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SUMMARY 

For a general crossover design, combined intra-inter unit reduced nonnal equations for estimating 
linear functions of direct and residual effects are obtained under a mixed effects, non-additive model. 
The unit effects are considered as random and the model allows for possible interactions among 
treatments applied at successive periods. It is shown how some ofthe existing optimality results under 
a fixed effects additive model are extended or modified under the considered mixed effects, non­
additive model as well. 
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1. INTRODUCTION 

Crossover designs (also known as change-over or, 
repeated measurements designs) are used for experiments 
in which each of the experimental subjects or, units 
receive different treatments successively over a number 
oftime periods. These designs are widely used in several 
·areas, e.g., clinical trials, learning experiments, animal 
feeding experiments and agricultural field trials. A 
distinctive feature of crossover experiments is that, an 
observation is affected not only by the direct effect of a 
treatment in the period in which it is applied, but also by 
the effect ofa treatment applied in an earlier period. That 
is, the effect ofa treatment might also carry over to one 
or more of the subsequent time periods following the 
time of its application. The possible presence of this 
carry-over (or, residual) effect often complicates the 
designing and analysis of such experiments. 
Considerable literature on the design and analysis of 
crossover experiments is already available and for 
excellent reviews of the literature on crossover designs, 
see Matthews (1988) and Stufken (1996). 

Optimality aspects ofcrossover designs under fixed 
effects additive models, with no possible interactions 

J Indian Statistical Institute, New Delhi-lJOOl6 

among the treatments applied in successive periods have 
been studied, among others, by Hedayat and Afsarinejad 
(1978), Cheng and Wu (1980), Kunert (1984), Hedayat 
and Zhao (1990) and Stufken (1991). In this paper, we 
consider a model in which the unit effects are treated as 
random while all other effects in the model are fixed. 
The model also allows for possible interactions among 
treatments applied at successive periods. Consideration 
of such a model is motivated by the fact that in many 
practical situations, it is quite reasonable to hypothesize 
that the units are a random sample from a population of 
units. For instance, in clinical trials, it is realistic to 
assume that the patients (subjects) are a random sample 
from a large population of patients and thus, it is 
reasonable to assume that patient effects are indeed 
random rather than fixed. A non-additive model of the 
type considered here is also motivated from practical 
considerations as in many experimental situations, the 
interaction effects may also affect the response; see e.g., 
John and Quenouille (1977; p. 213) and Patterson (1970). 
Sen and Mukerjee (1987) considered a fixed effects 
non-additive model ofthe type considered in this paper 
and proved the optimality of certain crossover designs 
under this model. See also Bose and Dey (2003) in this 
connection. 
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Mixed effects, additive models (i.e., models with 
no interactions) for crossover experiments have been 
considered earlier by several authors. Mukhopadhyay 
and Saha (1983) studied crossover designs under a mixed 
effects additive model with unit effects random and 
derived the relevant information matrices under this 
model. By extensive algebraic computations, they 
showed that some ofthe results on optimal designs under 
a fixed effects (additive) model, obtained by Hedayat 
and Afsarinejad (1978), Cheng and Wu (1980) and 
Magda (1980) can be extended to their model. 

Jones et al. (1992) considered a model in which 
the res:dual effect of each treatment is taken to be 
random, while other effects in the model are treated as 
fixed. Theorem 1 in Jones et al. (1992) is noteworthy as 
it expresses the relevant information matrix under the 
considered model as a linear combination of the 
corresponding information matrix (say, Co) under a 
model ignoring the random effects and the information 
matrix (say, Coo), under a model with all effects fixed. 
Applying this theorem, Jones et al. (1992) show the 
optimality of some classes of crossover designs under 
their model. A (mixed) model with unit effects random 
and all other effects fixed has also been considered briefly 
by Jones et al. (1992). However, as remarked by Jones 
et al., their Theorem 1 cannot be applied in this situation 
directly because the relevant information matrices under 
this model are no longer expressible as a linear 
combination of Co and Coo' Another relevant work in 
this area is due to Carriere and Reinsel (1993), who 
obtained universally optimal crossover designs under a 
mixed effects, additive model for comparing t ~ 2 
reatments, when the number of periods is two and the 
number ofunits is either t2 or t. For more discussion, see 
Stufken (1996). 

As stated earlier in this section, in this paper we 
consider a non-additive, mixed effects model. To the best 
ofour knowledge, optimal crossover designs under such 
a model has not been considered in the literature. 
Following Sen and Mukerjee (1987), we view a 
crossover experiment as a suitable factorial experiment 
and use the tools of Kronecker calculus for factorials, 
introduced by Kurkjian and Zelen (1962) to obtain the 
relevant information matrices leading to the study of 
optimal designs. For a review ofthis calculus, see Gupta 
and Mukerjee (1989). This approach greatly facilitates 
the study of crossover designs under a non-additive 
model with random unit effects. Using this approach, 

we obtain combined intra-inter unit reduced normal 
equations for estimating linear functions of direct and 
residual effects under the stated model. From the general 
expressions obtained in this paper, one can check the 
optimality ofa given design under the considered mixed 
effects model. The (simpler) results under additive model 
and fixed effects model follow as particular cases. 
Moreover, by exploiting the nature ofthe combined intra­
inter unit information matrix, establishing optimality 
under the considered mixed effects model becomes 
particularly simple for designs that are known to be 
optimal under a fixed effects model. To illustrate this, 
we demonstrate how several of the existing optimality 
results under a fixed effects, additive model can be 
extended (or, modified) under the considered mixed 
effects model. Throughout, we consider only the first 
order residual effects (i.e., where the residual effect 
carries over only to the next succeeding period) and, 
'optimality' means the universal optimality criterion of 
Kiefer (1975). 

2. MODEL AND COMBINED ANALYSIS 

Consider a crossover experiment in which t 
treatments are compared via n experimental units over p 
time periods. An allocation of the t treatments to the np 
experimental positions is called a crossover design. Let 
Qt,n.p be the class of all such crossover designs. For a 
typical design dE Q I.n.p' let d(i, j) denote the treatment 
applied to the jth unit at the ith period according to the 
design d, i = 0, I, ... , p-I ; j = I, 2 ... , n. We postulate 
the following model: 

YOj =~+ao + ~j +'td(o.j) + error, 1~ j~ n 

and 

Yij =~ +a i + ~j +'td(i,j) + Pd(i-l,j) + Yd(i.j),d(i-l,j) + error 

1~ i ~ P -1, 1~ j ~ n (1) 

where ~,ai '~j' 'td(i.j),Pd(i-l,j)'Yd(i,j),d(i-J.j) are respectively 
the general mean, the ith period effect, the jth unit effect, 
the direct effect due to treatment d(i, j), the first order 
residual or, carry-over effect due to treatment d(i - 1, j) 
and the interaction effect between d(i, j) and d(i - 1, j), 
i = 1, ... , p-l; j = I, 2, , n, where we define 
Pd(O.j) =Yd(1.j),d(O,j) =O,j = I, ,n. It is further assumed 
that the vector of subject effects ~ =<J3 1""'~n)' has the 
normal distribution N(O,a~I), the error vector has the 

normal distribution N(O,a2I) and ~ is independent of 
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the error tenns. Here and in the rest ofthe paper, 0 denotes 
a null vector (or, a null matrix) and Is , an identity matrix 
of order s. We shall drop the subscript s when the order 
is clear from the context. Also, A- denotes an arbitrary 
generalized inverse of a matrix A. 

Crossover experiments may be looked upon as a t2 
factorial experiment with two factors, F I' F2' 

2where the t treatment combinations (u"u 2 ), 

o:::; u 1' U2 :::; t - 1are such that the first (second) member 

of each treatment combination represents the treatment 
contributing a direct (first order residual) effect to an 
experimental unit. The direct effects then correspond to 
the main effect F I' the first order residual effects 
correspond to the main effect F2 and the direct versus 
carry-over interaction effect is given by the usual factorial 
interaction, F I F2' The advantage of this fonnulation is 
that now these designs may be analysed under 
model (2) given below, by applying the calculus for 
factorial arrangements introduced by Kurkjian and Zelen 
(1962), 

Model (l) may be rewritten in the following 
equivalent fonn: 

E(Yij )= Jl + u j + ~j + A;j~' 0:::; i:::; p -1, 1:::; j:::; n (2) 

where the t2x I vector ~=(~oo,~o"""~I-l,l-1)' is the 
vector of the effects of t2 factorial treatment 
combinations; 

1 10\ 1< . < l' 1< '< (3)/\'ij = ed(i,j) \Of ed(i-I,j)' _1 - P-, - J- n 

1 10\ -II 1< .< (4)/\'OJ = ed(O,j) \Of t t' - J - n 

where for a pair of matrices A, B, A @B denotes their 
Kronecker (tensor) product; ed(i. j) is a t x 1vector with 
1 in the position corresponding to the treatment dei, j) 
and zero elsewhere and for positive integral s, Is is an 
s x I vector with all elements unity. 

For presenting the main result of this section, we 
need to introduce some notations, For a design 
dE 0t,n,p. define 

~ n ~ ~ 
Vd = L LAij A;j' V; = L.J L.J A;jYij

;=0 j=1 
n n n
 

Nd = (LAoj' LAJj' .... LAp-l,j)
 (5)
j=1 j=J j=J 

(6) 

Note that the matrices Nd and M
d 

above are the 
treatment versus period and the treatment versus unit 
incidence matrices respectively. where the treatments are 

actually the t2 treatment combinations in ~. Also. let 

Cd =Vd -n-INdN~ -p-lMdM~ +(np)-J(NdIp)(NdIp)' 

(7) 

It can be verified that the matrix Cd in (7) is the 
coefficient matrix of the reduced nonnal equations for 
estimating linear functions of ~ under a 
design dE Q when the model is the usuall.n,p -2 
fixed effects model. Furthennore, let WI = (J and 
<02 = (p«(J2 +p(J~))-I. Finally. let PI be a (t-I)xt 
matrix such that (C1/2ll' P;) is orthogonal. Define 

pOI =(CI/2 1;)@pt.p
lO =Pt @(CI/2 I;).p11 =Pt@Pt 

(8) 

Note that pOl~,plO~ and pll~ together represent a 
complete set of orthononnal treatment contrasts. 

Under the stated assumptions on the vector ~ and 
the error tenns, we now have the following result, a proof 
of which appears in the Appendix, 

Theorem 1. The combined intra-inter unit reduced 
nonnal equations for estimating linear functions of the 
elements of ~, using a design dE Qt,n,p are given by 

(WICd + W2C~)~ =(W1Qd + W2Q~) (9a) 

where 

C~ =MdM~ -n-1(MdI)(MdI)' (9b) 

Qd =V; -n-lNdN~' -p-IMdM~' +(nprl(Mdln)(M~IJ 

and 

mailto:1;)@pt.plO
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Thus, the infonnation matrix (OOICd +002C:) is a 
linear combination ofthe infonnation matrix under fixed 
effects model (Cd) and C~. 

3. OPTIMAL DESIGNS UNDER 
THE MIXED MODEL 

Writing ClOd = (OOICd +002C:), it is clear from (9a) 
that ClOd is the mixed model analogue ofthe infonnation 
matrix Cd as given by (7) for the fixed effects model. 
For detennining optimal designs under the considered 
mixed model, we assume 001 and 002 to be known and, 
under this assumption, the optimality results of this 
section are valid for all 001 and 002 . 

When the model is as in (I), i.e., when the 
interactions are included in the model, together with the 
direct and first order residual effects, then starting from 
the matrix 

PIO]pOI
 

[ pH
 

the infonnation matrices for estimating complete sets of 
orthononnal contrasts belonging to direct and residual 
effects are respectively given by 

C . = plOC (plO)' _[pIOC (pOI)' plOC (pll)']d(dac) md md md 

(10) 

and 

Cd(res) =pOICmd (pOI)' 

_ [pOlC (plO)' pOlC (pll )']md md 

In order to verify ifa given design do is universally 
optimal for direct effects (residual effects) in the sense 
ofKiefer (1975) in a certain class ofcompeting designs 
Z), one has to check the conditions of complete 

symmetry and maximum trace of Cdo(dic) (Cdo(res» in Z). 

Such a verification becomes considerably simple ifit is 

known that the design do E Z) is universally optimal 
under a fixed effects model over Z). In that case, using 
the results under a fixed effects model based on Cdo ' 
the infonnation matrix of do, and noting that C mdo is a 
linear combination of Cd and Cd" , it can often be o 0 

checked after some simple algebra whether the optimal 
properties of do remain robust under the corresponding 
mixed effects model. In what follows, we illustrate this 
discussion via some examples. To make the presentation 
self-contained, we recall some definitions. 

Definition 1. A design in Qt.n.p is called unifonn 
if the treatments occur equally often in each period and 
also equally often in each unit. 

Definition 2. A design d in Qt.n.p is called balanced 
if, in the order of application, no treatment is preceeded 
by itself and each treatment is preceeded by all other 
treatments equally often. 

Definition 3. A design d in Qt.n.p is called strongly 

balanced if, in the order of application, each treatment 
is preceeded by itself and all other treatments equally 
often. 

We also let A t.n.p to denote the subclass of Qt.n.p 

containing all designs in which no treatment is preceeded 
by itself. 

Most ofthe known optimality results on crossover 
designs are based on a fixed effects, additive model with 
no direct versus residual interactions. The corresponding 
mixed model is an additive version of the model (1) 
containing no interactions, which we shall denote by 
model (1'). Under model (1'), it is clear that the 
infonnation matrices for direct and residual effects are 
respectively given by the simplified versions of(10) and 
(11) respectively, with the tenns involving pH omitted. 
For example, under model (1'), we have 

Cd(dic) = OOIPIOCd(plO)' +002PIOC: (plO)' 

_ [OOIPIOCd(pOl)' +002PIOC: (pOI )'] 

X[001pOlCd (pOI)' + 002POIC: (pOI),] - [OOIPIOCd(plO)' 

+002PIOC:(p1O)'] (12) 

A similar expression can also be obtained for Cd(res) 
under the model (I '). 

In the following theorems, we show how some of 
the available results on optimality ofa crossover design 
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under a fixed effects model can be extended or modified 
under a corresponding mixed effects model. To begin 
with, Theorem 3.1 of Cheng and Wu (1980) under the 
present setup gets modified to the one in Theorem 2. 

2Theorem 2. For n =A 1t , p = A2t, Al ~ 1, 1.. 2 ~ 2, 

let do be a strongly balanced uniform design in Qt,n,p' 
Then, under model (1), do is universally optimal for the 
estimation of complete sets of orthonormal contrasts 
belonging to direct effects over n"n,p' Furthermore, in 
the absence of interactions, Le" under the model (1'), 
do is universally optimal for the estimation ofcomplete 
sets oforthonormal contrasts belonging to direct as well 

as residual effects over Qt,n,p' 

Proof. It has been shown in the proof of the 
optimality result in the fixed effects, additive case, that 
under do' the direct effects are estimable orthogonally to 
the residual effects. In the notation of this paper, this is 
equivalent to plOCd (pOI)' = O. Also, it can be shown 

o 
after some algebra that under do' direct effects are 
estimable orthogonally to interaction effects, i.e., 
plOCdo (pll)' == 0, Hence, from (10) and (9b), fora design 

dE n"n,p' under model (1) 

PIOC (plO , IOC· 10)'Cd(dir) ~ WI d ) +w2P d (P 

-[00 pIOC· (pOI)"W pIOC"(pll)'][R S]-[W2POIc~(PIO)'] 
2 d 2 d s' T WPl Ic~ (plO),2

where 

R == WI pOICd (pOI)' +W2POIC~ (pOl)' 

S == WIPOICd(pi 1)' + W2pOIC~ (pll)' 

T - 00 pilC (pll)' + 00 plIC· (pll)'
- I d 2 d 

and for a pair of nonnegative definite matrices A,B, 

A ~ B means B - A is nonnegative definite. Note that 
equality above is attained when d;: do . It follows then 
that 

tr(Cd(dir) ~ tr(Cdo(dir»' for alld E Qt,n,p (13) 

where tr(-) denotes the trace of a square matrix. Using 
the fact that do is uniform and strongly balanced, it can 
be shown that 

plOC~o (pOI)' == 0 and plOC~o (pll)' == 0 

and this leads to 

From the sufficient conditions for universal 
optimality, as in Kiefer (1975), the universal optimality 
of do for direct effects follows from (13) and (14). The 
optimality of do for direct and residual effects under 
model (1') has been proved earlier by Mukhopadhyay 
and Saba (1983), using a different technique. 

Theorem 3.3 of Cheng and Wu (1980) under the 
considered model gets modified to 

Theorem 3. For n = A/,p = A2t + 1,1..1,1..2 ~ 1, let do 
be a strongly balanced design in Qt.n,p which is uniform 
on the periods and uniform on the units in the first 
(p - 1) periods. Then, under the model (1), do is 
universally optimal for the estimation of complete sets 
of orthonormal contrasts belonging to residual effects 
over Qt.n.p' Also, under model (1 '), do is universally 
optimal for complete sets of orthonormal contrasts 
belonging to direct as well as residual effects over ,Qt,n,p . 

Proof. As shown by Cheng and Wu (1980), under 
a fixed effects additive model, direct effects are estimable 
orthogonally to the residual effects. Additionally, under 
do, the residual effects are orthogonally estimable to the 
interaction effects, Le., pOICdo(res) (pi I)' = O. Using these 
facts, coupled with arguments similar to the ones used 
in the proofofTheorem 2 to show that do maximises the 
trace of Cdo(res) , one can show the claimed optimality of 
do under model (1). Similarly, under (1 '), using the stated 
properties of do, the proof follows after noting that 
pOICdo (p1O)' =0 and that Cdo(dir) and Cdo(res) are 
completely symmetric. Note that the result under 
model ( l' ) was also obtained by Mukhopadhyay and Saba 
(1983). 

Kunert (1984) proved the optimality of a certain 
class ofuniform, balanced crossover designs. His result 
in the present context takes the form given in 
Theorem 4. 

Theorem 4. For n=Alt,p=t, let do be a uniform 
balanced crossover design in,Qt . Then, under the .n,p 
model (1 '), do is universally optimal for the estimation 
of complete sets of orthonormal contrasts belonging to 
direct effects over Qt,n,p if 

(i) Al == 1 and t ~ 3 or, (ii) Al = 2 and t ~ 6 

Proof. Since the design do is not strongly balanced, 

in general, piOCdo (pOl)':;tO. However, plOC~ 0 (pOI)' = 0 , 
since do is uniform. Thus, from (12) 

Cdo(dir) == constant. It (14) 
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P IOCd(dir) =5 ffilPIOCd(p1O)' + ffi2 C: (plO)' 

_ [ffilPIOCd(pOI )'][ffiIPOIC: (pOI)' 

+pOIC: (pOl),] - [ffiIPOICd(plO),] 

with equality holding for d == do . Thus 

tr(Cdo(dir» ~ tr(Cd(dir) ),for all dE QI,n.p 

Now, for d =do' we get after simplification 
n ~ p-2 , 

pOlC~o (pOI), =t -lpOl L (Ledo(i,j»( Ledo(i,j) (pOl) 

j=l i=O i=O 

Since do is uniform over periods, it is also uniform 
over the last period. We can therefore rearrange the units 
such that the last period is ofthe form 1,2, ... , t, ... , 1, 
2, ... , t, where each treatment symbol is repeated· Al 
times. Recalling that p = t and do is uniform over units, it 
follows then that 

where J is a txt matrix of all ones. We can now show
1 

that Cdo(dir) equals 

ffi(PIOCdo (p1O)' -(ffiIPIOCdo (pOI)')(ffiIPOIC (pOI),do 

+ ffi C IA(I) -x (ffi(pOICdo (plO),)
2

All the terms in the right hand side of(17) are terms 
for the fixed effects model and thus, complete symmetry 
of Cdo(dir) follows from the results under a fixed effects 
model. This completes the proof. 

On similar lines, one can also prove the following 
result about the optimality of a subclass of designs 
considered by Hedayat and Zhao (1990). 

Theorem 5. For p = 2, n = t 2 , let do be a design in 
QI.n.p' given by an orthogonal array OA(n, 2, t, 2), 
where the columns ofthe orthogonal array represent the 
units and rows, the periods. Then, under the model (1 '), 
do is universally optimal for the estimation of complete 
sets oforthonormal contrasts belonging to direct effects 

over QI.n.p' 
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Appendix 

ProofofTheorem 1. The model (1 ) (or, equivalently, 
model (2» can be written as 

E(y)=Xe, D(y)=V (AI) 

where y is the observations vector, e represents the vector 
of all parameters in the model, E('), D(') respectively 
stand for the expectation and dispersion (variance­
covariance) matrix and the design matrix X is given by 

A~I 

A~_I.I 

x= 

A~_I.n J 
Also, it is not hard to see that the dispersion matrix 

V is given by 

V =In ®A (A3) 

where the p x p matrix A is 
2 

0 +or or
 
2 2
021 0 + 01A= 

(A.4) 
2 

or or 0 +or 

Under the model (A. 1), the normal equations for e are 

(AS) 

After some routine but lengthy algebra, one can show 
that (A.S) can be simplified to 

(A6) 

where 

np n l' l~A -I(L Aj) 
0

2 +par 0 2 +par p j 

n 1 nA-I A-I(L Aj) 
0 2 +par P j 

F= 

~ A-A-IA'·(I. Aj)A-lIp L.J J J 
j j 

AOj JAj = : ,I~j~n
 

[
 Ap_l,j 

Yj =(YOi' ylj,····, Yp- I./ and a. is the vector of period 
effects. 

It is easy to see that the rank of the matrix F in 
(A6) is equal to the rank of the matrix 

nA-I A-I(L Aj)] 

<t Aj)A-1 t Aj~ -IA][ 

Premultiplying both sides of(A.6) by 

[ 

0]Ip+1 

- bB~ III 

where 

[ 
l~A-I~ Aj]
 

b'= J
 
A-IL AJ
 

j 

B =[nl~A -lIp nl~A-1] 
1 nA-lIp nA-1 

and simplifying, we get the reduced normal equations 
for estimating linear functions of ~ as 

(A.?) 

where B2 =L AjA-IAj, d 2 =I. AjA-IYj and 

j j 

Since rank (B1) =rank (nA-I) =p, a choice of a 

generalized inverse ofB, is B; ~ [~ n ~A)- Using this 

fact and after some lengthy algebra, we obtain the required 
reduced combined intra-inter unit normal equations in 
the required form. 


