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SUMMARY

In the present investigation, expressions for estimating variance components of one-way
classification random model are developed in case of correlated errors which follows autoregressive
of order one i.e. AR(1). These expressions are further used to see the influence of correlated errors on
the estimate of heritability by half-sib method. The expected mean sums of square due to error and due
to sire are overestimated and underestimated respectively when errors are negatively correlated. The
former increases and the later decreases as the degree of correlation increases. When the correlation is
positive, just reverse results are obtained for both the expected mean sums of squares. The heritability
values obtained by neglecting the correlation present in errors are underestimated when they are
negatively correlated. In contrast, heritability values are overestimated if the correlation is positive.
These results are found to be consistent for all the levels of heritability. Also, heritability increases
from zero to nearly four as the autoregressive coefficient increases from minus unity to approximately
unity irrespective of the heritability values. Thus, when the coefficient of AR(1) is positive and is very
high, heritability value goes far beyond its actual upper limit (i.e. unity) but if it is negatively correlated,
it will never cross the actual minimum limit of heritability even for maximum value of auto regression

coefficient, and simply it matches to the minimum limit of heritability in such a situation.
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1. INTRODUCTION

The information on genetic components of
variances of the important characters is the prime interest
of plant and animal breeders. Thus, the estimation of
various genetic variances and inferring about their
inheritance, based on estimates of different genetic
parameters is very important from plant and animal
breeding programme point of view. The development of
methods of estimating variance components was initiated
in the early 20th century. Fisher (1925) made a major
contribution to variance component models through
initiating the concept of the analysis of the variance
method of estimation. Jackson (1939) dealt with a mixed
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model for the first time in the literature of variance
component estimation. Cochran (1939) initiated for
unbalanced data. Henderson (1953) gave a method of
how to use unbalanced data for estimating the variance
components in a difficult problem. All these theories are
available for estimating the variance components for
those models which are having uncorrelated errors but
not for correlated error structure. So, it is required to
develop the theory for estimating variance components
in case of correlated error structure so as to meet the
requirements of practical situations. Keeping in view of
these points, in the present investigation expressions for
estimating variance components when errors are having
autoregressive of order one i.e., AR(1) structure has been
developed. Further, the influence of correlation on the
inheritance of characters is also presented by taking an
example of half-sib method.



ESTIMATION OF VARIANCE COMPONENTS

ONE-WAY CLASSIFICATION MODEL

The random model for the one-way classification is

Yy =u+o;t+e;
where y, is the j* observation in i* class, It is the general
mean, o is the effect on the y-variable of its being
observed on an observational unit that is in the i* class,
and ¢; is a residual error. The number of classes in the
data shall be denoted by a, and the number of
observations in the i class by n. Thusi= 1, 2, ...,a and
j=1,2,..,n

Under the normality assumptions

E(e;) =0

E(o;)=0

E(e})=o;

E(o})=0l

Cov(a;, 0 ) =0Vi#i’

Cov(oy,e;;) =0Vi and i’

Cov(e;,e;y) =0 except fori=i"and j=

The two sums of squares that are the basis of the

analysis of variance of balanced data from a one-way
classification are
SSA='n(, -¥..)’
i=l
and

SSE = Z Z(yij - Yi.)z
i=l =t
The ANOVA method of estimation is based on
deriving the expected values of SSA and SSE. Searle

et al. (1992) had given the expressions for estimating
variance components of the above model as follows

E(MSA) = ESSA) no’ +o’
a—1
and
E(MSE) = E(SSE) _ o’
a(n-1)

In case of the one-way classification model with
errors having AR(1) structure i.e.

Yi SR+ Qe
€ =Py TNy

where |pl <], Var(n,) = 7
1-p

and 1; = [IDN(O,1)for j>1
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Assumptions

E(e;)=0

E(a;,)=0

E(eiﬁ) = Gf_

E(@}) =0}

Cov(at,,a,) =OVi# i
Cov(o,e)=0 V i andi’
Cov(e;, ¢;)=0 V iand i’
Cov(eij,eij,)=p|j'j'|of VYV j#j
Cov(e;,e;4)=0V i#i" and j#j

In the similar fashion, the expressions for estimating
the variance components are developed for the above
model as follows (see Appendix-I for derivation).

E(MSA) =no? +0? [1 —(EJ p-p? +{3] p™*! Va -p)?
n n

and

At A e
E(MSE = n n-1 n(n-1)

(1-py

(1)

INFLUENCE OF CORRELATED ERRORS ON
THE ESTIMATE OF HERITABILITY

The half-sib analysis model can be written as
follows

Yi=Hts; +e¢

i 1=12,....8 j=12,...,p
where

y;; is the observed value on the progeny of the
j® dam mated to the i* sire

M is the general mean
s, is the effect due to " sire

e is the random effect associated with j* member
of the i sire

E(s;)=0; E(e;)=0
E(s})=o0:; E(e})=0;

The value of heritability by half-sib method is given
as follows
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h? =
o +o’ @)

e

Suppose that sires are independent but within sire
progenies are correlated. Further, assume that the
correlated errors follow AR(1) i.e.

€ = PG T

where |p| <1, Var(n;) =

1-p*
and M;; = [IDN(0,1) for j>1

In case of correlated errors, estimation of heritability
is not as simple as given by equation (2). The influence
of correlation is studied by using equation (1) for
different values of autoregressive coefficient, p and is
discussed below.

RESULTS AND DISCUSSION

The expressions for estimation of variance
components for one-way classification random model
are developed when errors are correlated by
autoregressive of order one. The developed expressions
of variance components are further used to see the
influence of correlated errors on the estimate of
heritability and is demonstrated by considering the
half-sib method. Three different levels of heritability
namely low (0.1), medium (0.25) and high (0.5) with
their respective optimum structure (i.e., number of
progenies per sire, n =4/h2) are used to plot the
expected mean sums of squares given by
equation (1) for different values of autoregressive
coefficient, p. The variance of error ( of ) is taken to be
unity and the corresponding variance due to sire (g2 ) is
obtained by using the relation for half-sib,
h? =402 [(6? +6?). The expected mean sums of
squares thus obtained are further used to get the
corresponding heritability values by neglecting the
correlation present in the error term for different values
of autoregressive coefficient, p and are shown in Table
1. The expected mean sums of squares due to error are
overestimated when the correlation is negative and they
increase as degree of correlation increases. But these
expected mean sums of squares are underestimated if
errors are positively correlated and they decrease with
increase in degree of correlation and it approaches to
zero as P tends to unity. On the other hand, just reverse

Table 1. Expected mean sums of squares when errors are
correlated by AR(1) and corresponding heritability values
after neglecting the correlation by half-sib method for
different levels of heritability and
autoregressive coefficient

2 2 2
p |h =0ln=4c, =1 h% =025.n=16,62 =1 | h* =0.5.n =802 =1

E E h? E E h? E E h?
(MSE) (MSA) (MSE) (MSA) MSE) (MSA)

-1.000| 1.026 1.026 0.000 1.067 1.067 0.000 1.143 1.143 0.000

-0.900] 1.024 1.091 0006 1061 1.145 0020 1.130 1231 0.044
-0.800( 1.022 1.149 0012 1.057 1208 0035 1120 1.305 0.081
-0.700{ 1.021 1214 0.019 1053 1273 0.052 1.109 1376 0.117
-0.600( 1.019 1287 0.026 1.048 1346 0.070 1.099 1450 0.154
-0.500[ 1.017 1.370 0.034 1.043 1428 0090 1.087 1.532 0.194
-0.400) 1.014 1464 0.044 1036 1521 0.114 1074 1622 0240
<0.300) 1.012 1.573 0055 1.029 1627 0.40 1.060 1726 0.291
-0200) 1.008 1699 0067 1.021 1751 0.71 1.043 1.844 0.351
<0.100) 1.005 1.848 0082 1011 1.895 0207 1.023 1982 0419
0.000] 1.000 2.026 0.100 1000 2.067 0250 1.000 2.143 0.500
0.100; 0.994 2242 0.122 0.98 2273 0302 0973 2334 0.596
0.200| 0.988 2.510 0.J48 0969 2528 0.365 0940 2565 0.71
0.300] 0.979 2.852 0.183 0.948 23847 0445 0.899 23847 0.852
0.400| 0.967 3303 0.228 0920 3.261 0.549 0849 3.19 1.028
0.500{ 0.951 3926 0290 0.883 3817 0.688 0.785 3.645 125}
0.600] 0928 4838 0.38] 0831 4598 0883 0.703 4221 1539
0.700| 0.890 6.303 0.528 0.753 5764 1.174 0.595 4.977 1917
0.800| 0.821 9.026 0.800 0.629 7.637 1.643 0452 5982 2419
0.900| 0.652 15592 1457 0411 10901 2459 0259 7328 3.093

09999 0.001 40972 3995 0.001 17.058 3.998 0.000 9.141 3.999
10001) -0.001 41.079  4.005 -0.001 17.075 4.002 0.000 9.145 4.001

results are obtained for estimating the mean sums of
squares due to sire i.e., these expected mean sums of
squares are underestimated when p is negative and they
are overestimated if the correlation is positive. As p tends
to unity, expected mean sums of squares due to sire
approaches to its maximum value. The maximum and
minimum values of expected mear. sums of squares due
to error and due to sire respectively coincide at a point
when p is negative and unity. These results are found to
be consistent for all the levels of heritability. Further,
the heritability values obtained by neglecting the
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correlation present in errors are underestimated when
errors are negatively correlated. In contrast, heritability
values are overestimated if the correlation is positive.
The same trend follows for all the levels of heritability.
Also, heritability increases from zero to nearly four as
the autoregressive coefficient increases from minus unity
to approximately unity. Thus, when the coefficient of
AR(1) is positive and is very high, heritability value goes
far beyond its actual upper limit (i.e., unity) but if it is
negatively correlated, it will never cross the actual
minimum limit of heritability even for maximum value
of autoregressive coefficient, and simply it matches to
the minimum limit of heritability in such a situation.
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APPENDIX-I

Random model for the one-way classification
is
y; =u+a; +ey; i=12,..,a andj=1,2,...,n

lj 4

€ = PCi(jy) + M

where |p|<1,Va-f(rli|) 1 1 2
-P

Then
=u+o, +¢ for g =—Zeu, ¥ =u+0 +€
J-l
where O ———2(1 and € =—Ze
|l
Define

SSA = Zn(y,—Y) and SSE = Z E(y,,—y)

=1 j=1
Now

E(SSA) =E[n§a‘,(7i. —?..)2}
i=l
= E[ni{((xi -a)+(e; _—é‘.)}zil
i=1

= [ni{ﬁ(ai -@)* +E(E, —E__)Z}}
i=1

Since covariance term vanishes.

= nE[Var(a -0 )+ Var(g, —€ )]

n+l

n?(1-p)?

n+])

a 20 _ 2
+n2 {oc(n 2p—np° +2p
i=1
+of(n—2p—np2+2p
an’(1-p)’
_,0e(n=2p—np”+2p™")
an*(1-p)?

=n(a-1)c’ + n) 2[n 2p~np +2p"*']/(1 p)?

Therefore

E(SSA)
(a-1)

Ik abasca

1-p)’

E(SSE) = [Z Z(yu v.) }

i=l  j=1

=i 2 E(e; &)’

isl j=l

=i En: Var(e; —¢€,)
=1 j=I

E(MSA) =
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BN [Var(e,) + Var(g, ) - 2Cov(e, -2, )]
i=l j=l
n+l
a 63_3[ ~2p-np® +20™ |
n 1-p)*
2 n+l
=a{n_(n—zp—np +2p )]03
n(l-p)’
=a{n(n—l)—2p(n -D+p’n(n+1)- 2p"*‘}
n(l-p)* ‘
Therefore
E(MSE) = E(SSE)
a(n—-1)
[ 2{n+1)p (n+l}O
1-
[n(n—l) ﬂ/( p)
where

Var(g, ) = Vm{l ieij]
ng

1
?‘Var(c“ + elz + N Cm)

1
=—Cov{(e; +e, +...+e,), (e, +e, +..+¢€,))

n

=;11703[(1+p+pz+-~-+p"")+(p+l+p+92+---
+p" D)4+ (P +p" I+ 4+ pP4p+]))

=;17 2[1~2p~np? + 20™ J/1 - p?

Similarly
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1 n+
=—~2cyf[n~29—np2 +2p l1/(1—p)2

an
- - 1%

Cov(e,,e )=Cov| €., — ) €

(&%) v( ) ]

1 — . . .
= —;Var(ei‘) Since i’s are independent and hence

Cov(e,

Lyd e
L a{ngej

1
=—y Var(e; +e;; +...+¢;,)
an

£.)=0 Vi=i

1.° l

1
=—-—anz Cov{(e, +e, +...+¢e,). (e, +e, +...+e, )}

=—1—203{(l+p+p2 +.. 4" D+ E+1+p+p+....
an
+0" )+ (P P " 4+ PP+ D))

1
=—o0? [n -2p—np* + 29“*‘]/(1—;))2

ov(eu,e) Cov{e ( ZCUJ}

= lCo"{‘”ij’(en tep tote,))
n
= -l-(COV(e,,,e,,) +Cov(e;.e;,) +...+ Cov(e;,e,,)}
n
el et ]
n
Therefore
a n _ 1 a n g g .
Y, Y, Cove;e) =;°§Z Z{D]J Hiph s 4o l}
izl j=1 izl =
=25t n {Plj—" ol s+ p“'"'}
n "5



