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SUMMARY

Recently a new class of mechanistic models for insect population size has been developed. The
death rate in the new models is a function of the cumulative size of past generations. Prajneshu (1998)
developed the first such model and others have followed. The models have been shown to fit data from
diverse aphid populations well. This paper shows that the nonlinear regression model solution for
aphid population size may be used as a basis for a nonlinear mixed effects model analysis of designed
experiments. The experiment analyzed in this paper consists of a 3x3 factorial, of Water by Nitrogen
levels, applied in a randomized block design, repeated two years. The fixed Water treatments are
statistically significant in one year and the fixed Nitrogen treatments in the other. The paper outlines

possible generalizations.
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1. INTRODUCTION

A new class of mechanistic models based on a
cumulative size concept has recently been developed to
describe the growth of insect populations. In Section 2,
this paper first establishes an ecological foundation for
the new models by reviewing the well-known logistic
models. The new models based on cumulative size are
then presented. The simplest of these models has a
concise analytical solution which serves as a regression
model for data. The regression model and some of its
properties are given. In Section 3, we note that the new
regression model fits diverse aphid population data well.
Data for a 3x3 factorial experiment investigating the
effects of water and nitrogen on cotton aphids are
presented. In Section 4, the nonlinear regression model
is used as the basis for a nonlinear mixed effects model
analysis using the nlme software for the R package. The
analysis indicates that there are significant Water and
Nitrogen main effects in the data. In Section 5, the results
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from the nlme analysis are compared to results obtained
by fitting the individual curves using nonlinear least
squares. The results are shown to be similar qualitatively.

Concluding remarks, including possibilities for
generalizing both the underlying model and the
accompanying statistical analysis, are given in Section 6.
In brief, the paper suggests that the new models,
combined with the nlme analysis, have broad appeal for
describing and analyzing data on local insect populations
that collapse in size. Such data are widespread in
agriculture.

2. MODEL DEVELOPMENT

2.1 Logistic Models Based on Current Size

In his classic book on ecology, Andrewartha (1951)
describes several types of curves for describing the
growth of ‘local populations’. One class of curves is of
the logistic type which increases monotonically in size
with an asymptotic equilibrium value called a ‘carrying
capacity’. Andrewartha suggests that such curves may
be “generally true of any local population whose numbers
are determined by the stock of some non-expendable
resource; non-expendable in the sense that the amount
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available to the next generation is independent of the
amount used by the present generation” (ibid, p. 157).
Food and nesting sites are given as examples of possible
non-expendable resources.

The well-known Verhulst-Pearl logistic equation,
with arich history dating back to 1838 (Renshaw 1991),
provides a mathematical model for the size of such
populations. Letting N and N’ denote the population size
variable and its derivative, this deterministic model may
be expressed as

N’ = (a—bN)N (M
with a, b > 0. In a simple interpretation of this model,
parameter ‘a’ could be regarded as the ‘per capita’ birth
rate, also called the ‘intrinsic rate of natural increase’.
The per capita death rate is bN where parameter ‘b’ is
the ‘crowding coefficient’ which determines the strength
of the ‘density-dependent’ mortality. The non-zero root,
K = a/b, is immediately the carrying capacity. The point
of inflection occurs at K/2.

In our studies of African bees, an aggressive
so-called ‘r-strategist’, we observed that the point of
inflection often exceeded K/2 and the model

N = (a—bN®)N )
with s > 1 was proposed in Matis et al. (1996, 1998).
The solution to (2) and (1) is

K
N(t) =

1/s (3)
[1 + mexp(—ast)]

where K = (a/b)!/s and m = (K/Np)® — 1. Model (3) with
small integer s = 1, 2,... was fitted successfully to
biological invasion data on the muskrat (Matis e al. 1996)
and on the African bee (Matis ef al. 2005). For both the
bee and the muskrat examples, each current generation
leaves, in Andrewartha’s terms, sufficient food and
habitat resources for the succeeding generations

to eventually establish a carrying capacity of size
K = (a/b)s.

2.2 Mechanistic Models Based on Cumulative Size

Andrewartha (1951) also discusses local populations
which collapse in size. He suggests that some populations
become extinct because their “numbers depend on the
amount of some diminishing or expendable resource;
expendable in the sense that the more that is used by
one generation the less there will be for the next” (ibid,
p. 158). He also notes that other populations collapse

because although the “animals are rare relative to their
stock of food (or other resources)” the preceding aphids
increase the likelihood of “a predator, ... the recurrent
use of an insecticide, or any other component of
environment” which eventually lead to local extinction
(ibid, p. 158). We suggest that local aphid populations
collapse for both reasons; namely that the preceding aphid
generations use up some diminishing resources,
specifically food and habitat resources and that the
preceding aphid generations also degrade the
environment through greater attraction of predators, an
increased likelihood of plant and aphid disease and the
chemical reaction of the plant to a loss of sap. We call
this general dependency of current population growth
on past generations the ‘cumulative size dependency.’

We suggest two measures of cumulative size. One
is the ‘cumulative density’ defined as

F() = [N@)ds )

in units of insect-time. The other is the ‘cumulative count’,
C(t), defined as the past cumulative insect count. Both
measures may be used as indices of past cumulative
environmental degradation.

Prajneshu (1998) develops the first cumulative size
model that we are aware of, one based on the cumulative
density. His model may be written as

N = (A-8F)N &)

The per capita birth rate in (5) is denoted by A. The
per capita death rate is 8F which as a contrast to model
(1), is a function of cumulative density F. Therefore, the
growth rate in (5) obviously is dependent on the cumulative
past environmental degradation and hence it belongs to
the second type of growth curve discussed by
Andrewartha.

Matis et al. (2005) developed an analogous
deterministic model based on the cumulative count, C(t),
calculated as

C(t) = AF(t) (6)
Substituting this into (5) yields
N = (A-pC)N (7

where [ is a new death rate parameter defined as

H =3/A )
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The formulation in (5) is more natural to ecologists
who are familiar with the ‘area under the population
curve’, E(t). The formulation in (7), as based on the count
data, is more convenient for stochastic modeling and
simulation. We call the former a ‘cumulative density’
based and the latter a ‘cumulative count’ based population
growth model.

Prajneshu (1998) shows that the analytical solution
of (5) has form

N(@t) = ae_bt(lwtde-bt)_2

)

One can show that the time and size of peak value,
denoted by tax and Ny of model (9) are

tmax = b~ logd (10)
and Q
Npax = a/(4d)

We use these in Matis et al.(2007) to
reparameterize model (9) as

N(t) = 4Nmaxe_b(t—tmax){1+e—b(t—tmax)]_2 (11)

Regression model (11) is a nonlinear regression
model which may be fitted to data using standard
software. Parameters N, and ty.x have obvious
physical interpretation, in fact are directly measurable
and ‘b’ will be shown to approximate the birth rate A .
Letting

d = exp(btmax)

one can show that the solutions for the mechanistic
parameters in equation (5) in terms of the regression
parameters Npax, tmax and ‘b”in (11) are

A = bd-1)/d+1)
b2 /2N ax (12)
No = 4dNa (1+d)72

)

where N denotes the initial value N(0).

It is easy to show that N(t) in (9) and (11) collapses
to zero as t becomes large. Thus replacing N in the
parentheses of the logistic model in (1), for a population
with non-expendable resources, with the cumulative
density F(t) in (5), for a population with an expendable
resource, leads to population collapse. Regression model
(11) is therefore a mathematical representation of what

Andrewartha (1951) describes qualitatively (and indeed
illustrates in his Figs. 9.02 and 9.03, p. 164) for local
populations which collapse. Though such data are
abundant in agriculture e.g. for insects, we are not aware
of any other simple analytical model for describing such
populations.

There are several properties of model (11) that are
of considerable interest. One is that N(t) is symmetric
(Matis et al. (2005)), which is of interest because aphid
population growth curves are typically skewed to the
left. This fact has led to two generalizations. The first
investigates the following power-law generalization
of (5)

N’ =(A-3F*)N (13)

for integer s > 1. The solution has the desired left
skewness, however, the model does not have an analytical
solution and hence is more challenging for experimenters
to use Matis et al. (2007). The second Matis et al. (2007)
adds an initial immigration term, with formulation

\% t=4
N=1y LA =FN  t>t - (14

which also has a left-skewed solution. Though both of
these generalizations have strong biological justification,
model (5) with its simple analytical solution in (11) is
typically sufficient for data analysis, particularly for the
very common case of data gathered with weekly sampling
intervals, as we illustrate subsequently.

As another property of (11), note that the final
cumulative density, substituting (9) into (4), is

a
F(=) = 4@+ (15)

Accurate approximations for F(c0) and C(e0), which
are two end-points of primary interest, may be found
using (10) and (12) to be Matis et al. (2007)

F(o0) = 4Npax /A (16)

and

C(OO) =4Nmax

These simple approximations may be particularly
useful in practice as they are based only on biological
parameters, A and Ny, which may be known or readily
estimated by experimenters.
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3. EXPERIMENTAL DATA

With mechanistic models (5) and (7) having such
compelling biological rationale and with the model solution
in (11) being so user-friendly and transparent, an obvious
question is whether model (11) also fits aphid data
adequately. We answer that question in the affirmative
for data on the pecan aphid in Matis et al. (2005), the
mustard aphid in Matis et al. (2007) and the cotton aphid
in Matis et al. (2007). For brevity we consider only the
cotton aphid data in this paper.

Experiments were conducted in years 2003 and
2004 at the Texas A&M Agricultural Extension Center
in Lubbock, TX, to investigate the effects of various water
and nitrogen treatments on the abundance of the cotton
aphid. Three water treatments (Low, Medium and High),
denoted i = 1,2,3 were crossed with three nitrogen
treatments (Zero, Variable and Blanket), denoted j = 1,2,3
in a 3x3 factorial arrangement. Twenty-seven (27)
experimental plots were divided into three blocks, denoted
k = 1,2,3 and the nine treatment combinations were
randomly assigned within each block. The number of
aphids was recorded on five dates in 2003 and on seven
dates in 2004 for each plot. The data are available in
Matis (2006). Fig. 1 displays the observed aphid counts
in 2003 and 2004 for each of the three plots within each
of the nine (i,)) treatment combinations.

Experimental data such as these have traditionally
been analyzed using a ‘model-free’ approach. Directly
observable response variables, such as the time of first
aphid appearance, the observed peak number of aphids
and the crop age at the peak number have been analyzed
to meet the objectives of such experiments
(Chattopadhyay et al. (2005)). However, we have
shown, using data for the pecan aphid, that a ‘model-
based’ approach incorporating model (11) not only yields
new explanatory response variables but may also be more
powerful statistically (Matis et al. (2006)). In that
analysis model (11) was fitted to each plot-level data set
individually and an ANOVA was performed on the
parameter estimates. This paper illustrates an efficient
alternative approach, namely the use of the nonlinear
mixed effects model to fit all data simultaneously in
Pinheiro and Bates (2000). The data are fitting using the
nlme routine in the R software package in R-Project
(2006), with results described below.

4. NONLINEAR RANDOM EFFECTS
MODEL ANALYSIS

4.1 Model Definition

For each combination of water level i, i =1, 2, 3
nitrogen level j, j =1, 2, 3 and block k, k =1, 2, 3 the
outcome variable for each plot was observed at times ty,
1=1,..., L. Denote the number of aphids observed as
Y jjk1- We assume first that the plot-level observation Y
follows the nonlinear regression model

Yiik1 = £t mijk. Tijk, bijk ) + &ijki (17)

where gjji) are independent random errors with identical
normal distribution N(0,s2) and the nonlinear curve f(.)
takes the form

£(t,m,T,b) = 4eMP(t=T) [y 4 o~(t-T) |2 (18)

with plot specific parameters mjj, Tjjk and bjjx. Model
(18) uses the transformation m = log Npax in (11) in
order to stabilize the variance.

We then assume the parameters myj, Tijx and by
follow some linear regression models that account for
covariate effects of water, nitrogen and block. We
assume the following analysis of variance (ANOVA)
model for mj;k

mix = p" -+ +B}n+yg‘+pf(n +§g1k (19)
where Mm,a{n’Bj_n’Ygl and pkm are fixed effects and
iﬁk are random effects representing plot deviations from
the population mean satisfying E(Z;g’k): 0. Here the

fixed effects have the usual interpretation: um is the

grand mean, a;n , BJ‘.“ ’ P? are the main effects of water,
nitrogen and block respectively and yg‘ are the water by
nitrogen interactions. We assume similar ANOVA
models for Tjjx and by specifically

Tk = k' +af +B] +7§ +p +&j (20)
and
bijjk = ub+a?+6?+vg+pﬁ+§gk Q1)
As in the ANOVA model for mjjk in (19),
“T’aiT’BjT,y%" and pE are fixed effects in (20) and
Hb,a?,ﬁ?,yg and p}: are fixed effects in (21). The

b
random effects satisfy E(‘i%k) =0 and E(aijk ) =l
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4.2 Model Results

The data for the year 2003 and 2004 were analyzed
separately due to the differences in the sampling designs.
The data for 2003 were fitted to a reduced model,

produced by dropping the interaction terms 731 5 “{;g and

Y2 in the ANOVA model (19) - (21) for m, T, and b

because of the limited number of sampling dates per plot
in 2003. The parameter estimates, averaged over the
three blocks for each treatment combination are given
for the reduced model in 2003 and the full model in 2004
in Table 1. The corresponding fitted curves are illustrated
for each treatment combination in Fig. 1. The curves
appear to fit the data averaged over the blocks well.

Table 1. Estimates of parameters (Nmax, tmax> b) averaged
over blocks for each of nine treatment combinations of
Water by Nitrogen in 2003 and 2004

Treatment 2003 2004

Water| Nitrogen| Nmax | tmax b [Nmax | tmax b
Level| Level

1 1 28.41| 2.74| 3.00 |23.42 | 5.41 2.82
1 2 30.94| 2.77| 2.97 |18.01 | 5.52 1.89

1 3 32.05| 2.74| 3.15 |24.55 | 5.41 2.45
2 1 23.58| 2.62| 2.98 |20.19 | 5.58 | 2.20
2 2 25.68| 2.66| 2.95 120.27 | 5.50 1.96
2 3 26.60| 2.63| 3.13 |22.41 | 537 | 2.46
3 1 2287 2.62| 3.18 |21.70 | 548 | 2.5]
3 2 24901 2.66| 3.15 120.94 | 5.45 2.16
3 3 25.79| 2.63| 3.33 | 1896 | 5.47 | 2.09

The means for the five end-point variables of
interest, namely Nijax, tmax» A 0 and F(0) are given for
each level of the Water and Nitrogen main effects in
2003 in Table 2A, along with p-values testing the
significance of the main effects. Note that the Water
main effect is significant (p <.05) for the Npay, tmax, 0
and F(« ) variables. In particular, as the level of water
increases

1. Npax and F(o) decrease consistently and
substantially (20-25%)

2. tmax decreases slightly (~5%) and
3. & increases consistently and substantially (~40%)

Table 2. Factor level means from the nime analysis for main
effects, Water and Nitrogen, for five endpoints variables
Nimax tmaxs A» & and F(c0) with p-values for testing equality

A. Results for 2003

Level | Npax | tmax | * [ 5 [Fo

For Water

1 30.43 2.75 3.04 0.152| 40.11

2 25.26 2.64 3.02 0.181| 33.52

3 24.49 2.64 3.22 0.212| 30.47
p-value 0.03 0.004 0.58 0.006| 0.001
For Nitrogen

1 24.84 2.66 3.05 0.189| 32.81

2 28.02 2.66 3.20 0.185] 35.24

3 27.05 2.70 3.02 0.170| 36.05
p-value 0.41 0.54 0.64 0.55 0.41

B. Results for 2004

Level Nmax tmax A S F()
For Water

1 21.79 5.45 2.39 0.131 | 37.09

2 20.93 5.48 221 0.117 | 38.17

3 20.50 5.47 2.25 0.123 | 36.61
p-value 0.74 0.87 0.54 0.59 0.80
For Nitrogen

1 21.73 5.49 2.51 0.145 | 34.84

2 21.85 5.42 2.33 0.124 | 37.61

3 19.70 5.49 2.00 0.102 | 39.43
p-value 0.33 0.43 0.011 | 0.009 0.14

These trends are noticeable in Fig. 1A, i.e. the peaks
and areas under the curve for column 1 are larger than
those for column 2, and these values for column 2 exceed
those of column 3. The Nitrogen main effect is not
significant for any of the five variables. Year 2003 was a
very dry year, which explains the significance of the water
treatments on many variables.

The comparable results for the 2004 data are given
in Table 2B. The results are very different from 2003,
most notably that the Water main effect is not significart
for any of the five variables. This is due to the ample
rainfall in 2004. However, the Nitrogen main effect is
significant for two response variables; in particular as
the level of nitrogen increased from Zero to Blanket
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Fig. 1. Graphs of experimental data. Each box illustrates the aphid counts within the three blocks at each sampling time. Each
column represents a Water level and each row a Nitrogen level. The fitted curves are calculated for each treatment combination

from the parameter values given in Table 1. A. Data for 2003. B. Data for 2004
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1. the birthrate A decreases substantially (~20%)

2. the deathrate & also decreases substantially
(~30%)

These two effects largely offset one another and
hence no significant changes occur in the levels of Ny,
tmax OF F(0). Consequently, these effects in the kinetic
rates are not visually noticeable neither in the raw data
nor in the fitted curves in Fig. 1B. This demonstration
that the regression model in (11) can detect treatment
effects in the underlying kinetic parameters of the
mechanistic model (5), effects which are not apparent
in a model-free analysis, is a strong testament to the
utility of the model-based analysis.

5. LEAST SQUARES ANALYSIS

5.1 Model Definition

As an alternative to fitting all the data simultaneously
to model (17), we consider fitting the data for each of
the 27 individual cases, one for each (i, j, k) combinations
of water, nitrogen and block, for each of the two years
directly to the nonlinear regression model (11). The
random errors for each (i, j, k) case are assumed to have
independent normal N(O,cizjk) distributions, hence
differing from model (17) in which each case has a
common N(0,c?)error distribution. The model was fitted
to the data using the nonlinear least squares option in
SPSS (2002). The individual effects are incorporated into
the five response variables namely Nyax and tyax directly
from (11) and A, 8 and F(e0) from (12) and (16).

Let Zjj denote any one of the five response
variables for case (i,],k). As before, the data for each
year was analyzed separately due to the different
environmental conditions and sampling schedules. The
assumed ANOVA model for each year is

Zy =p+o, +Bj + Vi TPk T e (22)
where a, B, y and p denote the fixed water, nitrogen,
water by nitrogen, and block effects and €;; is the random
error term. This is a restated form of ANOVA models

(19)-(21).
5.2 Model Results

The analysis for the 2003 data included the 7j
interaction terms, which is different from the nlme

analysis. The factor level means for the new analysis
are given in Table 3A. Though the means are slightly

different numerically, the results are similar qualitatively.
The Water main effects are significant for three variables
tmax, © and F(c0). In particular, as the level of water
increases over the three levels, F(o0) decreases by 21%,
tmax decreases slightly by 4% and & increases
substantially by 44% all of which are very close to the
previous results. The one different result is that although
Npax increases by 19% with increasing water, this new
result is not substantially significant (with p=0.18) as it
was previously. As before, the Nitrogen main effect is
not significant for any of the five variables, and neither
is the Water by Nitrogen interaction which is included in
this model.

Table 3. Factor level means from the least squares analysis
for main effects, Water and Nitrogen, for five endpoint
variables Npax, tmax, A, © and F(eo) with p-values
for testing equality

A. Results for 2003

Level | Ninax | tinax l A l o l F(0)

For Water

1 31.99 2.77 2.95 0.149 | 43.40

2 27.36 2.64 3.02 0.202 | 36.36

3 26.04 2.66 3.02 0214 | 34.17
p-value 0.18 0.02 0.66 0.05 0.05
For Nitrogen

1 25.70 2.67 292 | 0.188 | 34.95

2 29.41 2.69 3.12 | 0.200 | 38.71

3 30.28 2.71 294 | 0.176 | 40.26
p-value 0.34 0.77 0.44 | 0.65 0.33

B. Results for 2004
Level | Ninax l Yinax | A l o | F(0)

For Water

1 23.97 5.45 2.42 0135 | 39.52

2 22.03 5.48 225 0.129 | 41.49

3 21.29 5.46 2.30 0.132 | 38.56
p-value 0.26 0.90 0.31 0.77 0.49
For Nitrogen

1 23.34 5.48 2.59 0.151] 36.68

2 23.55 5.43 2.32 0.132] 40.24

3 20.20 5.48 2.05 0.114] 42.66
p-value 0.08 0.70 0.003| 0.008] 0.10
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The results for the analysis of the 2004 data are
given in Table 3B, and they too are qualitatively similar
to those from the nlme analysis. As before, the Water
main effect is not significant for any of the five endpoint
variables nor is the Water by Nitrogen interaction
significant. As the level of nitrogen increased from Zero
to Blanket, the two kinetic rates decreased significantly,
the birthrate | decreasing by 19% and the death rate d
by 25%.

The results from this least squares analysis are
presented in detail in Matis ez al. (2007). The discussion
includes testing contrasts for linear and for pairwise
comparisons. Biological interpretations of the results are
also given. For present purposes, however, the chief
conclusion is that the results of the two analyses are
similar qualitatively, as one might expect.

6. DISCUSSION

The principle objective of this paper was to
investigate whether the nonlinear regression model (11)
could be used as the basis for a nonlinear random effects
model analysis of a designed experiment. The model has
previously been shown to fit diverse aphid abundance
curves satisfactorily. This paper demonstrates the utility
of the elegant nlme analysis based on this new model.
Though there is obviously a learning curve involved with
utilizing the sophisticated nlme software, the analysis
reduces the effort required in fitting each individual curve
with standard, simple nonlinear least squares software.

The model assumed that the blocks constituted a
fixed effect, in part because there were so few of them.
In the case where there are more blocks, a convenient
generalization would be to assume a random block effect,
where the block effects would have an independent

N(0,0¢) distribution. This would add a mild assumption,
which could be checked, but would retain a low number
of parameters. This generalization is simple to implement
with the nlme software.

The nlme analysis may also be based on an
underlying linear differential equations model, instead of
on an explicit solution such as regression model (11).
However, the differential equations for the mechanistic
models discussed in this paper, including the basic model

(5) and the generalized models (13) and (14), are all
nonlinear. Consequently at the present time, any
application of the generalized models (13) or (14) to data
from a designed experiment would require first fitting
the models to individual data sets using numerical
integration, as demonstrated in Matis et al. (2007) and
Matis et al. (2007), and then proceeding with the
standard analysis outlined in Section 5.

Most of the local insect populations of interest i
agricultural production collapse in size. This class of
mechanistic models including (5), (7), (13), and (14)
contains a mechanism based on cumulative size which
explains mathematically how such populations might
collapse. Given also that we are not aware of any
competing analytical models for single population collapse,
we are confident that this new class of models will be
widely applied, not only to other aphid species but to
many other insect pest populations as well.
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