A Note on Unrelated Question Randomized Response Model

Raghunath Arnab and Sarjinder Singh¹ *University of Botswana, Botswana*(Received : July, 2006)

SUMMARY

It is shown that the derivations of most of the results in the randomized response technique proposed by Singh et al. (2000) are incorrect. Corrections of these results are given.

· Key words: Randomized response, Sampling designs, Relative efficiency.

1. INTRODUCTION

Warner (1965) introduced an ingenious technique known as randomized response technique (RR) for estimating π_x , the proportion of population possessing certain stigmatized character x (say) by protecting the privacy of respondents and preventing the unacceptable rate of non-response. Since then Warner's (1965) technique has been modified by several researchers. A comprehensive review is available in Chaudhuri and Mukherjee (1988). Following the Moor's (1971) technique Singh *et al.* (2000) proposed two alternative RR techniques described as follows.

Singh et al. (2000) — Method 1: Two independent samples S_1 and S_2 were selected by simple random sampling without replacement (SRSWOR) method. Each respondent in the S_1 sample was asked to perform the randomized device R_1 while the respondents belonging to both the samples S_1 and S_2 were asked to perform randomized devise R_2 as described above. The respondents belonging to S_2 but not S_1 were directly asked whether or not they possess the neutral character y. The proposed estimator of π_x is given by

$$\hat{\pi}_p = w\hat{\pi}_1 + (1 - w)\hat{\pi}_2 \tag{1}$$
 where $\hat{\pi}_1 = \frac{\hat{\theta}_1 - (1 - p_1)\hat{\pi}_{2y}}{p_1}$, $\hat{\pi}_2 = \frac{\hat{\theta}_2 - (1 - p_2)\hat{\pi}_{2y}}{p_2}$

 $\hat{\theta}_i$ = proportion of "yes" answers in S_i , I = 1, 2

 $\hat{\pi}_{2y}$ = proportion of the respondents belong to sample S_2 but not belong to S_1 possess the character y and W is a suitable weight.

Method 2: At first, an initially sample \tilde{s} of size n was selected from the population U by SRSWOR method. The sample \tilde{s} was divided at random into two sub samples \tilde{s}_1 and \tilde{s}_2 of sizes n_1 (to be determined appropriately) and n_2 (= $n-n_1$) respectively. Respondents belonging to the first subsample \tilde{s}_1 , were asked to perform randomized device R_1 while respondents belonging to the sub-sample \tilde{s}_2 were asked directly to answer the question (ii) relating to possession of the neutral character y. The proposed estimator for π_x is given by

$$\tilde{\pi}_{x} = \frac{\tilde{\theta}_{1} - (1 - p_{1})\tilde{\pi}_{2y}}{p_{1}}$$

where $\tilde{\theta}_1$ and $\tilde{\pi}_{2y}$ are the proportions of yes answers in the first and second samples.

2. CORRECTIONS OF SINGH et al. (2000) RESULTS

In this section, we will show that the following results obtained by Singh *et al.* (2000) are incorrect and we present corrections.

For the Method 1, let S_{21} be the sample of size n_{21} consisting of units belonging to both the samples

^{1.} St. Cloud State University, USA

 S_1 and S_2 , and S_{22} is a sample of size n_{22} (= n_2 – n_{21}) belonging to S_2 but disjoined to S_1 i.e S_2 = $S_{21} \cup S_{22}$. Let $z_i(z_i')$ be the RR obtained from the ith unit if it belongs to $S_1(S_{21})$. Let x_i = 1 if ith unit possess the character x and x_i = 0 otherwise. Similarly, y_i = 1 if ith unit possess the neutral character y and y_i = 0 otherwise. Denoting $E_R(E_P)$ and $V_R(V_P)$ respectively as expectation and variance with respect to randomized response (sampling design) we note the following.

$$\begin{split} \pi_{x} &= \sum_{i=1}^{N} x_{i} / N, \ \pi_{y} = \sum_{i=1}^{N} y_{i} / N \\ E_{R}(z_{i}) &= p_{1}x_{i} + (1 - p_{1})y_{i} = w_{i} \\ E_{R}(z'_{i}) &= p_{2}x_{i} + (1 - p_{2})y_{i} = \gamma_{i} \\ V_{R}(z_{i}) &= w_{i}(1 - w_{i}) = \sigma_{i}^{2} \\ V_{R}(z'_{i}) &= \gamma_{i}(1 - \gamma_{i}) = \sigma_{i}^{2} \\ \hat{\theta}_{1} &= \frac{1}{n_{1}} \sum_{i \in S_{1}} z_{i} = \overline{z}(S_{1}) \\ \hat{\pi}_{2y} &= \overline{y}(S_{22}) = \frac{1}{n_{22}} \sum_{i \in S_{22}} y_{i} \end{split}$$

The incorrect results of Singh *et al.* (2000) paper are presented using notations of this paper as follows.

Result 1. (Lemma 3.3, page 247)

$$Var(\hat{\theta}_1) = \frac{\theta_1(1-\theta_1)}{n_1} = \frac{n_1-1}{n_1(N-1)} \ \pi_x(1-\pi_x)$$

Result 2. (Lemma 3.4, page 247)

$$Var(\hat{\theta}_2) = \left(\theta_2(1 - \theta_2) - \frac{\pi_x(1 - \pi_x)}{N - 1}\right) E(\frac{1}{n_{21}})$$
$$-\frac{\pi_x(1 - \pi_x)}{N - 1}$$

Result 3. (Lemma 3.5, page 248)

For uncorrelated x and y

$$Cov(\hat{\theta}_1, \hat{\pi}_{2y}) = \frac{N - n_1}{n_1(N - 1)} (1 - p_1)\pi_y(1 - \pi_y)$$

Result 4. (Lemma 3.6, page 248)

For uncorrelated x and y

$$Cov(\hat{\theta}_2, \hat{\pi}_{2y}) = \frac{N - n_1}{n_1(N - 1)} (1 - p_2) \pi_y (1 - \pi_y)$$

Result 5. (Lemma 3.7, page 249)

$$Var(\tilde{\theta}_1) = \left(\frac{\theta_1(1-\theta_1)}{n_1} - \frac{(n_1-1)\pi_x(1-\pi_x)}{n_1(N-1)}\right)$$
(for Method 2)

2.1 Corrections of the above Results Result 1.

$$\begin{split} Var(\hat{\theta}_1) &= Var[\overline{z}(S_1)] \!=\! E_p \left(V_R \left(\overline{z}(S_1) \right) \right) \\ &+ V_p \left(E_R \left(\overline{z}(S_1) \right) \right) \\ &= \frac{1}{n_1 N} \sum_{i=1}^N \sigma_i^2 + V_p \left(\frac{1}{n} \sum_{i \in s_1} w_i \right) \\ &= \frac{\theta_1 (1 \!-\! \theta_1)}{n_1} - \frac{n_1 \!-\! 1}{n_1 (N \!-\! 1)} (p_1^2 \pi_x (1 \!-\! \pi_x) \\ &+ (1 \!-\! p_1)^2 \pi_y (1 \!-\! \pi_y) + 2_{p1} (1 \!-\! p_1) \pi_{xy}^*) \end{split}$$
 where $\pi_{xy}^* = \pi_{xy} - \pi_x \pi_y$, $\pi_{xy} = \sum_{i=1}^N x_i y_i / N$

In case x and y are independent $\pi_{xy}^* = 0$ and we get

$$Var(\hat{\theta}_1) = \frac{\theta_1(1-\theta_1)}{n_1} - \frac{n_1-1}{n_1(N-1)} (p_1^2 \pi_x (1-\pi_x)) + (1-p_1)^2 \pi_y (1-\pi_y))$$

which is quite different from Result 1 obtained by Singh *et al.* (2000). It should be noted that the expression $Var(\hat{\theta}_1)$, obtained by Singh *et al.* (2000), is independent of π_y which is incorrect and can be checked from the fact that $z_i = y_i = w_i$ for $p_1 = 0$.

Result 2.

$$Var(\hat{\theta}_{2}) = Var(\overline{z}'(S_{21}))$$
$$= E_{p}(V_{R}(\overline{z}'(S_{21}))) + V_{p}(E_{R}(\overline{z}'(S_{21})))$$

Now writing $E_{n_{21}}$ as the unconditional expectation over n_{21}

$$o_i^{\prime 2} = V_R(z_i^{\prime}) = p_2 x_i + (1 - p_2) y_i - \gamma_i^2$$

 $\gamma_i = E_R(z_i^{\prime}) = p_2 x_i + (1 - p_2) y_i$

$$\begin{split} E_{p}\left(V_{R}\left(\overline{z}'(S_{21})\right)\right) &= E_{p} \frac{1}{n_{21}^{2}} \sum_{i \in S_{21}} \sigma_{i}^{'2} \\ &= \underbrace{E}_{n_{21}} \left(E_{p} \frac{1}{n_{21}^{2}} \sum_{i \in S_{21}} \sigma_{i}^{'2} \mid n_{21}\right) \\ &= \frac{1}{N} \sum_{i \in U} \sigma_{i}^{'2} E(\frac{1}{n_{21}}) \\ \text{and } V_{p}\left(E_{R}\left(\overline{z}'(S_{21})\right)\right) &= V_{p}\left(\overline{\gamma}(S_{21})\right) \\ &= \underbrace{E}_{n_{21}} \left(V_{p}\left(\overline{\gamma}(S_{21})\mid n_{21}\right)\right) \\ &+ \underbrace{V}_{n_{21}} \left(E_{p}\left(\overline{\gamma}(S_{21})\mid n_{21}\right)\right) \\ &= \underbrace{E}_{n_{21}} \left(\frac{1}{n_{21}} - \frac{1}{N}\right) S_{\gamma}^{2} \\ &= \left(E(\frac{1}{n_{21}}) - \frac{1}{N}\right) \frac{N}{(N-1)} \Pi_{xy}(p_{2}) \end{split} \tag{3}$$

where

$$\begin{split} \overline{\gamma}(S_1) &= \sum_{i \in S_{21}} \gamma_i / n_{21} \\ (N-1)S_{\gamma}^2 &= \sum_{i \in U} (\gamma_i - \overline{\gamma})^2 \\ \overline{\gamma} &= \sum_{i \in U} \gamma_i / N \end{split}$$

and

$$\Pi_{xy}(p) =$$

$$(p^{2}\pi_{x}(1-\pi_{x})+(1-p)^{2}\pi_{y}(1-\pi_{y})+2p(1-p)\pi_{xy}^{*})$$

$$p=p_{1},p_{2}$$
(4)

From (2) and (3), we get

$$\begin{aligned} Var(\hat{\theta}_{2}) &= \frac{1}{N} \sum_{i \in U} \sigma_{i}^{'2} E(\frac{1}{n_{21}}) \\ &+ \left(E(\frac{1}{n_{21}}) - \frac{1}{N} \right) \frac{N}{(N-1)} \Pi_{xy}(p_{2}) \\ &= \left(\theta_{2}(1 - \theta_{2}) + \frac{\Pi_{xy}(p_{2})}{N-1} \right) E(\frac{1}{n_{21}}) - \frac{\Pi_{xy}(p_{2})}{N-1} \end{aligned}$$

Result 3.

$$\begin{split} \text{Cov}(\hat{\boldsymbol{\theta}}_{1}, \hat{\boldsymbol{\pi}}_{2y}) &= \text{Cov}(\overline{\boldsymbol{z}}(\boldsymbol{S}_{1}), \overline{\boldsymbol{y}}(\boldsymbol{S}_{22})) \\ &= \underset{\boldsymbol{n}_{21}}{\mathbb{E}} \left(\text{Cov} \left(\overline{\boldsymbol{w}}(\boldsymbol{S}_{1}), \overline{\boldsymbol{y}}(\boldsymbol{S}_{22}) \, | \, \boldsymbol{n}_{21} \right) \right) \\ &+ \underset{\boldsymbol{n}_{21}}{\text{Cov}} \left(\mathbb{E} \left(\overline{\boldsymbol{w}}(\boldsymbol{S}_{1} \, | \, \boldsymbol{n}_{21}) \right), \mathbb{E} \left(\overline{\boldsymbol{y}}(\boldsymbol{S}_{22} \, | \, \boldsymbol{n}_{21}) \right) \right) \end{split}$$

$$= \underset{n_{21}}{\mathbb{E}} \left(\text{Cov}[\overline{w}(S_{1}), \overline{y}(U - S_{1}) | n_{21} \right)$$
(since $\underset{n_{21}}{\text{Cov}} \left(\mathbb{E} \left(\overline{w}(S_{1} | n_{21}) \right), \mathbb{E} \left(\overline{y}(S_{22} | n_{21}) \right) \right) = 0$)
$$= -\frac{n_{1}}{N - n_{1}} \underset{n_{21}}{\mathbb{E}} \operatorname{Cov} \left(\overline{w}(S_{1}), \overline{y}(S_{1}) \right)$$

$$= -\frac{1}{N} S_{wy} - \frac{1}{N - 1} \left(p_{1} \pi_{xy}^{*} + (1 - p_{1}) \pi_{y} (1 - \pi_{y}) \right)$$
If y and y are uncorrelated, we get

If x and y are uncorrelated, we get

$$Cov(\hat{\theta}_1, \hat{\pi}_{2y}) = -\frac{(1-p_1)\pi_y(1-\pi_y)}{N-1}$$
 (5)

Result 4.

$$Cov(\hat{\theta}_2, \hat{\pi}_{2y}) = -\frac{(1-p_2)\pi_y(1-\pi_y)}{N-1}$$
 when x and y

are independent.

(Proof of the Result 4 follows from (5))

Result 5.

(3)

It can be easily checked that

$$Var(\tilde{\theta}_1) = \frac{\theta_1(1-\theta_1)}{n_1} - \frac{n_1 - 1}{n_1(N-1)} \Pi_{xy}(p_1)$$
 (6)

For uncorrelated x and y, (6) reduces to

$$\operatorname{Var}(\tilde{\theta}_{1}) = \frac{\theta_{1}(1-\theta_{1})}{n_{1}} - \frac{n_{1}-1}{n_{1}(N-1)} (p_{1}^{2}\pi_{x}(1-\pi_{x}) + (1-p_{1})^{2}\pi_{y}(1-\pi_{y}))$$
(7)

ACKNOWLEDGEMENTS

The authors are thankful to the referee for making valuable suggestions that led to the improvement of the paper.

REFERENCES

A. and Mukherjee, R. Randomized Response: Theory and Technique. Marcel Dekker, New York.

Moors, J.J.A. (1971). Optimization of the unrelated question randomized response models. J. Amer. Statist. Assoc., 66, 627-629.

Singh, S., Singh, R., Mangat, N.S. (2000). Some alternative strategies to Moor's model in randomized response sampling. J. Statist. Plann. Inf., 83, 243-255.

Warner, S.L. (1965). Randomize response: A survey technique for estimating evasive answer bias. J. Amer. Statist. Assoc., 60, 63-69.