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SUMMARY 

Chen et al. (1999) introduced the concept ofmaximum estimation capacity for two-level fractional 
factorial designs. Wu and Hamada (2000) compared minimum aberration designs and maximum 
estimation capacity designs for two-level combined arrays. We study the concept ofmaximum estimation 
capacity for 27-run and 8 I-run three-level combined array based on the number of eligible and clear 
estimable main effects and two-factor interaction effects. 
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1. INTRODUCTION 

Box and Hunter (1961) introduced the concept 
of resolution for distinguishing fractional factorial 
designs. Fries and Hunter (1980) introduced the concept 
of minimum aberration for distinguishing two designs 
having same resolution. Franklin (1984), Deng and Tang 
(1999), Tang and Deng (1999), Xu and Wu (2001) and 
Ke and Tang (2003) discussed minimum aberration for 
two levels regular, non-regular and asymmetrical 
fractional factorial designs. Chen et al. (1999) introduced 
the concept ofmaximum estimation capacity for 16-run 
and 32-run designs. Taguchi (1959, 1987) introduced 
the concept of robust parameter design for improving 
the quality of the product and process by reducing the 
effects ofnoise induced variations. An excellent review 
on Taguchi's methodology is given by Ankenman and 
Dean (2003). The basic idea in robust design is to design 
an experiment that allows us to identify the settings of 
the control factors that make the product or process 
insensitive to the effects of the noise factors. Welch 
et al. (1990), Shoemaker et al. (1991) and Montgomery 
(1991) independently proposed the concept ofcombined 
array where the factors are divided into control and noise 
factors. 
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In agricultural experiments; growth and 
development of plants are primarily governed by the 
environmental conditions such as climate, which are 
treated as noise factors and can not be controlled. Thus 
the major problem is to study and analyze how these 
noise factors interact with other control factors like seed 
quality, irrigation, temperature etc. Combined array is a 
good approach to study these control x noise interactions 
in lesser number of runs. Wu and Hamada (2000) made 
a remark that minimum aberration criterion cannot be 
used for choosing good combined arrays; one should 
choose a design with a large number of clear control x 

noise interactions, control main effects, noise main 
effects and control x noise interactions. It may be very 
well dealt in the concept ofmaximum estimation capacity 
as it takes care of the aliasing pattern. They have 
compared the properties ofminimum aberration designs 
and maximum estimation capacity designs for two-level 
combined arrays based on the number of eligible and 
clear estimable main effects and two-factor interactions. 
Evangelaras et al. have given a complete catalogue of 
non-isomorphic two-level designs under the criteria of 
generalized minimum aberration and maximum 
estimation capacity. So far maximum estimation capacity 
has been studied for two-level fractional factorial designs 
under the concept of combined array. In agricultural 
experiments there are situations when three levels ofthe 
factors can be maintained or experimenter is concerned 
about the curvature in the response function for which 
three-level fractional factorial designs may be useful. 
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In this paper we study the concept of maximum 
estimation capacity for three-level combined array based 
on the number ofeligible and clear estimable main effects 
and two-factor interactions. This work is an extension 
of the concept of estimation capacity given by Wu and 
Hamada (2000) on two-level fractional factorial designs. 
A catalogue for 3n+m- p combined array designs (for 27
run design n + m = 4,5, ... ,10 and for 81-run design 
n + m = 5,6, ... ,9) has been developed under the criterion 
of maximum estimation capacity based on the number 
of eligible and clear estimable main effects and two
factor interactions. 

2. MAXIMUM ESTIMATION CAPACITY 
CRITERION 

Chen et al. (1999) introduced the criterion ofmodel 
robustness known as maximum estimation capacity as 

For any I ~ k ~ nC
2 

, the estimation capacity 

Ek(D) ofa 2n- p design 0 is defined as the total number 

of models jointly estimating all the main effects and k 
two-factor interactions. Mathematically 

k 
Ek(D) = L TIm.,(O) ifk~f 

l:SjI<...<jk:Sfj=I IJ 

where f = 2n- p -1- n is the number of alias sets that 

pdo not contain main effects. For a 2n- design D of 
resolution III or higher, m j (0), i = 1, 2, ...,f is the 
number oftwo-factor interactions in the i th alias set. A 
design that maximizes E k (0) is said to have maximum 
estimati~n capacity. Chen et al. (1999) also showed that 
a desig~ 0* has large estimation capacity ifit maximizes 

f * Lm j (0 ), and m. (O*)'s as uniform as possible. They 
i=l	 1 

also showed that minimum aberration criterion is a good 
surrogate for maximum estimation capacity but they are 
not the same. They considered 16 and 32 runs regular 
two-level fractional factorial designs. Cheng and 
Mukerjee (1998) studied regular fractional factorial 
designs with minimum aberration and maximum 
estimation capacity. Later Mukerjee et al. (2000) 
discussed regular fractions of mixed factorials with 
maximum estimation capacity. Wu and Hamada (2000) 
compared the properties of minimum aberration and 
estimation capacity for two-level combined arrays based 
on the number ofeligible and clear estimable main effects 
and two-factor interactions under the assumption that 
noise-by-noise and higher order interactions are 

negligible. A main effect or two-factor interaction is said 
to be eligible if it is not aliased with any other main 
effects. Eligibility is a weaker property than clear 
estimation because it ensures that an effect is estimable 
only if its two-factor interaction aliases are negligible. 
In robust parameter design the effect ordering principle 
for combined array is in the following order 

(i) Control-by-noise interactions (C	 x N), control 
main effects and noise main effects 

(ii) Control-by-control interactions (C x C) 

(iii) Noise-by- noise interactions (N x N) and higher 
order interactions 

The required model to estimate all the cases stated 
in (i) and (ii) above is ofthe following form 

Y=b + ~b.x. + ~b.z. +.p, ~b.,x.z.o	 L 11 L JJ LL1JIJ 
i=I j=I j=I j=l 

In the above model x j (i = 1,2,...,n) is a control 
factor, Z j (j = 1,2, ..., m) is a noise factor where n + m 
factors influence the response in an experiment out of 
which On' are control factors and Om' are noise factors. 
XjZ j is the C x N interaction and XiX j is the C xC 
interaction. 

Wu and Hamada (2000) considered a minimum 

aberration resolution I~ 26
-

2 design for explaining the 
importance of estimation capacity criterion over 
minimum aberration. They considered three control 
factors A, B and C and three noise factors d, e and f with 

the defining relation 1= ABCd=ABef =defC. Here all 

main effects are clear; all the 15 two-factor interactions 
are eligible but not clear and are divided into seven 
groups ofaliased effects as follows 

AB = Cd = ef BC = Ad Af =Be AC = Bd 
Ae=Bf Ce=df Cf=de 

2whereas, in resolution III, 26- design with the 
defining relation I = ABCd = def = ABCef, the effects 
A, B, C, Ae, Af, Be, Bf, Ce, Cf are clear; d, e, f are 
eligible effects; and has the following three groups of 
aliased effects 

Ad=BC Bd=AC Cd=AB 
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In this case there are six eligible two-factor between two-factors A and B are represented by two 
interaction effects in three pairs ofaliased effects. Even components AB and AB2 . 

though it has resolution III, its estimation capacity is 
3. ALGORITHM TO DEVELOP 3 D +m-psuperior to the previous resolution IV minimum 

aberration design. Also in this design there are six clear COMBINED ARRAY DESIGNS UNDER 
THE CRITERION OF MAXIMUMC x N two-factor interactions whereas, in resolution IV 

ESTIMATION CAPACITYdesign there is not even a single clear C x N two-factor 
interaction. In the case of combined array the C x N 

For developing the designs we have considered the interaction have more importance than C x C interaction 
Yates order for standard three-level factor allocation asand the least important effects are N x N interactions. 
shown in Table 1.Thus one should choose a design with a large number of
 

clear C x N interactions, control main effects, noise main Table 1 represents the standard allocation for 81

effects and C x C interactions. Wu and Hamada (2000)
 run design. In case of 27-run design, one may consider 

p the first 13 columns ofthe table. The interaction between studied combined arrays for 2n
- fractional factorial 

columns C j and C are obtained through CiC j anddesigns. j 
Ci(C j)2. For easy reference, we provide the interaction 

Chen and Cheng (2004) introduced the concept of table for LSI (340 ) in Appendix III. The following 
estimation index for two-level fractional factorial sections describe the algorithm for developing combined 
designs. For a two-level fractional factorial design 'D' array designs under the concept ofmaximum estimation 
there are f = 2n- p -1 mutually exclusive alias sets. Let capacity. We have considered 27-run and 81-run designs 

to develop 3n+m- p combined arrays, as large number ofPi (D) be the length ofthe shortest word in the i th alias 
runs! trials are discouraged in practical situations. But, set, i = 1,2, ....,f then the estimation index of D is 
the algorithm is generalized and can be used for higher p(D) = max{p(D) : i = 1,2, ...., f} under the assumption
 
run designs.
 that higher order interactions are negligible. When 

p(D) = 2 , it means all degrees of freedom not aliased 
3.1 Maximum Estimation Capacity for 27-Run 

with main effects are used for estimating two-factor 3 D + m· p Combined Array Designs
interactions. If p(D) > 2 then we can add more factors 
in the columns where no main effect or two-factor In case of 27-run designs we have considered the 
interaction are aliased. designs for n+m=4,5, ... ,1O; p=I,2, ...,7 with 

m = 1,2,....,5 noise factors. First allocate three
We redefine mutually exclusive alias sets by 

independent factors in column 1, 2 and 5 as per the 
f = (3n+m- p -1)/2 (where there are 'n' control factors and 

standard allocation. Then in order to allocate remaining 
'm' noise factors) for defining estimation, as in three

n+m-3 factors take all possible combinations in the 
level orthogonal array designs each two-factor interaction 

remaining 10 columns, which give all possible 

Table 1. Standard allocation of factors 

Col. 

Col. 

Col. 

Col. 

Col. 

1 2 3 4 5 6 7 8 
a b ab ab2 c ac bc abc 

9 10 11 12 13 14 15 16 
ab2c ac2 bc2 abc2 ab2c2 d ad bd 

17 18 19 20 21 22 23 24 
abd ab2d cd acd bed abcd ab2cd ac2d 

25 26 27 28 29 30 31 32 
bc2d abc2d ab2c2d ad2 bd2 abd2 ab2d2 cd2 

33 34 35 36 37 38 39 40 
acd2 bcd2 abcd2 ab2cd2 ac2d2 bc2d2 abc2d2 ab2c2d2 
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allocations of n+m factors. For each design calculate 
mj (D),i =1,2, ....,f where f ={(3n+m- p -1)/2-(n +m)}: 
mutually exclusive alias sets that do not contain main 
effects. Next in order to search for non-isomorphic 
designs arrange mj(D)'s in descending order for each 
design. Select all designs with unique mj(D)'s. We 
select designs on the basis of following two criteria for 
working on maximum estimation capacity problem. 

f 
(a)	 Designs that maximizes ~mj (D) Le. the 

design which has maximum ntkber ofestimable 
two-factor interactions. It has been observed that 
there are number of such designs. We further 
screen these designs on the basis of maximum 
number of clear two-factor interaction effects. 

(b) Next we choose designs that have maximum 
number ofclear two-factor interaction. Again it 
has been observed that there are number ofsuch 
designs. We further screen these designs on the 

basis of one that maximizes ±mi (D). 
i=l 

Based on the above criteria we get a set ofselected 
designs. In order to develop designs under combined 
array we divide the factors further into On' control factors 

and 'm' noise factors. For each selected design consider 
all possible allocations of control and noise factors. 
Corresponding to each allocation of control and noise 
factors construct the alias table and count the number of 
eligible two-factor interactions. Out of the selected set 
of two-factor interactions, count the number of clear 
C x N and clear C x C interaction effects. Under the 

assumption that all control and noise main effects are 
eligible/clear, select those designs that has maximum 
number of clear two-factor interactions and maximum 
number ofclear C x N interactions. Appendix I give the 
selected list of designs with maximum estimation 

capacity. All the selected designs have estimation index 
2 which means that all degrees of freedom which are 
not aliased with main effects are used for estimating two
factor interaction effects. 

3.2	 Maximum Estimation Capacity for 81-Run 
3 D + m· P Combined Array Designs 

We consider here 3n+m- p designs for n + m = 5, 6, 
...., 9; p =1,2, .... , 5 andm =1,2, .... , 4 noise factors. In 
the case of 81-run design there are four independent 

factors which according to standard allocation of 
Table 1 are allocated in columns 1, 2, 5 and 14. Then in 
order to allocate remaining n + m - 4 factors, take all 
possible combinations in the remaining 36 columns, 
which give all possible allocations ofn + m factors. After 
this we follow the same steps as described above in 27
run designs to obtain the maximum estimation capacity 
designs. Appendix II gives the selected list of 81- run 
designs with maximum estimation capacity. All selected 
38 5-4 and 39- designs have estimation index 2. We 
consider the following example to explain the concept. 

Example 

Consider,81-run 37- 3 design with 4 control factors 
and 3 noise factors. There are 7 main effects and 42 two
factor interaction effects. The number of columns 
out of 40 that can be used for estimating two

mfa7.tor interacti~ns are f =(3n+ -
p -1)/2)- (n + m) 

=~34+3-3 -1)/2)- (4+ 3) =33 .Allocate four independent 
factors in column 1, 2, 5 and 14 as per the standard 
allocation. To allocate next three factors in the remaining 
36 columns, take all possible 36C3 combinations which 
give all possible allocations of seven factors. For each 
ofthe 36 C3 designs calculate mj(D) . To search for non
isomorphic designs, first arrange mj(D) in descending 
order then select all designs with unique mj(D) 's. We 

f 

further select those designs that maximize ~ m i (D) i.e. 
j=l 

the design which has maximum number of estimable 
two-factor interactions along with maximum number of 
clear two-factor interaction effects according to the 
criteria (a). Next divide the factors into control and noise 
factors. Select one of the designs based on criterion (a) 
and allocate three noise factors. This gives 7 C 

j 

combinations. Corresponding to each allocation of 
control and noise factors we construct the alias table and 
count the number ofeligible two-factor interactions. Out 
of 35 combinations there are 5 unique combinations as 
shown in Table 2. For these 5 unique designs, count the 
number ofclear C x N and clear C x C interaction effects 
under the assumption that all control and noise main 
effects are eligible/clear. 

Following the criteria ofestimation capacity given 
by Hamada and Wu (2000), it can be observed that design 
number 5 of Table 2 has maximum number of clear 
two-factor interactions along with maximum number of 
clear C x N two-factor interactions. This 37- 3 designs 
has been listed in Appendix II. 
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Table 2. Allocation of control and noise factors under criterion (a) 

Design No. Control Factors Allocation Noise Factors Allocation Eligible 2 f;'s ClearC x N Clear C x C 

1. 
2. 
3. 
4. 
5. 

8 
5 
5 
2 
1 

14 
14 
8 
5 
8 

17 
17 
14 
14 
17 

20 
20 
17 
20 
20 

1 
I 
1 
1 
2 

2 
2 
2 
8 
5 

5 
8 

20 
17 
14 

36 
36 
36 
36 
36 

11 
11 
10 
12 
12 

7 
5 
6 
6 

12 

Table 3. Allocation of control and noise factors under criterion (b) 

Design No. Control factors allocation Noise factors allocation Eligible 2 f;'s ClearC x N ClearC xC 

1. 

2. 

3. 
4. 

5. 

6. 
7. 

8 

5 

5 
2 

2 

1 
I 

14 

14 

8 

5 

5 
2 

2 

22 

22 

22 

22 

8 
5 
5 

35 

35 
35 

35 

35 
35 

8 

1 

1 

1 
1 

I 

8 
14 

2 

2 

2 

8 

14 
14 

22 

5 

8 
14 

14 

22 
22 

35 

24 

24 

24 

26 

26 

30 
30 

24 

18 

14 

12 

13 

15 
18 

0 

6 

6 
10 

7 

9 

6 

Similarly, design selected on the basis of criterion 
(b) gives 7 unique combinations of control and noise 
allocation as shown in Table 3. We select design number 
1 and 7 on the basis ofmaximum number of clear two
factor interactions along with maximum number ofclear 

3C x N two-factor interactions. These 37- designs are 
listed in Appendix II. Further, we prefer design 
number 7 over design number 2 as numbers of eligible 
two-factor interactions are much larger in fonner design. 

4. CONCLUDING REMARKS 

In many industrial experiments there are situations 
where all the factors are not controllable and are treated 
as noise factors. In the case ofcombined array the C x N 
interaction have more importance than C x C interaction. 
The combined array designs developed in this paper, on 
the basis of maximum estimation criterion allows the 
estimation on maximum number ofestimable two-factor 
interactions and clear C x Ninteractions when factors 
are at three levels. The list ofdesigns given in Appendix 
I and II facilitates the allocation of different number of 
control and noise factors which gives designs with 
maximum estimation capacity. Most of the selected 
designs have estimation index 2 which means that all 
degrees of freedom which are not aliased with main 
effects are used for estimating two-factor interaction 
effects. 
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APPENDIX I 
27-Run Designs Based on Maximum Estimation Capacity Criterion 

Design Control Factors Allocation Noise Factors 
Allocation 

Eligible 
2 f's 

ClearC x N Clear C x C 

34
-' 2 5 8 1 12 3 3 

5 8 1 2 10 4 2 
8 1 2 5 6 6 0 

35-2 1 2 3 9 5 17 1 0 
3 5 9 1 2 16 0 I 
2 3 9 1 5 15 1 2 
5 9 1 2 3 14 0 2 
3 9 1 2 5 12 3 2 
2 9 1 3 5 12 3 2 
2 3 1 5 9 11 4 0 

36-3 2 3 5 9 13 1 24 0 0 
3 5 9 13 1 2 23 0 0 
2 5 9 13 1 3 23 0 0 
2 3 9 13 1 5 22 0 0 
5 9 13 1 2 3 21 0 0 
2 9 13 1 3 5 19 0 0 

)7-4 2 356 7 9 1 27 0 0 
1 356 7 9 2 27 0 0 
2 567 9 1 3 26 0 0 
3 567 9 1 2 26 0 0 
2 367 9 1 5 26 0 0 
2 356 9 1 7 25 0 0 
3 679 1 2 5 24 0 0 
5 679 1 2 3 24 0 0 
2 379 1 5 6 24 0 0 
2 679 1 3 5 23 0 0 

38-5 2 356 7 9 12 1 32 0 0 
3 567 9 12 1 2 31 0 0 
2 3 569 12 1 7 30 0 0 
3 6 7 9 12 1 2 5 29 0 0 
5 6 7 9 12 1 2 3 29 0 0 
3 5 6 9 12 1 2 7 28 0 0 
6 7 9 12 1 2 3 5 26 0 0 
5 7 9 12 1 2 3 6 25 0 0 

39-6 2 356 7 9 12 13 1 36 0 0 
3 5 6 7 9 12 13 1 2 35 0 0 
3 6 7 9 12 13 1 2 5 33 0 0 
5 6 7 9 12 13 1 2 3 33 0 0 
3 6 7 12 13 1 2 5 9 30 0 0 
6 7 9 12 13 1 2 3 5 30 0 0 

310-7 2 3 4 5 6 7 8911 1 27 0 0 
2 4 5 6 7 8 9 11 1 3 27 0 0 
3 45678911 1 2 27 0 0 
2 5678911 1 3 4 27 0 0 
4 5678911 1 2 3 27 0 0 
5 6 7 8911 1 2 3 4 27 0 0 
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Design 

135

36-2 

)7-3 

38-4 

539

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

APPENDIXll 

81-Run Designs Based on Maximum Estimation Capacity Criterion 

Control Factors Allocation 

2 5 14 22 
5 14 22 

14 22 
2 5 14 22 23 
I 5 14 22 23 
I 5 14 23 
I 5 14 
2 5 8 14 18 
I 2 8 14 18 
5 8 14 18 
1 2 14 18 
8 14 18 
2 14 18 
2 5 8 14 17 20 
1 8 14 17 20 
I 8 17 20 
2 5 8 14 22 35 
5 8 14 22 35 
1 2 5 8 35 
I 2 5 22 35 
I 2 5 8 
8 14 22 35 
2 5 8 14 17 20 40 
2 5 14 17 20 40 
2 5 14 20 40 
2 5 14 40 
1 2 5 14 21 
8 14 22 35 
I 2 5 12 31 36 40 
1 2 12 14 36 40 
1 2 5 31 36 40 
1 2 12 14 40 
1 5 31 36 40 
2 5 31 36 40 
1 5 14 31 36 40 
5 31 36 40 
I 2 12 14 
2 5 8 14 20 25 27 31 
I 2 5 8 14 25 27 31 

Noise Factors Allocation Eligible 
2 f's 

I 

Clear 
CxN 

Clear 
CxC 

1 20 8 12 
1 2 18 12 6 
1 2 5 14 12 2 
I 27 10 14 
2 27 6 18 
2 22 26 12 12 
2 22 23 24 18 6 
1 30 4 14 
5 30 7 11 
1 2 28 8 12 
5 8 28 12 6 
1 2 5 24 14 6 
I 5 8 24 15 3 
1 42 6 12 
2 5 40 8 12 
2 5 14 36 12 12 
1 30 9 15 
1 2 28 16 8 

14 22 30 12 12 
8 14 30 9 15 

14 22 35 30 18 6 
I 2 5 24 24 0 
1 56 4 12 
1 8 54 8 10 
1 8 17 50 12 10 

1 8 17 20 44 16 12 
8 17 20 50 15 7 
1 2 5 18 32 32 0 

14 43 6 15 
5 31 43 10 11 

12 14 41 11 12 
5 31 36 43 15 6 
2 12 14 37 19 8 
1 12 14 37 17 8 
I 2 12 37 19 8 
1 2 12 14 31 31 0 
5 31 36 40 43 20 1 
1 72 0 1 

20 72 1 0 
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39-5 
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Design Control Factors Allocation 

2 5 8 14 20 25 31 
2 5 8 14 25 27 31 
5 8 14 20 27 31 
5 8 14 20 27 
8 14 20 27 31 
I 2 5 14 20 21 31 38 
1 14 20 21 30 31 38 
1 2 14 21 30 31 38 
1 2 5 20 21 38 
2 5 20 21 31 38 
1 14 21 30 31 38 
5 20 21 31 38 
1 14 30 31 38 
2 5 20 30 31 
1 14 21 30 31 
1 5 20 21 38 
2 5 8 14 20 26 31 34 
5 8 14 20 26 31 34 
2 5 8 14 20 26 34 
5 8 14 20 26 34 
2 5 8 20 26 34 
5 8 14 20 26 
5 8 14 20 34 
1 2 5 8 26 

Noise Factors Allocation Eligible 
2 ii's 

Clear 
CxN 

Clear 
CxC 

1 27 70 0 3 
1 20 70 1 I 
1 2 25 66 2 3 
1 2 25 31 60 6 2 
1 2 5 25 60 5 3 

30 66 4 8 
2 5 64 4 10 
5 20 64 8 5 

14 30 31 61 12 2 
1 14 30 60 10 5 
2 5 20 60 8 9 
1 2 14 30 55 10 7 
2 5 20 21 55 12 5 
1 14 21 38 55 9 9 
2 5 20 38 55 12 6 
2 14 30 31 57 13 2 
1 70 3 3 
1 2 68 6 1 
1 31 68 3 5 
1 2 31 64 8 3 
1 14 31 64 5 5 
1 2 31 34 59 10 5 
1 2 26 31 58 12 2 

14 20 31 34 60 6 4 



APPENDIX III IV 
IV 
0'1 

Interaction Table for LSI (3·) Based on Yates Order 

9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

12 6 12 9 8 15 28 17 31 30 20 37 22 40 39 33 26 36 35 15 30 18 17 33 24 35 27 26 20 39 23 22 

11 5 9 II 7 28 14 31 16 29 37 19 40 21 38 32 36 25 34 14 18 29 16 24 32 27 34 25 19 23 38 21 

6 12 7 13 10 16 17 29 18 15 21 22 38 23 20 26 34 27 24 30 16 31 28 34 35 25 36 33 39 21 40 37 

8 13 5 10 12 29 18 14 15 17 38 23 19 20 22 27 32 24 26 31 14 28 30 25 36 32 33 35 40 19 37 39 

10 9 13 8 6 17 31 18 30 28 22 40 23 39 37 36 27 35 33 18 31 17 15 35 27 36 26 24 23 40 22 20 

7 7 6 5 II 30 29 28 14 16 39 38 37 19 21 34 33 32 25 16 15 14 29 26 25 24 32 34 21 20 19 38 

13 8 10 6 9 18 30 15 28 31 23 39 20 37 40 35 24 33 36 17 28 15 18 36 26 33 24 27 22 37 20 23 

5 II 8 7 5 31 16 30 29 14 40 21 39 38 19 25 35 34 32 29 17 16 14 27 34 26 25 32 38 22 21 19 

13 1 2 3 4 19 20 21 22 23 32 24 25 26 27 15 16 17 18 33 34 35 36 19 37 38 39 40 28 29 30 31 

4 6 7 8 9 32 24 25 26 27 14 15 16 17 18 20 21 22 23 37 38 39 40 14 28 29 30 31 33 34 35 36 

8 1 3 4 3 20 37 22 40 39 24 33 26 36 35 28 17 31 30 24 35 27 26 37 20 39 23 22 15 30 18 17 

2 5 13 7 11 33 32 36 25 34 28 14 31 16 29 19 40 21 38 19 23 38 21 15 14 18 29 16 32 27 34 25 

10 3 2 4 I 21 22 38 23 20 25 26 34 27 24 17 29 18 15 35 25 36 33 38 39 21 40 37 30 16 31 28 

3 9 5 6 8342732 24 26 29 18 14 15 17 23 19 20 22 40 19 37 39 16 31 14 28 30 36 32 33 35 

6 4 4 3 1224023 39 37 26 36 27 35 33 31 18 30 28 27 36 26 24 39 23 40 22 20 18 31 17 15 

2 II 10 5 7 35 34 33 32 25 30 29 28 14 16 38 37 19 21 21 20 19 38 17 16 15 14 29 25 24 32 34 

(9)1 3 1 1 4233920 37 40 27 35 24 33 36 30 15 28 31 26 33 24 27 40 22 37 20 23 17 28 15 18 
~ 

7 12 11 5 36 25 35 34 32 31 16 30 29 14 21 39 38 19 38 22 21 19 18 29 17 16 14 34 26 25 32 

(10)1 8 13 12 24 33 26 36 35 15 28 17 31 30 37 22 40 39 20 39 23 22 28 15 30 18 17 24 35 27 26 ~ 
2 2 37 19 40 21 38 33 32 36 25 34 14 31 16 29 32 27 34 25 20 19 23 38 21 14 18 29 16 ~ 
9 6252634 27 24 16 17 29 18 15 22 38 23 20 39 21 40 37 29 30 16 31 28 35 25 36 33 ~ 
1 3 38 23 19 20 22 34 27 32 24 26 18 14 15 17 36 32 33 35 21 40 19 37 39 31 14 28 30 ~ 

(12)1 10 26 36 27 35 33 17 31 18 30 28 40 23 39 37 23 40 22 20 30 18 31 17 14 27 36 26 24 ~ 

39 38 37 19 21 35 34 33 32 25 29 28 14 16 25 24 32 34 22 21 20 19 38 16 15 14 29 ~ 
~ (13] 27 35 24 33 36 18 30 15 28 31 39 20 37 40 22 37 20 23 31 17 28 15 18 26 33 24 27 
~ 40 21 39 38 19 36 25 35 34 32 16 30 29 14 34 26 25 32 23 38 22 21 19 29 17 16 14 

(14)1 28 29 30 31 32 33 34 35 36 37 38 39 40 I 2 3 4 5 6 7 8 9 10 II 12 13 ~ 
Q

1 2 3 4 5 6 7 8 9 10 II 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 ~ 

(15)1 30 18 17 33 24 35 27 26 20 39 23 22 1 3 4 3 6 10 8 13 12 6 12 9 8 ~ 
4 2 2 10 5 13 7 11 5 9 11 7 14 31 16 29 37 19 40 21 38 32 36 25 34 ~ 

(16)1 31 28 34 35 25 36 33 39 21 40 37 3 2 4 I 7 8 II 9 6 12 7 13 10 ~ 

1 3 11 9 5 6 8 13 5 10 12 18 14 15 17 38 23 19 20 22 27 32 24 26 @ 
(':l(17~ 15 35 27 36 26 24 23 40 22 20 4 4 3 I 8 13 9 12 10 9 13 8 6 
~ 12 11 10 5 7 7 6 5 II 29 28 14 16 39 38 37 19 21 34 33 32 25 

36 26 33 24 27 22 37 20 23 3 1 1 4 9 12 6 10 13 8 10 6 9 ~ 
~ 7 12 11 5 11 8 7 5 16 30 29 14 40 21 39 38 19 25 35 34 32 t'-o 
t.]37 38 39 40 28 29 30 31 6 7 8 9 5 10 II 12 13 1 2 3 4 
~ 

2 3 4 6 7 8 9 24 25 26 27 14 15 16 17 18 20 21 22 23 ~ r.;;39 23 22 15 30 18 17 10 8 13 12 10 6 12 9 8 I 3 4 3 :::l 
4 2 2 5 13 7 II 32 36 25 39 28 14 31 16 29 19 40 21 38 ~ 



22 23 24 
40 37 30 

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 
(21) 16 31 28 8 11 9 6 11 12 7 13 10 3 2 4 1 

5 6 8 27 32 24 26 29 18 14 15 17 23 19 20 22 I
31 17 15 13 9 12 10 12 9 13 8 6 4 4 3 1 ~ 
10 5 7 34 33 32 25 30 29 28 14 16 38 37 19 21 ~ 

~ 28 15 18 12 6 10 13 13 8 10 6 9 3 1 1 4 
~ 12 11 5 25 35 34 32 31 16 30 29 14 21 39 38 19 
~ 

35 27 26 6 12 9 8 1 1 3 4 3 10 8 13 12 §E
4 2 2 19 40 21 38 33 32 36 25 34 14 31 16 29 

~ (25)136 33 12 7 13 10 2 3 2 4 1 8 11 9 6 
~ 

1 3 23 19 20 22 34 27 32 24 26 18 14 15 17 
(26)124 9 13 8 6 3 4 4 3 1 13 9 12 10 ~ 

2 38 37 19 21 35 34 33 32 25 29 28 14 16 
~ 

(27)1 8 10 6 9 4 3 1 1 4 12 6 10 13 ::ij 

21 39 38 19 36 25 35 34 32 16 30 29 14 ~ 
(28)117 31 30 20 37 22 40 39 33 26 36 35 ~ 4 2 2 10 5 13 7 11 5 9 11 7 

~ (29)118 15 21 22 38 23 20 26 34 27 24 
1 3 11 9 5 6 8 13 5 10 12 ~ 

(30)128 22 40 23 39 37 36 27 35 33 <"':l 

2 12 11 10 5 7 7 6 5 11 ~ 
(31')123 39 20 37 40 35 24 33 36 ~ 

13 7 12 11 5 11 8 7 5 t:l 
(32)124 25 26 27 15 16 17 18 ~ 

1 2 3 4 6 7 8 9 ~ 
(33)126 36 35 28 17 31 30 ~ 

4 2 2 5 13 7 11 
(34)127 24 17 29 18 15 

1 3 9 5 6 8 
(351'133 31 18 30 28 

2 11 10 5 7 
(361130 15 28 31 

7 12 11 5 
(37)122 40 39 

2 2 
23 20 

1 3 

(39)1 37 
2 

IV 
IV 
-...I 


