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SUMMARY 

This article considers variance estimation of the Horvitz-Thompson estimator of the finite 
population total when information on some relevant auxiliary variable is available. A model-based 
variance estimator is suggested and it is shown that this estimator has smaller expected mean square 
error among the class ofall model-unbiased estimators. A small simulation study is presented to compare 
the performance of the suggested estimator with the Yates-Grundy variance estimator for a fixed size 
sampling and with the Horvitz-Thompson variance estimator for a random size sampling. In simulation 
study, it was observed that in most of the cases the proposed estimator is more efficient than one given 
by Horvitz and Thompson under the specified assumptions. 

Key words: Variance estimation, Model-based estimation, Auxiliary information, Super population 
model. 

1. INTRODUCTION 

Accurate estimation of forest resources over large 
geographical area is of significant interest to forest 
managers and forestry scientists. In forest surveys, 
design-based estimates of the parameters like total tree 
volume, growth and mortality, or area by forest type are 
required. Design-based estimation of such parameters, 
based on information gathered during ground visits of 
sample plots, can be made more precise by incorporating 
auxiliary information available from remote sensing. The 
ratio of means estimator, mean of ratios estimator and 
Horvitz-Thompson estimator (mean of ratios under 
nps - sampling scheme) are often used in forest 
inventory to estimate population totals with their standard 
errors (Zamoch and Behtold (2000)). 

Here we consider variance estimation of the 
Horvitz-Thompson (HT) estimator of the population 
total. 

Based on empirical and limited theoretic evidence, 
the Yates-Grundy variance estimator (v YG ) (1953) of 
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the HT estimator ofa finite population total is generally 
considered superior to the Horvitz-Thompson variance 
estimator (v HT ) (1952) because of fewer negative 
estimates and smaller sampling variance (Cumberland 
and Royall (1981), Rao and Singh (1973)). However, 

requires fixed sample size, whereas v HT does not. v YG 

This restriction of v YG to fixed sample size design 
eliminated this variance estimator from consideration of 
many applications in surveys (Stehman and Overton 
(1994)). Several design-based variance estimators ofHT 
estimator which incorporate knowledge of an auxiliary 
variable known for every unit in the population have 
been proposed and their performances examined and 
compared. See, for example, Isaki (1983), Singh et al. 
(1999). 

In this article a model-based estimator of 
the Horvitz-Thompson variance is suggested that 
incorporates the auxiliary information and that does not 
require fixed sample size. A fully developed approach 
to model-based variance estimation did originate with 
Royall and Eberhardt (1975), but an earlier version may 
be found in Royall (1971). 

Consider the finite population of units 
U = {I, ..., i, ... , N}. Let Yi and Xi be the values of the 
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main variable y and the auxiliary variable x, respectively, 
for the i th unit. Let s be a sample ofsize n drawn from U 
with the probability p(s) having positive inclusion 
probabilities 1t j =L 

S3i 
p(s) and 1tjj =L S3i• j p(s). For 

short, LA and LLAwill be used for L jEA and .~L, 
b'	 I""JEAW here A IS· an ar Itrary set. 

The Horvitz-Thompson estimator YHT = L s Y
i is 

1tj 

unbiased for the population total, T = Lv Y., and has 
the Horvitz-Thompson and Yates:'Grundyl variance 
expressions 

and 
2

1\ 1	 Y Y 
VYG (YHT) =--LLu (1t ij -1t j1t j ) _I __J (1.2)

2 ( 1t j 1tj ) 

Equation (1.2) holds only for fixed sample size 
designs. Their unbiased estimators are 

2J (1t..) Y. YV Y1\)HT = Ls( -1 -1 _iy + L Ls _'J_ -1 _I_JHT
( 1tj 1tj 1tj 1tj 1tij
 

and 

V YG ( YHT J~-~H{ 1tij ~:;1tj )( :: - :; J 
It is well known that (Cassel et aJ. (1977» under 

the super population model ~ with 

1:(Yj ) = ~j' '1I(Yj ) = crx~, Cov(Y;, Yj ) = p<ixix j (i '" j) 

(1.3) 

where J.l, (J > 0 and pe (-lj(N -1),1) are 
the parameters and 1:0'110 and CovC.) denote 

respectively, ~ -expectation, ~ -variance and 

~ -covariance, the best strategy for estimating the 

population total is the HT estimator with first-order 

inclusion probabilities 1t j proportional to 

(X j 
< Tx ...,· u)Xi _ , vIe • 

n 

Here, our objective is to obtain a model-based 
estimator ofVHT given in (1.1), that will work better than 
the usual estimator. The basic methodology for 
constructing such an estimator will be to: 

1.	 obtain the conditional ~ -expectation of VHT 

given the data d={(Yi,x;):ies} from the 

observed sample, i.e. 1:{VHT CY HT )Id} and 

2.	 substitute the sample estimates of functions of 
unknown parameters in the expression 

The efficiency ofthis estimator, as compared to the 
standard estimator, will depend on the goodness of fit. 
More details and illustrative example concerning the 
above idea was given in Wolter (1985). The design-based 
estimators V HT and v YG use the x variable only at the 
sampling stage, whereas the model-based estimator also 
uses the x variable at the estimation stage. 

In the next section the theoretic development is done 
using the Royall's (1970) prediction approach for finite 
population sampling under the model (1.3). Motivated 
by this, a model-based estimator of v HT is suggested in 
Section 3. Section 4 presents a limited simulation study. 

2. OPTIMAL ~ -UNBIASED PREDICTION 

A general theory of prediction that includes 
quadratic form, the population variance in particular, has 
been formulated, under a more general model, by 
Rodrigues et aJ. (1985). The population non-negative 
definite (n.n.d.) quadratic form is defined as V = y'l:1Y 
where Y = (Yl , ..., YN'j and .I:1=(.I:1ij) is an NXN-;n.d. 
and symmetric matrix ofknown constants. 

. A predictor Q is p-unbiased for Vy if, for a given 
deSIgn p(s) 

E(Q) = ~p(s)Q = Vy \;fY ERN 
seS 

and is ~ -unbiased if, for a given ~ 

1:tQ - V y )= 0 \;fse S 

where S = ~ : s !: u} 

The ~ -expected p-mean square error, denoted by 

~MSE, of an arbitrary strategy (a pair of sampling 
design p and a predictor Q) (p, Q) is given by 

(2.1) 



201 HORVITZ-THOMPSON VARIANCE ESTIMATION WHEN A UXILIARY INFORMATION IS AVAILABLE 

The goal of this section is to obtain an optimal 
predictor ofV . Here, the optimality is interpreted in the 

y 

sense ofminimizing (2.1) subject to the ~ -unbiasedness. 
The main result is contained in Theorem 1 below. 

The parameter p in model (1.3) was shown to be a 
quite generally redundant by Brewer and Tam (1990). 
Therefore in the remaining article, we assume that p = O. 

Theorem 1. Let p be any given design, and let 
Y I' .•. , YN be normally distributed. Then, under model 
(1.3), among all predictors Q of Vy = Y'!:i.Y satisfying 
'E(q - Vy ) = 0, the 'E MSE is minimized by 

Proof. See Appendix A. 

Remark 1. The above theorem is valid even if the 
sampling design is not fixed size. In this case, replace n 
by n., the random sample size. 

There are two special cases ofVy that are ofinterest. 

1.	 The population variance itself given by 

(1 )~~'U YY.N N -1 J1 

" 2.	 The Horvitz-Thompson variance, VHT(YHT) 
that was given in (1.1). 

Corollary 1. Let p be any given design, and let 
Y I" •• , YN be normally distributed. Then under model 
(1.3), the optimal ~ -unbiased predictor ofthe population 

variance S~ is given by 

Corollary 2. For any given design p, the predictor 
" V PR (YHT) given by 

VPR(YHT)=~s	 --1 Yj +~~s _IJ__ 1 YjYj
1t j 1t j1t j 

" ( 1 J 2 (1t..) 

YY 
~~s I J 

n(n-l)xjx j 

is	 optimal, under model (1.3), in the class of all 
" ~ -unbiased predictors of VHT(Y HT) when 

Yj (i = 1,2,...,N) are normally distributed. 

3. VARIANCE ESTIMATION 

Motivated by the prediction theory we suggest the 
following estimator for estimating the variance of 

" ,
Horvitz-Thompson estimator, VHT (YHT) = Y !:i.Y , 

where !:i. = (!:i. jj ) is an NxN n.n.d. and symmetric matrix 
. h -I d A - -I -I 1 hWIt !:i. = 1tj -1 an U jj -7t 1tj 1t - ,t at wasjj	 ij j 

given in (1.1). This estimator is general in that it applies 
for both fixed size and non-fixed size sampling design. 

v pR (Y" HT) = AHT(S, Y) + U pR (s, Y) (3.1) 

where 

AHT(s, Y) = ~s(~-IJYj2 + ~~s[ 1tij -1)Yj Yj
1tj	 1tj1tj 

and 

UPR(S,y)={~u(_1-IJX~ _~s(_1 -IJX~}~S Yj
: 

1tk	 1tk nX j 

+{~~U(~-I)XkXI-~~s(~-I)XkXI}
 
1tk1t.	 1tk1t. 

x ~~s YjYj
 

n(n -1)x jx j
 

This estimator is so intuitively plausible, following 
directly from Royall's approach ofreplacing a population 
sum by the sample sum plus a model-based estimator of 
the non-sample sum. 
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The necessary and sufficient conditions for vpR to 
be non-negative are derived in the following theorem. 

Theorem 2. The PR --estimator vpR is n.n.d. if and 

only if n·· ~ n·1t· for all i ¢. J' E U . 
IJ 1 J
 

Proof. See Appendix B.
 

4. SIMULATION STUDY 

In this section, we present the results of limited 
simulation studies on the small sample performance and 
the large sample performance of the variance estimator 

given in (3.1) of VHT • The populations used in this 
simulation were listed in Table I and Table 4. 

4.1 Small Sample Performance 

Two kinds ofcomparison will be considered. They 
are 

1.	 Comparison of v PR and v YG for a fixed size 
sampling 

2.	 Comparison of v PR and v HT for a random size 
sampling 

Table 1. Study population 

No. Source X Y N CV(x) CV(y) PYX 

1. Yates (1960), 
p. 163 

Eye estimates Measured volume 25 0.443 0.470 0.535 

2. Murthy (1967), 
p. 126 

Area in 1951 Workers at household industry in 1961 40 0.632 0.951 0.578 

3. Sukhatme et al. Number of Area under wheat 40 0.675 0.631 0.599 
(1970) villages 
p. 256 (51-89) 

4. Murthy (1967), Geographical Area under winter paddy 58 0.347 0.584 0.631 
p.178 area (in acres) 

, 
I 

5. Murthy (1967), 
p. 126 

Number of persons 
in 1961 

Workers at household industry in 1961 40 0.595 0.952 0.635 

6. Murthy (1967), 
p.398 

Number of workers Number of absentees 43 0.459 0.681 0.661 

7. Sukhatme (1970) 
p. 256 (1-40) 

Number of 
villages 

Area under wheat 40 0.482 0.613 0.662 

8. Yates (1960), 
p. 159 

Total number 
of persons 

Number of absentees 43 0.455 0.706 0.666 

9. Murthy (1967), 
p. 126 

Number of 
persons in 1961 

Number of cultivators in 1961 40 0.595 0.645 0.871 

10. Murthy (1967), 
p. 126 

Area in 1951 Number of cultivators in 1961 40 0.632 0.645 0.882 

11. Sukhatme (1970), 
p. 185 

Area under 
wheat in 1936 

Area under wheat in 1937 34 0.768 0.756 0.930 

12. Murthy (1967), 
p.228 

Fixed capital 
for factories 

Output for factories 40 0.353 0.252 0.951 

13. Murthy (1967), 
p.131 

Length (in 
chain units) 

Timber volume 48 0.338 0.547 0.954 

14. Kish (1965), 
p.625 

Number of 
dwellings 

Dwellings occupied by renters 40 0.612 0.746 0.975 
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Comparison under Sunter's method 

From each population a sample of size n = 10 was 
drawn using Sunter's (1986) method (see also, Samdal 
etal. (1992)). The variance estimators v YG and v pR were 
computed from each sample. This process was repeated 
M = 10,000 times. We then reconducted the above 
simulation with n = 15. 

The performance of different variance estimators 
was measured and compared in terms of relative 
percentage bias (RB%) and relative percentage standard 
error (RSE%). The simulated values ofRB % and RSE 
% for a particular variance estimator v were compared 
as -v-v 

RB%(v)=100x HT
 
VHT
 

and 

RSE% =100X~VSjm!VHT 

where 

- 1 M	 1 M -2 
V=-:~:>(j) and VSim(v) =--L,(v(j) -v) 

M j=!	 M -1 j=! 

Table 2 presents the values ofRB% and RSE% of 

variance estimators v YG and v PR • 

A scatter plot ofeach ofthe populations 1-4 exhibits 
lack of fit of straight line due to some outliers whereas 
populations 5-8 (with slight intercept), 9-12 and 14 
reveals that a linear model y. = AX. + E. with

I	 I-' I I 

V(Yi) oc xJ (l:::; y:::; 2) might be appropriate and the 
relationship between Y and x is strong, and population 
13 seems to obey the intercept model Yj = a +~Xj +Ej 
with v(YJ oc x~ . 

The following results were obtained through 
simulation: 

1.	 The PR-estimator has smaller RSE% than the 
YG-estimator for the populations 5-14 
(except 13) as the assumptions ofthe underlying 
model viz. Yj and Xi is straight line passing 
through origin and the variance of Yj is 
proportional to x~ along the straight line are 

I 

satisfied. 

Table 2. Relative percentage bias and RSE 
(under Sunter's scheme) 

Popl. 

No. 

n 

RB% RSE% 

v YG v PR v YG VpR 

1. 10 
15 

-7.0 
-

48.4 
-

28.68 
-

44.44 
-

2. 10 
15 

13.3 
-

35.5 
-

56.35 
-

366.74 
-

3. 10 
15 

13.3 
-

35.5 
-

56.35 
-

366.74 
-

4. 10 
15 

1.9 
0.7 

0.6 
11.9 

35.03 
26.35 

37.46 
29.59 

5. 10 
15 

31.3 
168.5 

-13.0 
9.4 

115.72 
57.35 

31.99 
20.29 

6. 10 
15 

6.7 
6.0 

-6.3 
-10.8 

53.96 
43.10 

38.28 
25.17 

7. 10 
15 

18.7 
8.9 

-7.4 
1.4 

76.60 
36.60 

34.86 
23.31 

8. 10 
15 

6.1 
4.9 

-6.8 
-11.9 

50.48 
41.23 

37.43 
24.40 

9. 10 
15 

2.5 
200.5 

21.9 
-5.4 

54.60 
70.82 

37.50 
14.02 

10. 10 
15 

19.4 
14.5 

6.5 
0.5 

107.29 
45.01 

59.85 
21.88 

11. 10 
15 

-1.1 

-
32.8 
-

79.80 
-

12.62 
-

12. 10 
15 

16.0 
-11.3 

-15.0 
17.2 

57.14 
31.71 

20.23 
9.16 

13. 10 
15 

9.6 
10.0 

30.7 
-22.2 

44.94 
53.59 

46.77 
20.24 

14. 10 
15 

22.1 
-13.3 

6.6 
-7.6 

96.75 
37.00 

29.98 
12.30 

• - ' indicates that Sunter method fails to provide inclusion 
probabilities. 

2. may have smaller RB% than vvpR YG 

(Populations: 3, 5, 7, 10, 14), but the pattern is 
not very clear or general because ofsmall sample 
size. 

,
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Remark 2. The variance estimator (due to Stehman method for most of the populations considered in this 
and Overton (1994)) article. 

° (2 2 ) vHT=n Sz -Szy Comparison under Poisson Sampling 

where Zj =Yj /1t j (i =1•...• N); s~ and s~y are the sample In this section, we compare vHT'vk (defined in 
variance of z and covariance of z and y respectively, of 

Remark 2) and v pR under Poisson sampling (see, e.g. 
takes frequently negative values under Sunter's VHT Samdal et ai. (1992). 

Table 3. Relative percentage bias and RSE (under Poisson sampling) 

Pop\. No n 
RB% RSE% 

vHT vpR Vo 
HT vHT vpR Vo 

HT 

1. 10 

15 

0.529 

0.117 

- 0.250 

- 0.328 

0.699 

0.196 

103.426 

53.068 

21.495 

16.904 

114.918 

56.859 

2. 10 

15 

0.842 

0.658 

-0.094 

-0.266 

1.046 

0.777 

427.304 

304.922 

176.970 

100.465 

474.782 

326.702 

3. 10 

15 

0.346 

0.350 

- 0.195 

- 0.313 

0.495 

0.446 

100.193 

82.039 

46.122 

31.102 

111.326 

87.899 

4. 10 

15 

0.873 

0.926 

-0.007 

- 0.014 

1.081 

1.063 

103.924 

76.575 

32.934 

25.787 

115.471 

82.045 

5. 10 

15 

0.729 

0.509 

- 0.191 

- 0.236 

0.921 

0.616 

476.713 

170.820 

36.743 

27.980 

529.681 

183.021 

6. 10 

15 

1.102 

1.364 

0.248 

0.284 

1.335 

1.533 

146.653 

117.087 

39.451 

30.494 

162.947 

125.451 

7. 10 

15 

0.603 

0.593 

- 0.109 

- 0.122 

0.782 

0.707 

184.024 

122.000 

31.238 

22.697 

204.471 

130.714 

8. 10 

15 

0.949 

1.199 

0.254 

0.270 

1.165 

1.356 

134.449 

114.317 

39.630 

30.727 

149.388 

122.483 

9. 10 

15 

1.201 

1.021 

-0.130 

- 0.167 

1.445 

1.166 

298.389 

157.453 

20.101 

14.362 

331.544 

168.700 

10. 10 

15 

1.140 

1.150 

-0.024 

- 0.124 

1.377 

1.303 

236.131 

186.132 

25.460 

16.240 

262.368 

199.427 

11. 10 

15 

0.896 

1.061 

- 0.153 

-0.089 

1.106 

1.208 -

204.829 

169.982 

19.477 

13.854 

227.588 

182.124 

12. 10 

15 

0.529 

0.574 

-0.207 

- 0.214 

0.699 

0.687 

54.013 

38.696 

14.662 

7.774 

60.014 

41.46' 

13. 10 

15 

-0.334 

- 0.355 

- 0.167 

- 0.137 

-0.260 

- 0.309 

27.193 

22.032 

27.888 

21.929 

30.215 

23.606 

14. 10 

15 

0.299 

0.595 

- 0.154 

- 0.014 

0.444 

0.709 

105.593 

84.940 

21.959 

17.628 

117.326 . 

91.008 
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Table 4 

Pop!.No Source X Y N CV(x) CV(y) P 

1. Siimdal CS82: Number RMT x 10"': 
et al. (1986) of conservative Revenue from the 1985 municipal 

seats in Municipal taxation 

Council 281 0.52 1.06 0.657 

2. Chambers Area assigned for Gross value of sugarcane 
et al. (1992) sugarcane farms 338 0..59 0.61 0.902 

3. Valliant 
et al. (2000) 

Number ofbq:ls Number of patients discharged 393 0.78 0.72 0.910 

4. Valliant Adult female Breast cancer mortality, 1950-69 
et al. (2000) population, 1960 (white female) 301 1.22 1.28 0.967 

5. Valliant Number of Population, excluding residents of 
et al. (2000) households, 1960 group quarters, 1960 304 1.30 1.38 0.982 

6. Valliant Number of Population, excluding residents of 

et al. (2000) households, 1960 group quarters, 1960 304 1.30 1.24 0.998 

Some noteworthy results in Table 3 are: 

(i)	 The excellent performances of RB% (except 
population 1 for n = 15) and RSE% associated 
with v PR are eviqent for all populations. That 
is, V PR outperforms the convention HT variance 
estimator v HT under Poisson sampling. 

(ii)	 The worst performer is v".rr . 

4.2 Large Sample Performance 

In this subsection, for the case n = 30 and for the 
large population (listed in Table 4), the above simulation 
procedure was repeated. The simulated values of the 
summary statistics under Sunter's sampling and Poisson 
sampling were presented in Table 5 and Table 6 
respectively. 

Results ofTable 5 and Table 6 can be summarized 
as follows: 

Under Sunter's sampling has responsiblev YG 

RB%, varying from 1% to 10%, whereas v PR has large 
absolute RB%. Both the assumptions underlying the 
model are satisfied by populations 1 to 5 and therefore 
v pR has considerably smaller RSE% than ForV YG • 

population 6, v PR is worst. The reason is that the relation 
between Yj and Xi is a straight line through the origin but 

Table S. Relative percentage bias and RSE 
(under Sunter's scheme) 

Pop!. RB% RSE% 

No. v YG vpR v YG v pR 

I. 

2. 

3. 

4. 

5. 

6. 

3.087 

0.056 

3.201 

1.297 

3.974 

-8.601 

4.310 

-7.297 

- 16.452 

-17.110 

13.576 

-71.259 

40.655 

28.410 

44.979 

39.656 

62.286 

48.884 

35.804 

25.591 

29.643 

27.571 

52.257 

73.432 

Table 6. Relative percentage bias and RSE 
(under Poisson sampling) 

PopL RB% RSE% 

No. vHT v pR 
VO 

HT v HT v pR 
VO 

HT 

I. -0.383 2.668 -65.958 30.362 29.805 67.492 

2. -0.395 -1.668 -90.887 19.715 17.428 91.066 

3. -0.396 -3.246 -89.903 20.015 17.638 90.089 

4. -0.456 -1.493 -91.180 20.133 14.878 91.339 

5. -0.167 1.594 -95.966 18.773 14.056 96.088 

6. -0.279 -3.497 -95.776 18.363 13.419 95.880 
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the variance of Yj about this line is proportional to Xi 
which violate the assumption of the model namely 
v(yJ ex x;. 

Under Poisson sampling the absolute values of 
RB% of are all less than Y2% for all the six V HT 
populations, while vPR out performs the conventional 
HT-variance estiamator vHT • 

5. CONCLUSION 

Based on the empirical study and the theoretical 
discussion we arrive at the following conclusions: 

1.	 It is clear from (3.1) that the PR-estimator will 
reflect the true variance closely when the best 
linear fit between Yi and Xi goes through the 
origin and the residuals from it are small. A high 
correlation between Yj and x j is a necessary 
(though not a sufficient) condition for that kind 
ofclose fit which is evident from the following. 

Since PYX =Cov(xi'Yj)/{SE(xj)SE(y)} and 
the regression coefficient of Yj on Xi is 

13 = Cov(xi' Yj )/{SE(x)}2 , the proportion of 

the variability in Yi explained by the regression 
ofYion Xi is simply 

132{SE(x j )}2 {Cov(X j ,yJ}2 2 
{SE(yj)}2 = {SE(X)}2{SE(y)}2 =PYX 

which depends only on PYX' 

2.	 The estimator vpR was constructed assuming 
that the underlying super population model is a 
straight line passing through the origin and the 
variance of Yj is proportional to x; . Therefore, 
the efficiency of the estimator depends on the 
goodness of fit ofthe model. 

3.	 Implementation ofthe suggested estimator vpR 

requires the complete auxiliary information, that 
is, values of X variable for the entire finite 
population. With strong auxiliary information 
the gain for using vPR can be substantial 
compared to the HT and YG variance estimators 
under the specific assumptions. 

4.	 The excellent performances ofRB% and RSE% 
associated with v PR are evident for most of the 
populations under Sunter's sampling and 

Poisson sampling when underlying assumptions 
are met. The worst performer is v~ . 

5.	 Further empirical works through Monte Carlo 
for different populations under different 
sampling schemes are needed to assess the 
possible impact on the suggested estimator. 

Appendix A. Proof of Theorem 1. 

Let us begin by assuming that the random vector 
~ = (Zl' Z2 ,...,ZN)' have normal distribution with first 
two moments 

(A.I) 

2where J..l = J..lIN'~ = cr I N and IN is an N x I vector of 
unities,-I N is an N x N identity matrix and J N = INl~ • 
Further assume that 

Z = [.?;s] ~ = [~s 0] 
J N 

[Js
- Z' 0 ~r ' = J 

-r	 rs 

where s and r denote the sets ofsample and non-sample 
units. 

, 
The problem is to estimate V = Z AZ where A 

z - ­
is an N x N n.n.d. and symmetric matrix of known 
constants. 

Assuming that the non-informative sampling design 
is given, V and its quadratic predictor Q can be z	 z 
represented as 

V	 = A(s,Z) + B(r,Z)
z - ­

and 

Q	 = A(s,.?;) + U(s,.?;) (A.2)z 
,	 " 

where A(s,.?;) = .?; sAs.?;s' B(r;~ = ~ r~ b + ~ s~rb 

A is partitioned accordingly as .?; and U(s,.?;) is 
considered a predictor of B(r,~) . Further assuming that 

U is ; -unbiased for B(r,~) , (2.1) simplifies to 

'EE(Q- V )2 = E[o/(U)+o/(B(r,~»-2Cov(U,B(r,~))]z 

(A.3) 

Ifa quadratic and x-unbiased predictor Q is ofthe z 
form (A.2), then U must have the form 

(AA) 
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where H s = (h(s.ij» is an n x n symmetric matrix of 

constants. Since Q is assumed to be a ~ -unbiased for z 

Vz ' we have 

from which. under model (A. I ), we obtain 

(A5) 

Moreover. from (A4) and (A.5) we obtain 

Since ~s and ~r are independent, it follows that 

Cov(U.B(r.~) = O. Therefore, the 'EMSE given by 
(A.3) is minimized if, for every fixed SE S, we choose 
U to minimize 'll (U) subject to (A5), where ci and 

I..l. 2 are the unknown quantities. 

By generalized least square theory, the uniformly 

minimum ~ -variance and ~ -unbiased estimators of I..l. 2 

and cr2 (Arnold (1979» are 

1\2 1 1\2 2 
I..l. = LLsZjZj;cr =sz

n(n -I) 

where S2 =.!..L Z~ - 1 LL Z.Z. 
z n S I n(n -1) S 1 J 

Substituting these estimators in (A5) we get with 
the help of (A.6) 

U' = tr(Ar)s; + [tr(ArJ r) + tr(AsrJ rs)] 

1 
---LLsZjZj
n(n -1) 

Clearly 

Q =A(s.~) + U (s.~) (A7)z 

minimizes 'E(Q - V )2 for every s E S and hence also z 
'EE(Q - V )2 . z

The proof of Theorem 1 follows from 
(A.7) by putting ~ = 0-1Y and A = D'W where 

Y = (Yi' Y2 ..... YN )'. D = diag (xl' x2' ... , ~) and !! is 
an N x N n.n.d. and symmetric matrix. 

Appendix B. Proof ofTheorem 2. 

The proof is based on the following results. 
, 

Result 1. If a quadratic form X AX ~ 0 (~O 

means n.n.d.), every principal minor determillant ofA is 
~ O. Moreover, if Xi actually appears in X AX then 
ajj >0. 

Result 2. A pattern matrix A = (a - b)1 n + bJ n is 
n.n.d. either a = b or a = -(n - I)b. Further 

A ~ 0 if and only if b ~ 0, for a = -(n -I)b 

Assume without loss of generality that the first n 
population units have been selected in the sample. With, 
the help of Result 1, since VHT = Y !!Y ~ 0 it follows 

that AHT (s, Y) = Y's!!s Ys ~ 0 where !!s is an n x n 
diagonal block matrix of !! . 

Next, using Result 2 with 

and Zj =YJxi,ies,onecanseethat UpR(s,Y)~O if 

and only if b ~ 0 i.e. if and only if 

LLU[~-I}kXI~LLS[~-I)XkXI 
1tk1t) 1tk1t) 

i.e. if and only if ~ 1tk1t1 V k *Ie U which1tkl 
complete the proof. 
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