 2FI using finite
projective geometry. In this paper, we construct two new
asymmetric optimal fractional factorial plans under new
hierarchical models using finite projective geometry. One
of the optimal plans permits the estimability of the mean,
all M.E., a specified set of 2FI and a specified set of
3FI. The other plan permits the estimability of the mean,
all M.E. and a specified set of 2FI.
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We also construct some new asymmetric optimal
fractional factorial plans under a hierarchical model for
estimation of the mean, all M.E. and a specified set of
2FI. In Section 2, we give some preliminaries of finite
projective geometry.

In Section 3.1, we construct a new optimal fractional

B

factorial plan for an (m")xm**® experiment which

permits the estimation of the mean, all M.E. a specified
set of 2FI and a specified set of 3FI. In Section 3.2, we
construct new optimal fractional factorial plans for an
(m?) x (m?) x m%, w> 1 experiment which permits the
estimation of the mean, all M.E. and a specified set of
2F1. We also construct some new optimal fractional

factorial plans for an (m®)° x (m#)" experiment which

permits the estimation of the mean, all M.E. and a
specified set of 2FI in Section 3.3.

2. FINITE PROJECTIVE GEOMETRY

A finite projective geometry of (r — 1) dimension
PG(r -1, m) over GF(m), Galois field of order m, m is a
prime power, consists of the ordered set (X, X1,..., X;_1)
of points where x; (i=0, 1, ..., r — 1) are elements of
GF(m) and all of them are not simultaneously zero. For
any A € GF(m) (A # 0), the point (Ag, ... , A, _ 1)




170 JOURNAL OF THE INDIAN SOCIETY OFAGR[CULTURAL STATISTICS

represents the same point as that of (xg, ..., X;_ ;). The

T

-1
All those points which satisfy a set of (r—t— 1) linearly
independent homogeneous equations with coeffcients
from GF(m) (all of them are not simultaneously zero

within the same equation) is said to represent a t-flat in
PG(r -1, m).

total number of points lying on PG(r — 1, m) is

In particular a 0-flat, a 1-flat, ..., and a (r — 2)-flat
respectively in PG(r— 1, m) are known as a point, a line
... and a hyperplane of PG(r — 1, m). The number of

t

m
points lyingon a (t— 1)-flat is but the number of

m —1

independent points lying on a (t — 1)-flat is t. The number
of (r — 2)-flats within a PG(r — 1, m) which contain a
given (r — 3)-flat is (m + 1). One may refer to Hirschfeld
(1998) for more details.

3. CONSTRUCTION OF OPTIMAL PLANS

Consider a factorial experiment involving n factors
F1, Fy, ..., F,, where the factor F; (i=1, 2, ..., n) has m"
(i=1,2,...,n)levels, mis a prime power and t; (i=1, 2,
..., ) is a positive integer. We use (r — 1) dimensional
finite projective geometry PG(r — 1, m) over GF(m) to
construct m'-run plans, r being an integer. DSD have
introduced the following three models.

My, 2 (P, Fis oo 5 Fay, FiFa, F3Pyy oo s Faye 1F2)

My (W Fpy o, Fyt v, FiFj, 1 SiSu,u+1<j<v)
M3 : (p'a Fla vee s Fu> F1F27 F2F3a eee sy Fu—lFu: FuFl)

A plan d which is universally optimal under the above
model will be denoted by d = (Fy, Fp; F3, F4; ... s Fou_ 1,
qu)l, d = (Fl, #: 5 Fu; Fu 4 1y eee s Fu + v)2 and
d=(Fy, ..., Fy); respectively.

Here we will introduce the following notations to
specify two new models

M4: (W, Fy, ..., Fy+1, FiFj, forany2<i<u+1, for
allu+2<j<2u+1)

M5: (WFy, oo s Fysva, FiF2<i<u+v+ 1, FF,
FiFiF,2<j<u+l,u+2<k<u+v+])

A plan d which is universally optimal under the above

models will be denoted by d = (F; : Fy, ..., Fy+ 1 : Fuso,

s Faur1)gand d = (Fy; Fo, ..
respectively.

* Fu+ 1> l:‘u+2a seoy Fu+v+l)5

All effects which are not included in the model are
assumed to be negligible. Here p denotes the mean, F;
denotes the M.E. of the ith factor, F; F; denotes the
interaction between F; and F; , and F;F;Fy denotes the
interaction between Fj, F; and F.

Throughout this paper, we assign factors Fy, [ ...
etc. to a (t — 1)-flat in PG(r — 1, m), where t points are
independent and we assign m' levels to each of these
factors. We also assign m levels to each of the factors
Gy,Gy, ... etc.

3.1 Construction of Optimal Plan for an
(m") £ m**% u > 1 Experiment

Here we extend Theorem 2.2 given in DSD to
construct an optimal asymmetric fractional factorial plan
for estimation of the mean, all M.E., a specified set of
2FI and a specified set of 3FI using finite projective
geometry.

Theorem 3.1. Let Fy, ..., F¢ be f factors of a factorial
experiment. For any prime power m, the factor F, has
m' levels where t, is a positive integer and u = 1,
2, ..., f. We assign the f M.E. Fy, ..., F¢, the k, 2FI
Filela w3 5 Fiijk and p, 3Fi1Fj1Fq1, —_ Fiijqup to the
points in PG(r — 1, m) as given below.

(1) the factor F;toa(t; — 1)-flatfori=1,2,..,fin
PG(r - 1, m), these flats being disjoint for F;, F;,
1# ]

(2) the 2FI FiF; is assigned to the

((m" ~1) (m" —l))(m_l)z
(m=1) (m-1)

points in the (t; + t;— 1)-flat through the (t; — 1)-flat
F; and the (t; — 1)-flat F; but not in F; and F;. .

(3) the 3FI, F{FjF, is

(m" =1)(m" -1)
m-—1

assigned to the

((m‘i ~1) (m" ~1) (m" —nJX(m _1p

(m-1) (m-1) (m-T)

(m" =1)(m% —=1(m" -1)
m-—1
(t; +t; +t, — 1)-flat through the (t; — 1)-flat F;, the
774

points in the
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(tj — 1)-flat F; and the (tq — 1)-flat F but not in Fj,
Fj 5 Fq, FiFj o Fin and Fqu.

i 1 +i<m“u —1)m’ 1)
I 2|

u=l (m—1)

B T L) G
=l (m-1)

points corresponding to Fi, .., B, Fys oo Fyp s

F Fil Fg > Fip E T qu are all distinct points of
PG(r — 1,m), then we can obtain a universally

optimal saturated plan (we will abbreviate it in the
remainder as UOSP) for estimation of the M.E.

F], ceey Ff, k 2FI Filel’ ey Fiijk and p 3FI

Fi Fj By , .., B Fj Fq  involving m' runs.

Proof. Let F, be an r x t, matrix with the t; column
vectors corresponding to tu independent points in
(ty— 1)-flat F,.

Then the plan can be generated by the row space

f
of the rX Ztu matrix P = [Fy : ..... : F¢ ], where t;
u=l
columns of F, represent the levels of the factor F, and
each element of the row space P represents a run in the
plan. To prove that the plan is UOSP, it suffces to show
that the following matrices have full column rank.

(@) [Fy:Fyl,1<u<vsf

(b) [F,:F :F ], 1<u<fl<v<k

(c) [Fiu F] :E ,F ],1<u<v<k

u Iy’ v

(d) [F, :F_:F, :F ],1<u<f,1<c<p

Je de

(e) [K, K, ‘K F Fg l,1svskl<c<p

Ic

® [Fib :Fjb :F, F

ab 'F~C:Fqc],lsb<cSp

ic "]
(@ [Fu:F, :F :F :F Kl 1 <u=<
I1<v<k, 1<c<p

where a matrix F, (1 < u < f) appears only once if it is
repeated in (b),... or (g).

DSD have proved that matrices in (a) to (c) are all
full column rank.

In (d), there are two cases.

Case 1. If u =i, or j, or q, then the matrix (d) reduces

to [E : F_:F, ], which has full column rank.

Case 2. If u, i, j. and q. are all distinct, then the
(t,— D-flatF, and the (t;_ +t;_ +t, —1)-flatconsisting

ofpoints F , F, , F,

c? A’

EF,.EF .FFE and F F, F, are
disjoint. Hence the columns of F, are independent of

columns of [F :F :F_]. Thus the matrix

[F, : E, :Fj, :F, ] hasfull column rank.

In (e), there are three cases.
Case 1. If i, =i, or j or qc and j, = i or j. or q. where iy
and j, are distinct, then the matrix in (e) reduces to

[E, :F, :E_], which has full column rank.

Case 2. If i, =i, or j or qc, O, jy = i or j¢ Or q, then the
matrix in (e) reduces to [Fj : Fic: FjC: Fqc], which has
full column rank.

Case 3. If iy, jy» ic» jc and q. are all distinct then the
(ti, +tj, —1)-flat consisting of points F_,F; and

FF;, and the (tj, +tj, Ttq, —1)-flat consisting of

points Fic 5 ch 5 Fqc 5 FiC ch 5 FiC Fqc s ch Fqc and Fic ch Fqc

are disjoint. Hence the columns of [F,: Fjv] are
independent of columns of [F_ : F; :F; 1. Thus the
matrix [Fivt Fjv : Fic: chl Fqc] has full column rank.

In (f), there are three cases.

Case 1. If any two out of ib, jb and gb are same as any
two out of i, j. and q, the matrix in (f) reduces to

(Fy, B :F ¢ Fy. 1, which has full column rank.

Case 2. Any one out of iy, j, and qp, is same as any one
out of i, j. and qc, the matrix in (f) reduces to

[Fs, : Fqb : Fic : ch : Fqc] and hence the matrix has full

column rank.
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Case 3. If ip, jb, Qs 1cs Jc and g, are all distinct then the

(tib gty - 1) -flat consisting of Fib’ Fjb’ F%’

FipFjp» Fip Py Fip ¥y and - FyF Fq and  the

(tic Ty, ttg, - 1) -flat consisting of Fic , ch , Fqc,

Ei Fi.» K Fq > Fi Fq, and F;_F; F, aredisjoint. Hence

the columns of [F, :Fj, :Fy 1 are independent of

columns of [F_:F; :F; ]. Thus the matrix in (f) has
full column rank.

In (g), there are four cases.

Case 1. If u=i, or j, and also iy and j, are same as any
two out i, j. and q., the matrix in (g) reduces to

[F, :Fj, :Fq 1. Hence the matrix has full column rank.
Case 2. Ifu=i, or j, and any one out of i, and j, is same
as any one out of i, j. and q, then matrix in (g) reduces
to [Fj, : K, :F, :F 1. Hence the matrix has full

column rank.

Case 3. Ifu=i,orj, origor j. or q. or, any one out of i,
and j, is same as any one out of i, j. and q, then the
matrix in (g) reduces to [K :Fj :F_:F; :Fg ] or
[Fy : K, :F, ¥, :Fy 1. Thus the matrix has full
column rank.

Case 4. If u, iy, jy, i, jc and q are all distinct, then the
(ty — 1)-flat F, the (’[iV +1; = 1) -flat consisting of

.. F,.F F, and the (t +t; +tg —1)-flat
consisting of Fic , ch , Fqc , Fic ch , Fic FqC , ch Fq. and

F F; F,_ aredisjoint. Hence the columns of F,, columns

of [F, :F,] and columns of [F_:F :Fy ]are

mutually independent. Thus the matrix has full column
rank.

Lemma 3.1. If r=u + v + w, then 9 a (u — 1)-flat,
a(v — 1)-flat and a (w — 1)-flat which are disjoint in
PG(r — 1,m), where r, u (1), v(=1), and w(=1) are
integers.

Using Lemma 3.1 and Theorem 3.1 we derive the
following theorem.

Theorem 3.2. For any prime power m, one can
construct a UOSP d for an (m"1) x m" "B experiment
involving m" (r > 5) runs for estimation of the mean,
(A+B+1)ME. FyG;(i=1,..,A+B),(A+B+AB)
2F1FoG; (i=1,... ;A +B), GG =1, e , Ajk=A+ 1,
...A+B)and AB3FI FoG;G, (=1, .., A;k=A+1,..,
A + B) where

d= (Fo; Gl, ,GA; GA+1, ’GA+B)5

Proof. Let K; be a (u; — 1)-flat (i = 1, 2, 3) in
PG(r— 1, m) such that u; + uy + uz =r.

ul_l

7 fori=1,2,3.

The number of points in K is

Without loss of generality, let us assign the points of

(i) K, as Fy where factor F is at m"! level, uj is
the number of independent points in (u; — 1)-
flat Kl-

(i) K;as Gy, Gy, ..., Ga, since the number points in

un ___1
m-—1
at m level each.

K, is (= A say). Factors Gy, ..., G are

(i) K3asGgp+1,Ga+2, ... » Ga +p, since the number
ujg _1

m -1
Ga +1, -G + g are at m level each.

LetP= [Fo l Gls ,GA| GA+19 aGA+B]- It can
be verified that the matrix P satisfies the
condition of Theorem 3.1.

of points in K5 is

(= B say). Factors

Now we can obtain a UOSP d generated by the
row space of the matrix P for an (m“l)xmA+B
experiment involving mr runs for estimation of the mean,
(A+B+1)ME. FyG;@{i=1,..,A+B),(A+B+AB)
2FIFoG;(i=1,..,A+B), GGy (=1,...,A;k=A+1,
ey BB and AB 3F1 FgGiGy (= 1, ... As k=A+1,,..;
A + B).

Example 3.1. Consider PG(5, 2) over GF(2)
Herer=6,m=2.Letu;j=u,=u3=2

Thus K; (i=1, 2, 3) is a 1-flat (line) in PG(5, 2)

2

The number of points in K; (i=1,2, 3) is 5 —1 =3
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These three flats, i.e. K{,K, and K5 are disjoint.
The points of K,K, and K3 are

Ky : (001000,000110,001110)
K, : (010110, 101110, 111000)
K3 :(011101,101111,110010)
Let us assign the points of
(i) K; as Fy, where factor Fj is at 22 level.

(i) K, as G1,G,,G3. The factors G,G; and G; are
at 2 level each.

(iii) K3 as G4,Gs5,Gg. The factors G4,G5 and G are
at 2 level each.

Let
[0j0 1 10 1 1]
o1 1 11 0 1
20 1 111 1 0
P =[Fy| G1G,G3 |G4GsGg] = | 1|1 1 01 1 0
111 1 00 1 1
00 0 01 1 0

Now we can obtain an optimal plan d = (F;
G1G,G3:G4G5Gg)s generated by the row space of the
matrix P for a 4 x 26 experiment involving 2° runs for
estimation of the mean, 7 M.E. F,G; (i=1, ..., 6) 15 2FI
FoGi(i=1,...,6),GGx(=1,2,3,k=4,5,6)and 9 3FI
FpGiG (1=1,2,3,k=4,5, 6).

Table 3.1

S.No.| PG(r-1,m)| (uy, uy, uz)| Optimal plan Experi-
ment

1 | PGG6,2) |(2,2,3) |d=(Fy;Gy,...,Gs;
Gy,....Gro)s | 4x2"°

2 | PG(6,2) |(B3,2,2) |d=(Fy;Gy,...,Gs;
Gy, - Gg)s 8 %28

3 | PGG6,2) |B3,3,1) |d=(Fp;Gy,...,Gyp
Gg)s 8 x 28

4 | PGG5,3) [(2,2,2) |d=(Fp Gy, .Gy
- Gs, ... ,Gg)s 9x38

3.2 Construction of Optimal Plans for an
(m?) X (m?) X m*, w > 1 Experiment

We now construct the optimal asymmetric fractional
factorial plans for an (m3) X (mz) xm"%, w> 1 experiment
for estimation of the mean, all M.E. and specified set of
2FTusing PG(r — 1, m) over GF(m), m is a prime power.

Lemma 3.2. If r = c + (r —c), then 3 a (¢ — 1)-flat and
an (r — ¢ — 1)-flat which are disjoint in PG(r — 1,m).

Using Lemma 3.2 we derive the following theorems.

Theorem 3.3. For any prime power m, one can
construct a UOSP d for an (m®) x (m?) x (m%) (w > 1)
experiment involving mr (r > 6) runs for estimation of
the mean, (w + 2) M.E. Fy, F|,Gq, ... .G, and (w + 1)
2FI F()F], F()G], S F()GW where d= (Fo; F],G], 9Gw)2-

Proof. Using Lemma 3.2 we derive the following cases.
In case I, we consider ¢ =2 as well as in case I, ¢ = 3.

Case I Let F be a line in PG(r — 1,m). K is an (r — 3)-
flat in PG(r — 1,m). F( and K are disjoint. Let F; be a

plane contained in K. Gy, G, ...G,, (where

3 mr—5 _ 1

w=m N are the points in K disjoint from F;.
m —

Here, factor Fy is at m? level, factor F; is at m> level

and Gy, ... ,G,, are each at m level.

P={Fp | Fi.G% o0 O

Now, one can obtain a UOSP d generated by the
row space of the matrix P for an (m?) x (m) x m%
experiment involving mr(r 1 6) runs for estimation of the
mean, (w +2) M.E. Fy, F,Gy, ... .Gy, and (w + 1) 2FI
F()Fl, FOGla F()Gw where d = (FO; F],Gl, ...Gw)z.

Example 3.2. Consider PG(5, 2) over GF(2). Fy is a
line. Let the points of F be (001000, 101000, 100000).
K is a 3-flat disjoint from F;. Let the points of K be
(000001, 000010, 000011, 000100, 000101, 000110,
000111,010000,010001,010010,010011,010100,010101,
010110,010111). F; is a plane contained in K.

The points of Fy are (000001, 000010, 000011, 000100,
000101, 000110, 000111). G;,Gy, ... ,Gg are the points in
K disjoint from F . The factors F and F, are at 22 level
and at 2 level respectively. Gy, ...,Ggare at 2-level each.
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P= [FO [ Fl G] Gg]

[F)|F G; G, G;3 G4 Gs Gg G, Gg]
1100 0 0 0 0 0 0 0
ofo 1 1 1 1 1 1 1 1
=[{3/0 0 0 0 0 0 0 0 0
ojt 0 0 0 1 1 1 1 1
0/12 0 0 1. 0 0 1 1 1
(0j4 0 1 0 0 0 0 0 1|

Now, we can obtain an optimal plan d = (F; F1,G;
...Gg), generated by the row space of the matrix P for a
4 x 8 x 28 experiment involving 2° runs for estimation of
the mean, 10 M.E. F(, F{,Gj, ...Ggand 9 2F1 FoF4, FoGj,
... FoGg.

Table 3.2
SL.No. PG(r — 1,m) Optimal plan Experiment
1. PG(5,2) | d=(Fy;F,G;..Gg), | 4x8x28
2. PG(6,2) |d=(Fy;F,Gy..Gog)y | 4x8x2%
3. PG(5,3) |d=(F;F1,G;..Gyy)y | 9%x27x3%
Proof.

Case II. Consider PG(r — 1, m)(r > 6) over GF(m). Let
Fo and K be the plane and (r — 4)-flat in PG(r — 1,m)
respectively. Fy and K are disjoint. Let F| be a line
contained in K. Gy, G, .. ,Gy (where

2 mr—5 _1

w=m T are the points in K disjoint from the
m —

points in F;.

Here, the factors F and F, are at m> level and at
m? level respectively since, Fy is a plane and F is a line.
Gy, ... .Gy are at m level each.

Let P =[F( | F1,Gy, ... .Gyl

It can be verified that the matrix P satisfies the
condition of Theorem 2.2 of DSD.

Now one can obtain a UOSP d generated by the
row space of the matrix P for an (m?) x (m?) x m¥
experiment involving m'(r > 6) runs for estimation of the

Table 3.3
SL.No. | PG(r — 1,m) Optimal plan Experiment
1. PG(5,2) |d=(Fy;F,Gy,..Ga) 8x4x24
& PG(6,2) |d=(Fy;F1,Gy,..Go) | 8x4x212
3. PG(5,3) |d=(Fy;F,Gy,..Go), | 27x9x3°

mean, (w +2) ML.E. F(, Fy, Gy, ... .Gy, and (w + 1) 2FI
F()Fl, F()G], F()Gw where d = (Fo; FlaGl, ,Gw)z.

3.3 Construction of Optimal Plans for an
(mY)° x (m&)" Experiment

We construct the optimal asymmetric fractional
factorial plans for estimation of the mean, all M.E. and
specified set of 2FI using finite projective geometry. Here
we will make use of Theorem 2.2 of DSD to construct
the optimal plans.

Theorem 3.4. For any prime power m, one can
construct a UOSP d for an (mP) x m?9, p>2, q >4
experiment involving m' runs (r > 4) for estimation of
the mean, (2q + 1) M.E. F1,Gq, ... ,Gyq and q 2FI G;Gg+;
foranyonej=1,2,...,qand foralli=1,2, ..., q where
d= (Fl : G],Gz, ,Gq . Gq+ ),Gq+2, ,qu)4.

Proof. Let H, and H; be two hyperplanes i.e.
((r— 2)-flatsyin PG(r — 1,m) which are not disjoint. The

r-1

number of points in H; and Hj is - . They will

intersect in an (r — 3)-flat H3. That is, the common points
between H; and H; are the points of (r — 3)-flat Hj.

r-2 _1

The number of points of (r — 3)-flats Hy is

(zmr—l _ mr——Z
(m-1)

-1
|HjUH, | = )(=fsay).

Let F be a set of f points obtained by taking union
of the two hyperplanes H; and H,. Now we divide these
f points into three sets such that in Set 1, there will be

m'2 -1

T points, which are common points between the

(m
two hyperplanes H; and H,. These are points of (r — 3)-
flat H3 where (r — 2) (= p say) points are independent.
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In Set 2 and Set 3, there will be m" ~2 (= q say) points
each obtained by deleting the common points from each
of the hyperplanes H; and H, respectively.

Thus the three sets are disjoint. Now assign the
points in the sets as follows.

In Set 1 : F, (the factor Fy is at mP level, p=r—2)

InSet2 : Gy,Gy, ... ,Gq (each factor is at m level,
q=m""?

InSet3 Gq + I,Gq+2, ,qu (each factor is at

m level, ¢ = m" %)
LetP=[F;| Gy, ... ,Gq | Gq+ Ly: =on ,qu]

Now one can obtain a UOSP d generated by the
row space of the matrix P for an (mP) x m?4 (Here
p=r—2,q=m""2)experiment involving m" (r > 4) runs
for estimation of the mean, (2q + 1) M.E. F1,G,Gy, ....Gaq
and q 2F1 G; Gg + forany one j =1, 2, ..., q and for all
i=1,2,...,qwhered=(F;:Gy, Gy, ..., Gq: Gq+ 1, Gg+2
oy G2g)4-

Example 3.3. Consider PG(3, 2) over GF(2). Here r =
4. Let H; and H; be any the two hyperplanes.

H,;:(0011,0101,0110, 1000, 1011, 1101, 1110)
~ H,:(0011,0101,0110, 1001, 1010, 1100, 1111)

H; and H, intersect in an (r — 3) flat Hy

H;:(0011,0101,0110), |H;3|=3

[H; w Hy|: (0011, 0101, 0110, 1000, 1011, 1101,
1110, 1001, 1010, 1100, 1111)

[H; U Hy|=f=11. We divide these 11 points into
three sets.

Set1:H;:(0011,0101,0110)
-Set2:H;\H;:(1000, 1011, 1101, 1110)
Set3:H,\H;:(1001, 1010, 1100, 1111)
Assign the points in the sets as in
Set 1 :F(the factor F; is at22=4level,p=4— 2=2)

Set2 :Gy, Gy, G3, G4 (at m = 2 level each)

Set3 :Gs, Gg, G7, Gg (at m = 2 level each)
Let P=[F|Gy,..,G4|Gs, ....Ggl

[R|G, G, G; G4|Gs Gg G, Gg|
of1 1 1 11 1 1 1
_|tjo o 1 1jo 0o 1 1
200 1 0 1/0 1 0 1
(210 1 1 0[1 0 0 1|

- The row space of matrix P generates an optimal
plan d = (F;; Gy, ..., Ga; Gs, ..., Gg)s for a 4 x 23
experiments involving 2% runs for estimation of the mean,
9ME.F,Gi(i=1,2,..., 8) and 4 2FI G;G4 +; for any
onej=1,..,4andforalli=1, ..., 4.

Table 3.4
SNo.| PG(r—1,m) Optimal plan Experiment
. | PG@,2) d=(F,:Gy,...,Gy:
Gs, ... ,.Gg)s 4x28
2. PG(4,2) dE(Fl :Gl)...,GSI
G, ...,G16)4 8 x2'6
3. | PGG,3) d=(F;:Gy,...,Gy:
Gio, G184 9x3!8
4. | PG@4,3) d=(F,:Gy,...,Gyy:
Gog, - G544 27 x 3%

Theorem 3.5. For any prime power m, one can
construct a UOSP d for an (m?) x m“ "1 (w = 1)
experiment involving mr runs r > 5 for estimation of the
mean, (w +2) ML.E. Gy, Gy, ..., Gy, Fj and (w + 1) 2FI
GOFI,GOGI, ,G()Gw where d = (G(); Fla G], Gz, e
Gwh-

Proof. Let us take ¢ = 1 in Lemma 3.2. Let H be
an(r — ¢ — 1)=(r — 2)-flat (hyperplane) in PG(r - 1,
m). Let F; be a line contained in H. Let Gy, G, ..., Gy,

r-1 2

m m
(wherew = —Tn—:—l—) be the points on H disjoint from

F; : Gy is a point (¢ — 1 = 0-flat) not included in H. The
factors Gy, ... ,G,, are at 2 level each. The factor F is at
m? level. Let P denote a matrix with columns given by
the unions of the points in Fy, Gg, Gy ..., Gy,

B [GO | Fl’ Gla G25 ey GW]
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Now one can obtain a UOSP d generated by the
row space of the matrix P for an (m?) x m" *! experiment
involving m" runs for estimation of the mean, (w + 2)
M.E. Go, Gla G:, ey Gw, Fl and (w+ 1) 2FI G()F], G()G],
veey G()Gw where d = (Go; Fl, G], Gz, cues GW)Z'

Example 3.4. Consider PG(4, 2) over GF(2). There are

24 -1

2-1
Let the points of a hyperplane H be (00010, 00100, 00110,
01000,01010,01100,01110, 10000, 10010, 10100, 10110,
11000, 11010, 11100, 11110). Let F be a line contained
in H. The points lying on F; are (00010,00100,00110).
Gy, ... G are the points in H\F}. (11111) (say Gy) is a
point in PG(4, 2) not lying in H. Gy, Gy, ..., G, are at 2
level each and F i at 2% level. Let

P=[Gy|F;|Gy]..Gya]

=15 points lying on any hyperplane (i.e. 3-flat).

Go|f Gy G, G3 G4 Gs Gg Gy Go Gyg Gy Gyy |
100 0 0 0 1 1 1 1 1 1 1
1011110001 1 1 1
=110 0 1 1T 0 O 1 1 1 1 1
1120 1 0 1.0 1 1 0 0 0O 1
[ 1{00 00000000 0 0]

Then one can obtain an optimal plan d = (Gg; F;,G;,
... ,G12), generated by the row space of the matrix P for
a4x283 experiment involving 23 runs for estimation of

Table 3.5
SI.No. | PG(r — 1,m) Optimal plan Experiment
1. PG(4,2) | d=(Go; F1,Gy, ... Gpp)p | 4 x2"2
2. PG(5, 2) d=(Gg; F1.Gy, ... ,Gog)y | 4 x 2%
3. PG4, 3) d = (Go; F1,Gy, ... ,.Gsg)y | 9 % 3%

the mean, 14 M.E. F{,G(,Gy,
GoF1.GoGys - ,GoGrp.

... ;G and 13 2FI

Theorem 3.6. For any prime power m, one can construct
a UOSP d for an (m?) x m% (w=>1) experiment involving
m' runs (r > 5) for estimation of the mean,
(w +1) ME. Fy,Gy, ... ,Gy, and w 2FI FyGy, FoGo, ..
FoGW where d = (FO; Gl, G2, ooy Gw)z.

Proof. Let us take ¢ =2 in Lemma 3.2.

v

We can obtain a UOSP.

Table 3.6
SLNo. | PG(r — 1,m) Optimal plan Experiment
1. PG(4,2) d=2F5:G1,0u G | %27
2. PG(5,2) d=(Fy;Gy,...Gisyp | 4x2P°
3. PG(4,3) d=(Fy; Gy, ... Giz)y | 9%x31

Theorem 3.7. For any prime power m, one can
construct a UOSP d for an (m®) x m™ (w > 1) experimeht
involving m" runs r > 6 for estimation of the mean,
(w+ 1) ME. F,Gy, ... .Gy and w 2F1 FoGy, F(Go, ...
FoGy where d = (Fy; Gy, Gy, ..., Gy))).

Proof. Let us take ¢ = 3 in Lemma 3.2.

We can obtain a UOSP.

b

Example 3.5. Consider PG(5, 2) over GF(2). Let us
consider the planes F( and K such that they are disjoint.
Let points of F( be (000001, 000010, 000011, 000100,
000101, 000110, 000111) and points of K be (001000,
010000,011000, 100000, 101000, 110000, 111000).

Let us denote the points of K as Gy, ... ,G7 .
LetP=[Fy| Gy ..Gq]

Now, we can obtain an optimal plan d = (Fy; Gy,
Gy, ...G7), generated by the row space of the matrix P
fora 8 x 27 experiment involving 29 runs for estimation
of the mean, 8 M.E. F, Gy, Gy, ...G7and 7 2F1 FGy, ..
FOG7.

*

Table 3.7
SI.No. | PG(r — 1,m) Optimal plan Experiment
1. PG(5,2) | d=(Fyp; G1,Ga ...G7)a 8 D7
2. | PG@6,2) |d=(Fg GGy ..Gis) 8 x 215
3. PG(5,3) |d=(Fy; G1.Ga, ...G13)a 27 x 313

Theorem 3.8. For any prime power m, one can
constructa UOSP d for an (m?)% x m™ (w > 1) experiment
involving m', r > 7 runs for estimation of the mean, (w +
2) M.E. Fo, F],G], werny, GW and (W + 1) 2F1 F()F], F()G],
vy FoGW where d = (FO; Fla G], Gz, -~ Gw)z.

Proof. Let us take c= 3 in Lemma 3.2.

We can obtain a UOSP.
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Table 3.8
SI.No. | PG(r—1,m) Optimal plan Experiment
1. PG(6,2) | d=(Fy;F1,G1,Gy, ..Gg)y | 8% %28
z PG(7,2) |d=(Fy;F1,G,Ga,..Goa)y| 82 x2%
3. PG(6, 3) | d=(Fy;F1,G1,Ga, ..Gan)a| (27)*x 3%

Theorem 3.9. For any prime power m, one can
construct a UOSP d for an (mP) x (mH)Y,p>1,q=2, 3,
w > 5 experiment involving m' runs, r > 5 for estimation
of the mean, (w + 1) M.E. Fy, Fy, ... , F, and w 2FI
FOFI: FOF2, ey F()Fw where d = (FO; F], cee s Fw)z.
Proof.

Case I Let us take ¢ = 4 in Lemma 3.2. Let Fy and K
be an (r—5)-flat and a 3 flat in PG(r — 1,m) respectively.
The number of points lying on any line in PG(r— 1, m) is

4

m + 1. The points lying on the

m-—1
3-flat K can be divided into (m? + 1) (= w say) disjoint

lines.
Let us denote these w lines as Fy, Fy, ..., Fy,.

Here factor F is at m" ~* level since Fj is an
(r — 5)-flat. Fy, ..., F, are at m? level each as they are
disjoint lines in PG(r — 1,m).

LetP = [Fo l F], ces s FW]

Now one can obtain a UOSP d generated by the
row space of the matrix P for an (mP) x (m?)" (Here
p=—-4),q=2,w= (m?+ 1)) experiment involving m’
(r = 5) runs for estimation of the mean, (w + 1) M.E. F,
F], e s Fw and w 2FI FOF1, F()Fz,

B FW)Z'
Example 3.6. Consider PG(4, 2) over GF(2).

, FoFy, where

d=(Fg; Fy, ...

Herer =5, c =4, m = 2. Fy is 0-flat and K is a
3-flat.

LetFo: (11111)

The 15 points of K can be divided into 5 disjoint
lines, say (10000, 01100, 11100), (01000, 00110, 01110),
(00100, 11010, 11110), (00010, 10100, 10110),
(11000,01010, 10010).

Let us denote these lines as Fy, ..., Fs.
P=[Fqy | Fy, ... , F5]

Here the factor F; (i=1, ..., 5) is at 4 level where
factor Fy is at 2 level because F; (i=1, ..., 5) is a line
and F is a point.

P generates an optimal plan d = (Fo; Fy, ..., Fs),
for 2 x 4° experiment involving 2 runs for estimation of
the mean, 6 M.E. F; (i =0, 1, ..., 5) and 5 2FI F(F;
i=1,..,5).

Table 3.9
SINo. |PG(r — 1, m) Optimal plan Experiment
1. PG(4, 2) d=(Fo; Fp, ..o Fs)a 2x 4%
2. PG(6, 2) d=(Fg; F1, ..., Fs) 8 x 4°
3. PG(4, 3) d=(Fg; Fy, ... Fio)a 3 x 910
4. PG(6, 3) d=(Fp; Fp. ... Fio) 27 =910
Proof.

Case II. Let us take ¢ = 6 in Lemma 3.2. Let Fy and K
be an (r — 7)-flat and a 5-flat respectively in
PG(r -1, m).

We can obtain a UOSP d.
Table 3.10
SINo. | PG(r— 1,m) Optimal plan Experiment
1. PG(6, 2) d=(Fp; Fy, ..., Fo) 2% 8°
2. PG(7, 2) d=(Fg; Fy, ..., Fo) 4x8°
3. PG(6, 3) d=(Fo; Fp, ..., Fag)s 3% 2778
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