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SUMMARY 

Response Surface Methodology involving both qualitative and quantitative factors has been 
discussed by many authors in the literature. In this paper we develop efficient response surface designs 
involving qualitative and quantitative factors, by using D-optimal designs. We have also applied global 
dual response surface optimization technique for finding the optimal setting for a set ofdesign variables 
involving qualitative and quantitative factors. 

Key words: Saturated designs, D-optimal designs, Quantitative factors, Qualitative factors, Global 
dual response surface optimization. 

INTRODUCTION 

Consider an agricultural experiment conducted for 
maximizing corn yield, when same type ofseed is used. 
The effect of five variables is studied on the yield of 
corn (i) soil water at plantation, (ii) rainfall, 
(iii) temperature, (iv) amount ofmanure and (v) type of 
soil. The first four factors are quantitative, while the fifth 
one is qualitative in nature. The selection of an 
appropriate design depends on how the qualitative factors 
interact with quantitative factors in the model. To study 
the response of such experiments, Draper and John 
(1988) and Wu and Ding (1998) have given a systematic 
method for constructing composite designs involving 
both qualitative and quantitative factors. Response 
surface designs involving quantitative and qualitative 
factors have been discussed by Myers and Montgomery 
(1995), Aggarwal and Bansal (1998), Wu and Hamada 
(2000), Aggarwal et al. (2000) and Montgomery (2005). 
The significance ofthis problem has also been discussed 
by Das et af. (1999). Myers et al. (2004) have given 
excellent review on response surface methodology. 
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Response surface designs involving qualitative and 
quantitative factors available in the literature are not 
saturated. Sometimes, in an experiment when the runs 
are expensive, difficult, or time consuming then there is 
certainly a need for smaller designs that are either 
saturated or nearly saturated. In this paper we apply a 
systematic method for constructing saturated response 
surface deigns involving qualitative and quantitative 
factors. 

The goal ofan experimenter in agricultural field or 
industry is to find operating conditions which can achieve 
desired target for the expected response with minimum 
process variability. Vining and Myers (1990) suggested 
Dual Response Surface as an alternative to Taguchi's 
(1959, 1987) Robust Parameter Design. It uses separate 
linear models for the response and its variance. 
Ankenman and Dean (2003) have given excellent review 
on Taguchi's robust design and dual response surface 
optimization. We have used the global dual response 
surface optimization technique given by Del Castillo 
et al. (1997, 1999) for finding the optimal setting for a 
set of design variables involving qualitative and 
quantitative factors. 

CONSTRUCTION METHOD FOR EFFICIENT
 
RESPONSE SURFACE DESIGNS
 

The saturated fractional factorial designs are used 
when experiment is expensive or time consuming, the 
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experimental error is small, an independent estimate of 
experimental error is available and a second order model 
is adequate to explain the phenomenon under study. 
Mitchell (1974), Gam and Kiefer (1980) and Dean and 
Draper (1999) have given D-optimal mod designs for 
n= 1,2,3 and 4. We have constructed efficient response 
surface designs involving qualitative and quantitative 
factors by using the technique given by Wu and Ding 
(1998) and above mentioned D-optimal designs. 
Consider a product, process or system involving a 

response y that depends on m =k + 1 factors, where 

x l' X 2 ,. •• , X k are k quantitative factors and z is one 

qualitative factor at two levels. The form of the true 
response function is unknown and we approximate it by 
a polynomial representation over a limited experimental 
region. We wish to fit a quadratic response surface model, 

which depends on m == k + 1 factors. Then the required 
second order model is of the form 

k k k 

y==~o +Ooz+ ~)iXi + L~iiX~ + L L ~ijXjXj 
i=l j=1 i<j=l 

k 

+ L8;x;Z+E (1) 
;=1 

where ~o is a fixed unknown; 80 is the effect due to the 
qualitative factor z, ~i'S are regression coefficients, OJ 
is the interaction effect between qualitative factor Z and 
ilb quantitative factor, z =-lor 1 (21evels ofqualitative 
factor), Xi is the value ofthe ilb quantitative factor. The 

. (m+l)(m+2) .
quadratIc model has p = -I coeffiCIents 

2 
to be estimated. 

For the cube portion of efficient response surface 
design, we choose m columns from the D-optimal 
designs having t =P - 2k -1 runs. Next 2k points are 
'star points' or 'axial points' whose distance from the 
origin is a. . We have considered a. =.Jk for spherical 
designs. The last two runs: (t + 2k +I)th and 
(t + 2k + 2)th are center points. The qualitative factor z 
can take values ±1. For the first t runs the qualitative 
factor z is one ofthe columns ofthe D-optimal designs. 
For 2k star points an overall search has been made over 
different combinations of ±1. Next corresponding to 
two center runs, we take z = 1 and z =-1. 

Several optimality criterion are proposed for 
checking design efficiency and D-optimality is one of 
the most popular as it maximizes IX'XI, which means 

variance of the individual regression coefficients are 
minimized. High D-efficiency designs are required for 
overall good fitting of the model. From all the 

combinations of ±1 for z, we select the one which gives
IX'Xr/p 

maximum D-efficiency = , where 'p' is the 
N 

number ofcoefficients to be estimated and 'N' is the run 
size of the response surface design. Such designs are 
generically represented in Table 1. 

Table 1. Efficient response surface designs for quantitative 
and qualitative factors 

Run XI . . xk Z 

1 

2 ± 1 according to the 
D-optimal design 

for m =k+ 1 factors 

t 

t+1 a. 0 

t+2 -{X 0 
-I 

OR 

t + 2k-1 0 a 
1 

t+ 2k 0 -{X 

t+ 2k + 1 0 0 1 
t+2k+2 0 0 -I 

In this paper we have developed different des.igns, 
for k = 3,4,... ,8 quantitative factors and one qualitative 
factor. We explained the method for k = 3 quantitative 
factors. In the remaining cases we have given number 
of factors, coefficients to be estimated, the cube portion 
of the design and different choices of z. We have given 
two designs for k = 4 quantitative factors. 

Case 1: Number of quantitative factors = 3: xI' x
2

' x
3 

We need at least N = 15 runs for the estimation of 
following 14 coefficients according to model (1) 

In order to estimate second order coefficients, we 
add 2k = 2x3 = 6 axial points. Further we add two center 
points corresponding to two levels of z. The minimum 
possible number of points required for cube portion is 
15 - 6 - 2 = 7. For this case we consider 7-run design of 
Galil and Kiefer (1980) given in Table 2. 
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Table 2. D-optimum design for n = 7 (3 mod 4) 

1 

-I 

1 

-1 

-1 

-I 

1 

1 

-I 

-I 

-I 

-1 

I 

I 

1 

1 

-1 

1 

-1 

-1 

-I 

-1 

-1 

-1 

1 

1 

-1 

1 

-I 

-1 

1 

1 
1

-1 

I 

-1 

1 

1 

1 

1 

1 

1 

1 

The above design has 6 columns out of which 4 
columns can be chosen in 6C

4 
ways. By complete search 

we observe that column numbers 1, 3, 4 and 6 of this 
design will give highest efficiency. Therefore, we allocate 
the factors XI'X 2 .X 3 and z to the column numbers 1,3, 
4 and 6 respectively, and the corresponding coefficient 
matrix is given below in Table 3. 

Table 3. Coefficient matrix 

XI X2 Xl Z 

1 1 -1 1 
-1 1 -1 1 

1 -I -1 1 
-I 1 1 1 
-1 -1 I 1 
-1 -1 -1 1 

1 -1 1 1 
1.732 0 0 

-1.732 0 0 -1 
0 1.732 0 OR 
0 -1.732 0 1 
0 0 1.732 
0 0 -1.732 
0 0 0 1 
0 0 0 -1 

S. 
No. 

1 
2 
3 
4 
5 
6 
7 
8 

D-Eff. 

70.15 
61.67 
60.79 
55.02 
56.36 
55.55 
55.54 
53.99 
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Next we choose the level ofz for the 2k star points. 
Different choices ofz which gives distinct designs with 
high D-efficiency and allocation of factors are given in 
Table 4. 

Case 2(a): Number of quantitative factors = 4 and 

(i) m = 4+1 = 5 factors; Xl' X2' Xl' X4, z 

(ii) N = 21 runs; p = 20 coefficients to be estimated 

(iii)	 Cube portion: II-run Galil and Kiefer (1980) 
design given in Annexure I - Design (a) 

In Table 5(a) we give the choices ofz which gives 
distinct designs with high D-efficiency and allocation 
of factors. 

S. 
No. 

1 
2 
3 
4 
5 
6 
7 
8 

Col. No. 's for 
cube portion 

XI' X2• Xl' X4 

1 3 4 6 
1 3 4 6 8 -1 -1 -1 -I -1 -I 1 -1 65.59 
I 3 4 6 8 -1 -1 -I -1 -1 -1 -1 1 65.55 
1 3 4 6 8 -1 -1 -1 -I 1 -1 I -I 59.73 
1 2 3 5 8 -1 -I -1 -1 -1 -1 -I -1 69.07 
1 2 3 5 8 -1 -1 -1 -1 -1 -1 1 -1 63.22 
1 2 3 5 8 -1 -1 -1 1 -I -I -1 -1 63.02 
1 2 3 5 8 -1 -1 -1 -1 -1 -1 -I 1 62.95 

Case 2(b): We have also considered ll-run Galil 
and Kiefer (1980) design given in Annexure I 
Design (b), for cube portion because the earlier design 
has all its cube points at z = 1.We get the following 
choices ofz as shown in Table 5(b) which gives distinct 
designs with high D-efficiency and allocation offactors. 

Table 5(b) Table 4 

Z = 

Z 

6 -1 -1 
6 -1 -1 
6 -1 -I 
6 -1 -1 
5 1 1 
5 1 -1 
5 1 1 
<; 1 1 

S. 
No. 

I 
2 
3 
4 

5 
6 

Table 5(a) 

Z = (ZI2' ... , Z19) D-Eff. 
Z 

8 -1 -1 -1 -1 -1 -1 -I -1 71.89 

Col. No.'s for 
cube portion 

XI' X2• Xl 

1 3 4 
I 3 4 

1 3 4 
1 3 4 
1 3 4 
1 3 4 
1 3 4 
1 3 4 

I 

Col. No. 's for 
cube portion Z = (ZI2' ... , Z19) 

-1 -I -I -I I I -I -I 
1 -1 -I -I -I -I -I -1 

-1 1 -1 -1 -1 -1 -1 -I 
-1 -I -I -I -I -I -I -I 
-1 I -I -I -I 1 -I -1 
-1 -1 1 -I 1 1 -1 -1 

P-Eff. 

58.67 
58.65 
58.33 
57.36 
57.15 
56.37 

(zs' •..• Z13) 

-1 -1 -1 
-1 -1 1 
-1 --1 -1 

1 -1 1 
-I -1 1 
-1 -1 1 

1 -1 1 
-1 1 I 

XI' X2• Xl' X4 

1 3 5 8 
1 3 5 8 
I 3 5 8 
I 3 5 8 
1 3 5 8 
I 3 5 8 

Z 

10 
10 
10 
10 
10 
10 

-1 
-1 

1 
-I 

1 
1 
1 
1 
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Case 3: Number of quantitative factors = 5 and Case 4: Number of quantitative factors = 6 

(i) m = 5+1 = 6 factors; xI' ... ,xs' z	 (i) m = 6 + 1 =7 factors; xI' ... , x6' z 

(ii) N = 28 runs; p = 27 coefficients to be estimated (ii) N = 36 runs; p = 35 coefficients to be estimated 

(iii)	 Cube portion: Non-regular Hadamard matrices (iii) Cube portion: 22-run Dean and Draper (1999) 
H16.11 given in Annexure I. design given in Annexure I 

Table 6 gives the choices of qualitative factor z The choices ofz which gives distinct designs with 
which gives distinct designs with high D-efficiency and high D-efficiency and allocation of factors is shown in 
allocation of factors. 

Col. No.·s for cube portion S. 
ZXI' X2,X3• x4,XSNo. 

1 2 5 7 9 12 1 

2 2 5 7 9 12 1 

12 5 7 9 123 
4 12 5 7 9 12 

5 2 5 7 9 12 1 

5 6 9 11 13 166 
167 5 6 9 11 13 

8 5 6 9 11 13 16 
169 5 6 9 11 13 

10 5 6 9 11 13 16 
11 5 6 9 11 13 16 

S. Col. No.'s for cube portion 

No. XI' x2• x3' x4' xS' x6 Z 

1 2 3 9 10 16 17 1 

2 2 3 9 10 16 17 1 

3 2 3 9 10 16 17 1 

4 2 3 9 10 16 17 1 

5 2 3 9 10 16 17 1 

6 2 7 9 14 16 21 1 

7 2 7 9 14 16 21 1 

8 2 7 9 14 16 21 1 

9 2 7 9 14 16 21 1 

10 2 4 8 14 16 18 22 

11 2 4 8 14 16 18 22 

12 2 4 8 14 16 18 22 

13 2 4 8 14 16 18 22 

Table 7. 

Table 6 

Z = (ZI7' ... , Z26) D-Eff. 

-1 -1 -1 -1 -1 -I -1 - 1, -1 -1 81.73 
-1 -1 -1 -1 -1 -1 -1 -1 -1 1 76.55 
-1 1 -1 -1 -1 -1 -1 -1 -1 1 71.53 
-1 -1 -1 1 -1 -1 -1 1 -1 1 66.73 
-1 -1 -1 1 -1 1 -1 1 -1 1 62.36 
-1 -1 -1 -1 1 1 1 1 1 1 61.27 
-1 -1 -1 -1 1 1 1 1 - 1 1 61.17 
-1 -1 -1 1 1 1 1 1 1 1 60.71 
-1 -1 -1 1 1 1 1 1 -1 1 60.18 
-1 1 -1 1 1 1 1 1 1 1 60.10 
-1 -1 -1 1 -1 1 1 1 1 1 59.84 

Table 7 

Z = (Z23' ... , Z34) D-Eff. 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 67.70 

-1 -1 -1 -1 -1 -I -1 -1 -1 -1 1 -1 64.50 

-1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 64.49 

-1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 64.48 

-1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 61.42 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 66.63 

-1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 63.50 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 63.48 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 63.47 

-1 -1 -1 -1 -1 1 1 1 -1 1 1 1 56.70 

-1 -1 -1 -1 -1 1 1 1 1 1 1 1 56.69 

-1 -1 -1 -1 -1 1 -1 1 1 1 1 1 56.67 

-1 -1 -1 -1 1 1 -1 -1 1 1 1 1 56.54 
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Case 5: Number of quantitative factors = 7 and Case 6: Number of quantitative factors = 8 and 

(i) m = 7+ 1 = 8 ; XI' ••. , x7' z. (i) m = 8 + 1 = 9, xI' ... , Xg, Z 

(ii) N = 45 runs; p =44 coefficients to be estimated. (ii) N = 55 runs; p = 54 coefficients to be estimated 

(iii) Cube portion: 29-run Mitchell (1974) design (iii) Cube portion: 37-run Mitchell (1974) design 
given in Annexure I given in Annexure I 

Now the choice of 8 columns out of 27 columns In this case we have to choose 9 columns out of35. 
can be done in 27 C possible ways. We have chosen g So there are 35 C9 possible choices. We have chosen 
columns [7 10 13 15 20 21 2627] for allocation offactors. columns [1 9 12 15 162427 30 33] for allocation of 

factors.In Table 8 we give the choices of z which gives 
distinct designs with high D-efficiency and allocation Table 9 shows the choices ofz which gives distinct 
of factors. 

Col. No. 's for cube portion S. 
XI' •.•, x7No. 

1 7 10 13 15 20 21 26 

2 7 10 13 15 20 21 26 

7 10 13 15 20 21 263 

4 7 10 13 15 20 21 26 

7 10 13 15 20 21 265 
7 10 13 15 20 21 266 

7 7 10 13 15 20 21 26 

8 7 10 13 15 20 21 26 

9 7 10 13 15 20 21 26 
10 7 10 13 15 20 21 26 

Col. No. 's for cube portion S. 

Z 

27 

27 

27 

27 

27 

27 

27 

27 

27 

27 

ZXI' ... , x8No. 

1 1 9 12 15 16 24 27 30 33 
2 1 9 12 15 16 24 27 30 33 

1 9 12 15 16 24 27 303 33 
4 1 9 12 15 16 24 27 30 33 
5 1 9 12 IS 16 24 27 30 33 
6 1 9 12 15 16 24 27 30 33 
7 I 9 12 15 16 24 27 30 33 
8 1 9 12 15 16 24 27 30 33 
9 1 9 12 15 16 24 27 30 33 

I 9 12 15 16 24 27 3010 33 
11 1 9 12 15 16 24 27 30 33 

designs with high D-efficiency and allocation offactors. 

Table 8 

Z = (Z30' •.• , Z43) D-Etf. 

48.45-1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 
48.12-1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 
48.01-1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 
47.97-1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 

1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 47.96 

-1 1 1 1 -1 1 1 1 1 1 -1 -1 -1 -1 47.93 

47.88-1 1 1 1 1 1 1 -1 1 1 -1 -1 -1 -1 
47.861 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 

-1 -1 1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 47.85 

-1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 47.82 

Table 9 

Z = (Z38' ... , ZS3) D-Eff. 

I -1 1 1 I 1 1 1 -1 1 -1 -1 1 1 1 1 48.76 
1 1 1 1 1 1 1 -1 -1 1 -1 -1 1 1 1 1 48.58 
1 1 1 1 1 1 1 1 -1 1 -1 -I 1 1 1 1 48.57 
1 -1 1 1 1 1 1 -1 -1 1 -1 -1 1 1 1 1 48.55 
1 -1 1 1 1 1 1 1 -1 1 -1 -1 1 1 -I 1 48.53 
1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 I I 1 48.52 
1 -1 1 1 1 1 1 1 -1 1 -1 -1 1 -1 1 1 48.44 
1 1 1 1 1 1 1 1 -I 1 -1 -1 1 1 -1 1 48.42 
1 -1 I 1 1 1 -1 1 -1 1 -1 -1 1 1 1 1 48.41 
1 -1 1 1 1 1 1 -1 -1 -1 -I -1 1 1 1 1 48.40 
1 -1 1 1 1 1 -1 1 -1 1 -1 -1 1 1 -1 1 48.37 
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DUAL RESPONSE SURFACE GLOBAL 
OPTIMIZATION 

We have used dual response surface approach given 
by Del Castillo et al. (1997, 1999) for finding global 
optimal solution to the problem involving both 
quantitative and qualitative factors. Let us suppose that 
in an experiment there are N number of design points 
appropriate for the response model, and further suppose 
that these N design points are replicated a total of r ~ 2 
times. Let ~ mand ~ s represent the sample mean and 
sample standard deviation of these design points 
respectively. The following procedure is adopted to 
obtain global optimal solution: 

(a)	 First we fit a second order model for sample 
mean (y ) and sample standard deviation ( y s )._m	 _ 

The fitted response surfaces in ~ and z are 

Ym (~,z) =ao + ~Qo + z'£o + ~'Bo~ + ~'Coz 

(2) 

(3) 

(b)	 Next for each level of qualitative factor 
z,(z = ±1) we compute the following response 
and its standard deviation functions 
Ym(~,z)=aiO +~QiO +~'Bo~ (4) 

Ys(~,z)=ail +~Qil +~'B,~ (5) 

(c)	 For each level of z, find the value of ~ such 
that 

(i) ~s(~'z) is minimum 

(ii) Ym(~, z) = target 

(iii)	 ~'~ ~ p2 , where p is the radial bound for 

the solution ~ 

(d) Optimal solution of the problem is that x for 
which ~s(~,z) is minimum. 

We explain the method with the help of an example. 

Example: Consider an experiment involving four 
quantitative factors X"X 2 ,X 3,X 4 and one qualitative 
factor z. The purpose of~xperimentis to find the optimal 
solution ofthe problem when we want the desired mean 
response as 450. We consider the following hypothetical 

data set for fitting the response surface design as given 
in Table 10. 

Table 10. Experimental data set 

XI x2 xJ x4 Z Y, Y2 YJ Ym Y, 
-1 1 -1 1 1 134 110 128 124.00 12.49 

-1 -1 1 1 I 144 178 188 170.00 23.07 

1 -1 1 -1 1 90 122 129 113.67 20.79 

1 1 1 1 1 322 350 350 340.67 16.17 

-1 -1 1 -1 1 354 345 350 349.67 4.51 

-I 1 1 -1 1 311 360 328 333.00 24.88 

-1 -1 -1 1 I 234 268 267 256.33 19.35 

I -1 -1 -1 1 290 263 253 268.67 19.14 

I -I -1 1 1 110 160 192 154.00 41.33 

-1 1 -1 -1 1 269 362 392 341.00 64.13 

1 1 -1 -1 1 328 294 345 322.33 25.97 

2 0 0 0 -1 81 168 78 109.00 51.12 

-2 0 0 0 -1 538 489 482 503.00 30.51 

0 2 0 0 -1 98 110 105 104.33 6.03 

0 -2 0 0 -1 118 117 116 117.00 1.00 

0 0 2 0 -1 129 154 131 138.00 13.89 

0 0 -2 0 -1 159 155 163 159.00 4.00 

0 0 0 2 -1 328 391 394 371.00 37.27 

0 0 0 -2 -1 285 217 359 287.00 71.02 
0 0 0 0 1 500 459 470 476.33 21.22 

0 0 0 0 -1 556 490 525 523.67 33.02 

The fitted response equation for mean is 
1\ 

Y m(X,Z) =500-62.8X1 + 8.5X 2 -12.8X 3 - 20.8X 4 

+13.8Z+57.5X,X2 +3.2X,X3 

+ 36.6X,X4 + 39.9X 2 X 3 + 11.0X 2 X4 

+ 20.3X3 X 4 + 35.7ZX, + 11.7ZX 2 

-7.6ZX3 -41.8ZX4 -43.9X~ 

-92.7X~ -83.3Xi -38.1X; 

S = 55.8737 R2 = 99.2% R2 (adj.) = 83.1 % 

Analysis ofVariance 

Source OF SS MS F P 

Regression 19 367029 19317 6.19 0.308 

Residual Error 1 3122 3122 

Total 20 370151 
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The fitted response equation for standard deviation 
is 

1\ 

Ys(X,z)=27.1+3.59X1 -1.45X2 -0.16X3 -4.60X4 

-1.88Z-7.53X1X2 +6.08X1X3 

+7.51X 1X4 -4.14X 2X3 -11.0X 2X4 

+ 6.60X3X4 -1.56ZX1 - 2.70ZX2 

- 2.64ZX3 + 3.84ZX4 + 3.08X~ 

-6.24X; -4.89Xi + 6.41X; 

S = 5.99901 R2 = 99.5% R2 (adj.) = 89.8% 

Analysis of Variance 

Source DF SS MS F P 

Regression 19 7052.96 371.21 10.31 0.241 

Residual Error 1 35.99 35.99 

Total 20 7088.95 

The fitted mean and standard deviation response 
function for z = 1 from the above response function is 
given by 

1\ 

Ym(X, z = 1) = 513.81- 26.3X1 + 20.24X2 - 20.43X3 

-62.6X 4 +57.5X 1X2 +3.2X(X3 

+ 36.6X1X4 + 39.9X 2X3 + 11.0X2X4 

+20.3X3X4 -43.9X~ -92.7X; 

-83.3Xi -38.1X; 
1\ 

Ys(X,z =1) = 25.246+ 2.037X1 -4.151X2 -2.801X3 

-0.764X 4 -7.53X1X2 +6.08X1X3 

+ 7.51X1X4 - 4.14X 2X3 -11.0X 2X4 

+ 6.60X3X4 + 3.08X~ - 6.24X; 

-4.89Xi + 6.41X; 

The fitted mean and standard deviation response 
function for z = -1 is given by 

1\ 

Ym(X,Z = -1) = 486.19-97.7X( -3.16X2 -5.25X3 

+ 21.0X 4 + 57.5X(X 2 + 3.2X1X3 

+ 36.6X1X4 + 39.9X2X3 + 11.0X2X4 

+ 20.3X3X4 -43.9X~ -92.7X; 

-83.3Xi -38.1X; 

1\ 

Ys(X,z = -1) = 28.996+ 5.151X1 + 1.257X2 + 2.473X3 

-8.438X 4 -7.53X 1X2 +6.08X,X 3 

+ 7.51X1X4 - 4.l4X 2X3 -11.0X 2X4 

+ 6.60X3X4 + 3.08X~ - 6.24X; 

-4.89Xi +6.41X; 

We use the technique given by Del Castillo et ai. 
(1997) for finding the global optimal solution to the 
specified problem. We take p = a = Jk where k is the 
number of quantitative factors. 

For z = 1, ~s (~, z) = 13.279590 is minimum and 

~m(~,z)=450 at ~=(-O.404998, 0.701198, 

0.562927, -0.059177). 

Forz=- t, ~s(~,z)=11.925140 isminimum 

and ~J~,z) = 450 at ~ = (-1.126312, 0.505276, 

0.334627, 0.745140) 

Weobservethat ~s(~'z) issmallerforz=-I,so 

the optimal setting of factors is Xl = -1.126312, 

x2 =0.505276, x3 =0.334627,x4 =0.745140 and z =-1 

CONCLUDING REMARKS 

The response surface designs involving qualitative 
and quantitative factors developed in this paper are 
concentrated on economical run size. The saturated 
designs are used when experiment is expensive or time 
consuming. The use of such deigns has substantial 
savings on the number ofruns. Say, for k = 4 factors, the 
designs given by Wu and Ding (1998) needs 26 runs 
and gives maximum D-efficiency of 64% whereas we 
give 2 I-run design which has D-efficiency of 58.67%. 
Similarly, for k = 5 factors, Wu and Ding (1998) needs 
44 runs to give maximum D-efficiency of 87.25% and 
his 28-run design estimates only 24 of the total 27 
coefficients with maximum D-efficiency 56.5%. Our 
design estimates all 27 coefficients in 28 runs with 
D-efficiency 61.27%. For k = 6, we loose efficiency by 
less than 7% but we save 10 runs. So, overall we see 
that we are not loosing too much efficiency but we are 
reducing the run size as in industries sometimes saving 
on run size is more important. 

We also observe that if a design has all its cube 
points at z = 1, then it has high D-efficiency. All these 
designs given in Table 4 to 7 corresponding to 
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k =3,4,5, and 6 are marked bold and italic in the column 
of qualitative factor. 
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ANNEXURE I
 

D-optimal designs for n = 11 (3mod 4) runs 

Design (a) 

-1 -1 1 -1 -1 1
 
-1 -1 -1 1 1 1
 

1 1 -1 1 -1 -1
 
1 -1 1 1 -1 1
 

-1 -1 -1 1 -1 -1
 
-1 1 1 1 1 -1
 
-1 1 -1 -1 -1 1
 

1 -1 -f -1 1 -1
 
1 1 -1 -1 1 1
 

-1 -1 1 -1 1 -1
 
1 1 1 -1 -1 -1
 

Hadamard HI6.II
 

n = 16 (0 mod 4) run design
 

1 1 1 1 1 1 1 1 1 1 1 1 1
 

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
 

1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1
 

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1
 

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
 

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1
 

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1
 

1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1
 

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
 

1 -1 1 -1 1 -1 1 -I -1 1 -1 1 -1
 

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1
 

1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1
 

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1
 

1 -1 -1 1 1 -1 -1 1 -1 1 1 -I 1
 

1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1
 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1
 

1 1
 
-1 1
 

1 1
 

-1 1
 
1 1
 , 

-1 1
 
-1 1
 
-1 1
 

1 1
 
1 1
 

-1 1
 

1 1 1
 

-1 -I -1
 

-1 -1 -1
 

1 1 1
 

1 -1 -1
 

-1 1 1
 

-1 1 1
 

1 -1 -1
 

-1 1 -1
 

1 -1 1
 

1 -1 1
 

-1 1 -1
 

1 1 -1
 

-1 -1 1
 

-1 -1 1
 

1 1 -1
 

Design (b) 

1 1 1 1 1 1 1 -1 -1 -1 1
 

-1 1 1 1 -1 -1 -1 1 1 -1 1
 
-1 -1 -1 -1 -1 1 1 -1 -1 -1 1
 
-1 -1 1 -1 -1 1 1 1 1 1 1
 
-1 -1 -1 1 1 1 -1 1 -1 1 1
 

1 -1 -1 -I 1 -1 -1 1 1 -1 1
 
-1 1 1 -1 1 -1 -1 -1 -1 1 1
 

1 1 -1 -1 -1 -1 1 1 -1 1 1
 
I 1 -1 -1 -1 1 -1 -1 1 1 1
 

1 -1 1 1 -1 -1 -1 -1 -1 1 1
 

-1 -1 -1 1 1 -1 1 -1 1 1 1
 

D-optimum design
 

for n = 22 (2 mod 4) runs
 

1-1-1 -1-1-1 1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1 1 1 1
 

1 1-1-1-1 -1 -1 1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1 1 1
 

1 1 1 -I -1 -1 -1 -1 1 -1 1 1 -I -1 1 1 1 -1 1 -1 1 1
 

1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1-1 1 1 1 -1 1 -1 1
 

1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 I -1 -1 1 1 1 -1 1 -l
 

1-1 1 1 1 1 -1 -1 -1 -1-1 1 -1 1 1 -I -1 1 1 1 -1 1
 

1 1-1 1 1 1 1 -1 -1-1-1-1 1 -1 1 1 -1 -1 1 1 1 -1
 

1 -1 1 -1 1 1 1 1 -1-1-1-1-1 1 -1 1 1 -1 -1 1 1 1
 

1 1-1 1 -1 1 1 1 1-1-1-1-1-1 1 -1 1 1 -1 -1 1 1
 

1 1 1 -1 1 -1 1 1 1 1-1-1-1-1-1 1 -1 1 1 -1 -1 1
 

1 1 1 1 -1 1 -1 1 1 1 1-1-1-1-1 -1 1 -1 J 1 -I -1
 

1-1 1 1 1 -1 1 -1 1 1 1 1-1-1-1 -1 - J 1 -1 1 1 -1
 

1-1 -I 1 1 1 -1 1 -1 1 1 1 1 -1-1 -1 -1 -1 1 -1 1 1
 

1 1-1 -1 1 1 1 -1 1 -1 1 1 1 1-1 -1-1-1-1 1 -1 1
 

I 1 1 -1 -1 1 1 1 -1 1 -1 1 1 1 1 -1-1-1-1-1 1 -1
 

1-1 1 1 -1 -1 1 1 1 -1 1 -1 1 1 1 1-1-1-1-1-1 1
 

1 1-1 I 1 -1 -1 1 1 1 -1 1 -1 1 1 I 1 -1 -1 -1 -1 -1
 

1 -I 1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1 1 1 1 -1 -1 -1 -1
 

1-1 -1 I -1 1 1 -1 -1 I 1 1 -J I -1 1 1 1 I -1 -1 -1
 

1-1-1-1 1 -1 1 1 -1 -1 1 I 1 -1 1 -1 1 1 I 1 -1 -1
 

1-1-1-1-1 1 -1 1 1 -1-1 1 1 1 -1 1 -1 1 1 1 1 -1
 

1-1-1-1-1 -1 -1 -1 -1-1-1-1 -1-1-1 -1 -1 -1 -1 -1 -1 -1
 



D-optimum design for n = 29 (1 mod 4) runs 

III TI 1 11 I I I I I I I I I I I I I I I I I II I 
I 1-1 1 1 1 -1 -1-1 -1 -1 1 1-1 -1 1 -1-1 -1 1 1 1 1 -1 1 1 -1 

1 1 I 1 1 1 -1 -1-1 1 -1 -1 -1 1 -1-1 1-1 1-1 1-1 1 1 -1 1 1 

1 -1 -1 1-1 1 1 1 1 -1 -1 1 -I I -1-1 -I 1 1-1 1 1 1 -1 1-1 I 

1-1-1 1 1 -1 I I 1 1 -1 -1 -1 -1 I 1 -1-1 1 1 -1 -1 1 1 1 I -1 

1-1 -1 -I 1 1 1 1 1-1 1 -I 1-1 -1 -1 I-I -I 1 1 1 -1 1 -I 1 1 

I 1 I -1-1 -I 1 -1 I -1 -I 1 -1-1 1-1 1-1 I-I 1 1 -1 1 1 1 -1 

1 I 1 -1-1 -1 1 I-I I -1 -1 1-1 -1 -1 -1 1 1 1 -1 I 1-1 -1 1 1 

1 I 1 -1-1 -1 -1 1 1 -1 1-1 -1 1 -1 1 -1-1 -I I 1 -1 I 1 I-I 1 

1 1 -I 1-1 1 1 -I I 1 -1 1 1 1 1 -I -1-1 -1 1 -I -1 -1 1 -1-1 1 

I 1 1 1 1 -1 1 1-1 1 1 -1 1 1 1 -1 -1-1 -1-1 1 1 -1 -1 1-1-1 

1 -I 1 -1 1 1 -1 1 1 -1 1 1 1 1 1 -I -1 -1 1-1 -1 -1 1 -1 -1 1 -1 

1 -1 1 I I -1 1 -1 1 -1 -1 -1 1-1 1 1 1 1 -1-1 1 -1 I -I -1-1 1 

1 I-I -1 I I 1 1-1 -1 -1 -1 1 1 -1 1 1 1 1-1 -1 -1 -1 1 1-1 -1 

1 1 1 1-1 1 -1 I I -1 -1 -1 -1 1 1 I I 1 -1 1 -1 1 -1 -1 -1 I -I 

I-I 1 1-1 1 1 1-1 1 1 1 -1-1 -1 I -I 1 -1-1 1 -1 -1 1 -I I -1 

I 1 -1 1 1 -I -1 I 1 1 1 I -1-1 -1 1 1-1 1-1 -I 1 -1 -1 -1-1 1 

1 1 1 -1 1 1 1 -1 1 1 1 1 -1-1 -1-1 1 1 -1 1 -1 -1 1 -I 1-1-1 

1 1 -1 -1-1 I -1 -1 I 1 1 -1 1-1 1 1 -1 1 1-1 1 1 1 1 -1-1 -1 

1-1 1 1-1 -1 1 -1-1 -1 I 1 1 1 -1 1 1-1 1 1 -1 1 1 1 -1-1 -1 

1 -1-1 -1 1 -1 -I I-I I -I 1 -1 1 1 -1 1 1 -I 1 1 1 I 1 -1-1 -I 

1-I 1 -1 1 -1 -1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1-1 -1 1 -1 1 1 1 1 

1 -1 -1 -1-1 1 1 -I -1 1 1 -1 -1 1 1 1 1 -1 -1-1 -1 1 1 -1 I 1 I 

1 I-I 1-1 -1 -1 I-I -1 1 I 1-1 1 -1 1 1 -1-1 -1 -1 1 1 1 1 1 

1-1 1 -1-1 1 -1 1-1 1 -1 1 1-1 1 1 1-1 1 1 1 -1 -1 -1 I-I 1 

1 -1 -1 1-1 -1 -1 -1 1 I 1 -I 1 1 -1-1 1 1 I 1 1 -1 -1 -1 1 1 -1 

1 I -I -I I -1 1 -1 -1 -1 I I -1 1 I 1 -1 1 1 1 I -1 -I -I -I I 1 

1-1-1 -1-1 -I -I -1-1 -1 -I -1 -1-1 -I -I -1-1 -1-1 -1 -1 -I -1 -1-1 -I 

111111111111111111111111111 

D-optimum design for n = 37 (1 mod 4) runs 

11111111111111111111 1111 II III II I III 

I -I 1-1 1 I 1 -1-1 -1 I 1 1 1 1 -1 1 1 I-I -1 1 -1 -I -1-1 1-1 1 -1 I 1 -1-1 1 

1-1 -1 1 -1 1 1 1-1 -I-I 1 1 1 1 1 -1 1 1 1 -1 -1 1 -I -1-1 -1 1 -1 1 -1 1 1-1-1 

,-1 1 -1-1 1 -1 1 1 1 -1-1 -I 1 1 1 1 1 -1 1 1 1 -1 -1 1 -1-1 -1-1 1 -1 1 -1 1 1 -1 

,-1-1 1-1 -1 1 -1 1 1 1-1 -1 -1 1 1 I 1 1 -1 1 1 I -I -1 I-I -1-1 -1 1 -1 1 -1 I I 

1 -I -1 1-1 -1 1 -I ! I I -1-1 -1 I I 1 1 1-1 I 1 I -I -1 1-1-1 -1 -I I -1 I-I I 

I I -1-1 I -1 -1 1-1 1 1 1 -1 -1 -1 1 1 1 I 1 -1 I I I -1-1 I-I -I -I -1 I -1 1 -I 

,-1 1 1-1 -1 1 -1 -1 1 -1 1 1 1 -1 -1-1 1 1 1 I 1 -1 1 1 1 -1 -1 I -1 -1 -1 -1 I-I 1 

1 -1 1 1 -1 -1 1 -1 -1 1-1 I 1 I -1-1 -I 1 1 I I 1-1 1 1 I -1-1 1 -I -1 -1 -1 1 -1 

-1 1 -1 1 1 -I -1 1 -1 -I I -I 1 1 1-1 -1 -1 1 I 1 I 1 -I 1 1 1-1 -I 1-1 -1 -1-1 1 

1 -1 1-1 1 1 -1 -1 1 -1-1 1 -1 1 I 1 -I -1 -1 1 1 1 1 I -I 1 1 1 -1 -1 1 -1 -1-1 -1 

,-1 1 -1 1 -1 1 1 -I -1 I-I -1 1 -1 1 1 1 -I -1-1 1 1 I 1 1-1 1 I 1 -1 -1 1 -1-1 -1 

-1 -I I-I 1 -1 1 1 -1 -I 1 -1 -1 1 -1 1 1 1 -1-1 -I 1 1 1 I 1 -1 1 I 1 -1 -1 1-1-1 

,-1 -1 -1 1 -1 1 -1 1 1 -1-1 1-1 -1 1-1 1 I I-I -I -I 1 1 1 1 1-1 I 1 1 -1 -I I -1 

1 -1 -1-1 1 -I 1 -I 1 1-1 -1 1 -1 -1 1 -1 I 1 1 -1 -1 -1 1 I 1 I 1 -1 1 1 1 -1-1 1 

1 -1 -1-1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 -I 1 1 1 -1 -1 -1 I 1 1 1 1 -1 1 1 1-1-1 

,-1 1 -1-1 -1 -1 1 -1 1 -I 1 1 -1 -1 1-1 -1 1 -1 1 1 1 -I -1 -1 1 1 1 1 1 -1 1 1 1 -1 

1 -1 I-I -1 -1 -1 1-1 1 -1 1 1 -1 -1 1 -1 -1 1-1 1 1 1 -1 -1-1 1 I 1 1 1 -1 1 I I 

1 -1 -I 1 -1 -1 -1 -1 1 -1 1 -I 1 1 -1-1 1 -1 -1 1 -1 1 1 1 -1-1 -1 I 1 1 1 1 -1 1 1 

11-1-11-1-1-1-11-11-111-1-11-1-11-1111-1-1-11 II 11-11 

I 1 1-1 -1 1 -1 -1-1 -1 1 -1 J -I 1 1 -1 -1 1-1 -1 1 -1 1 1 1 -1-1 -1 1 1 1 I 1 -1 

1 1 1 1 -1 -1 1 -1 -1-1-1 1 -1 1 -1 1 ) -I. -1 1 -1 -1 1 -1 1 1 I-I -1 -1 1 1 1 1 1 

1 -1 1 1 1 -1 -1 I-I -1-1 -I 1 -1 1-1 1 1 -1-1 1 -1 -I 1 -1 1 1 1 -1 -1-1 1 1 1 1 

1 1 -1 1 I 1 -1 -1 1-1-1 -1-1 1 -1 1-1 1 1-1 -1 1 -I -I 1-1 1 1 1 -1-1 -1 1 1 I 

1 1 1-1 1 I 1 -1-1 I-I -1-1 -1 I-I I -1 1 1 -1 -I 1-1 -1 I -1 1 1 1 -1 -1 -1 I I 

1 1 1 1 -1 1 1 I -I -1 1 -1 -1 -1 -1 1 -I 1 -1 1 1-1 -1 1 -1-1 I-I 1 1 1 -1 -I-I 1 

I 1 1 1 1 -1 1 1 1 -1 ~I 1 -1 -1 -1-1 1 -1 I-I 1 1 -1 -1 1-1 -I 1 -1 1 1 1 -1-1 -1 

,-I 1 1 I 1 1 -1 1 1 1-1 -I I -I -I -I -1 I -1 I -I I I -I -1 I -I-I I -I I I 1-1-1 

1 -1 1 1 1 I 1 -1 1 1 1 -1 -1 I -1-1 -I -1 I-I 1 -1 1 1 -1-1 I-I -1 1 -1 I 1 1 -1 

,-1 -1 -1 1 1 1 1 1 -1 1 1 1 -1 -1 1 -1 -I -I -1 I -I 1 -I 1 I-I -I 1 -I -1 I -1 1 1 I 

1-1 -1-1 I 1 1 1 1 -I I 1 1 -1 -1 1 -I -I -1-1 1 -1 I -I I 1 -I-I 1 -I -1 1 -1 I 1 

1 1 -1-1 -1 I 1 1 1 I-I 1 1 1 -1 -1 1 -I -1-1 -I 1 -1 1 -1 1 1-1 -1 1-1 -1 I-I I 

1 1 I-I -1 -1 1 1 I I 1 -1 1 1 1 -1 -1 1 -1-1 -1 -1 1-1 1 -1 I I -I -1 1 -1 -1 1 -1 

I 1 I 1 -1 -1 -1 1 1 1 1 1-1 I 1 1 -1 -1 I-I -I -1 -1 1 -I 1 -1 1 1 -1-1 1-1-1 1 

1 -1 I 1 1 -I -1 -I I 1 1 1 1 -1 1 I I -1 -1 1 -1 -1 -1 -1 1-1 1-1 I 1 -1 -I 1-1-1 

I -I -1-1 -1 -1 -I -1-1 -1-1 -I -1 -1 -1 -1 -I -1 -1-1 -1 -1 -I -1 -1-1 -1-1 -I -1-1 -1 -1-1 -1 

1111111111111 1111111 I I 1 1 1111111111 I 
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