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SUMMARY 

For estimating 1t, the proportion of population belonging to a sensitive group; Mangat and 
Singh (1991) suggested an alternative procedure applicable to the situation where the Warner's (1965) 
randomized response procedure may result in zero 'yes' answers. Mangat and Singh (1991 ) suggested 
an unbiased estimatorwith its variance fonnula. The variance fonnula is difficult to calculate numerically 
ifm, the predetennined number of 'yes' answers chosen by investigator is large. Keeping this in view, 
Mangat and Singh (1991) have suggested two upper bounds of the exact variance. In this paper, we 
have suggested several upper bounds to the exact variance and found that certain of these bounds are 
more closer to the exact variance than that the upper bound suggested by Mangat and Singh (1991). 
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1. INTRODUCTION 

Examples of non-response in sample surveys are 
in abundance. To solve this problem, during last three 
decades a number of efforts with varying degrees of 
success have been made in the literature. Randomized 
response is a technique used to elicit responses to 
sensitive questions which was first developed by Warner 
(1965). The Warner (1965) scheme is as follows: A 
proportion 1t of a population of individuals has the 
sensitive characteristic A; the proportion (1-1t ) has the 
non-sensitive characteristics A. 1t is to be estimated by 
means ofan interview survey based on a simple random 
sampling with replacement (SRSWR) ofn individuals. 
The interview is carried out as follows: Each respondent 
is informed that the survey concerns the characteristics 
A and A . Each interviewee is furnished with an identical 
spinner, a randomized response device, with the face 
marked so that the spinner points to the letter A with 
probability p and the letter A with probability (l-p). 
The respondent is asked to spin the spinner unobserved 
by the interviewer and report whether the spinner points 
to the characteristic - A and A - which the respondent 
has. The answers are recorded. 

R=1, ifthe respondent reports that the spinner points 
to the characteristics which he has and R=O, if the 

respondent reports that the spinner points to the 
characteristic which he does not has. 

Assuming that the reporting is completely truthful, 
e, the probability of reply of the type R=l (or the 
probability of 'yes' answer) is given by 

(1.1) 
, 

Suppose the interviews provide n j replies of the 
type R=l and no = n - n j replies ofthe type R=O. Then 
it is given in Warner (1965) that 

[ ( n 
j

) 1+p] 
n= n , p -:1:0.5 (1.2)

(2p-l) 

is an unbiased estimate of 1t . 

Mangat and Singh (1991) pointed out that in 
practice, it may happen that the value of 1t to be 
estimated and p in randomized response device are on 
the opposite extremes of 0.5. This will lead to a very 
small value ofthe probability ofyes answer e. For such 
cases, n1 may take zero value for not so large values of 
n and thus the estimate so obtained may depend 
completely on p which is not agreeable. The frequency 
of 1t taking inadmissible values outside [0,1] is also 
increased. To avoid such problem Mangat and Singh 



193 ON INVERSE BINOMIAL RANDOMIZED RESPONSE TECHNIQUE 

(1991) suggested the use ofinverse binomial randomized 
response (IBRR) procedure. Using the result of Sathe 
(1977) they have given two upper bounds ofthe variance 
of the estimator of 7t proposed by them. In the present 
paper nine more upper bounds using the result ofvarious 
authors are achieved and their sharpness examined 
through numerical illustrations. 

2. THE ESTIMATOR USING IBRR 
MODEL AND UPPER BOUNDS OF ITS 

VARIANCE 

In inverse binomial sampling procedure the sample 
size n is not fixed in advance. Instead, sampling is 
continued until a predetermined number m of 
respondents replying with R=1(Le. reporting yes answer) 
have been drawn. Thus, Mangat and Singh (1991) 
suggested an unbiased estimator of 7t as 

where 

(" :" 8-1+p
7th = ,p:;t 0.5 

2p-l 
(2.1) 

" (m -1)
8=-­

(n -1) 
(2.2) 

is an unbiased estimator of 8. Noting that m is a 
predetermined number of 'yes' answers selected by the 

" investigator and 8 never achieve zero value like n,/n. 
" The variance of 7th is given by 

(2.3) 

Using the result given in Best (1974), the variance 

of 8 is given " by 

{{ ~(!)r (-lr } 
r=2 a (m-r) 

-(=r(-trlog, a}-a']
 (2.4) 

where a =(1-8) 

" Substitution of (2.4) in (2.3) yields the variance of 
7th as 

(" ) 1 [ {{m-I( 8)r (-lr }
V 7th = (2p-l)2 a(m-l) ~ a (m-r) 

-(=r(_I)m log,a}-a'] (2.5) 

for m~3. 

It is to be noted that with the increase in m, the 
expression (2.5) becomes difficult to calculate 
numerically. Keeping this in view, using the upper 

" bounds of the variance V(8) 

" VI (8) = 282a[(m-2a) + {(m-2a)2 + 48a}1/2r (2.6)' 

" V2(8) =282a(m - 2a)-1 (2.7) 

reported by Sathe (1977) and Pathak and Sathe (1984) 
respectively. Mangat and Singh (1991) forwarded the 
following upper bounds of the variance V(~h) as 

" VI (7th) = 282a(2p -lj2[(m - 2a) 

(2.8) 

V2(1t
h

) = 82a(2p-lj2(m-2ajl (2.9) 

Mangat and Singh (1991) have shown that for large 
m, the upper bounds Vi (7th ), i =1,2, are sufficiently 
accurate. 

Nine more upper bounds of the variance V(~) 
are given in Section 3. 

3. SUGGESTED UPPER BOUNDS OF THE 
VARIANCE V(xb ) 

If 8 -" ID(m,8) then various upper bounds of the 
" variance V(8) are given by 

V3 (8) = 82a(m+l-ajl = 82a(m-2)' (3.1) 

2V(8) = 8 a [1- 2(m - 4)8] (3.2)
4 (m-2) (m-3)(m-3a-l) 

,
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/\ a2 

Vs (a) = {(m -1)(m - 2a -1) +4a}
4a(m-2) 

- (m -1){ (m - 2a _1)2 +8aa}1/2 (3.3) 

2V6(8) = (m +1)(m - 2a)a [{I + 8maa }1/ -1] 
4m (m + 1)(m - 2a) 

(3.4) 

(3.5) 

(3.6) 

x {I- m -40:+ (m _8~), + 20a9)}V' }] 

(3.7) 
/\ sa 

VIO (a) =-[1- 2a(m -1){m + a 
m 

+[(~ - 3a + 1)2 + 8aa]~ }-I] (3.8) 

VII (8) =a 2a 
2 

a [1 + 
m (m-2) 

x {l- [(m -30: + I) + (m~50:+l)' +16lX9I"J}] (3.9) 

where 

2 
A=[{m2 +m(3a-1)-3aa}- 6a ]

(m+l) 

B = a{a(m -1)(m +1)-1 -(m +2)} 
/\ 

It is to be noted that the upper bounds V3(a) , 
1\ 1\ 1\ 1\ 

V4(a), Vs(a). Vi (a) , i = 6, 7; V j (a) ,j = 8, 9, 10, 11; 

are respectively, given by Mikulski and Smith (1976), 
Ray and Sahai (1978), Prasad and Sahai (1982), 
Sahai (1983) and Pathak and Sathe (1984). We have not 

given Sahai's (1980) upper bounds into this investigation 
since the derivation of his upper bounds is erroneous, 
for instance, see Pathak and Sahai (1984). 

/\ /\ 

Replacing V(a) in (2.3) by Vj (a) ,j = 3 to 11, we 
get the following upper bounds of the variance V(~h) 
as 

V3(~h) = a 2a(2p _1)-2 (m +1- a)-I 

= a 2a(2p-l)-2(m-2)-1 (3.10) 

V4(~h)= a
2
a [1- 2(m-4)a ] 

(2p -1)2(m - 2) (m - 3)(m -3a-l) 

(3.11) 

V5(~h)= a
2 

2 ~(m-l)(m-2a-l)+4a) 
4a(m - 2)(2p -1) L 

-(m-l){(m-2a-l)2+8aa}1/2] (3.12) 

V (~ )= (m+l)(m-2a)a 
6 h 4m(2p _1)2 

1/2 ]1+ 8maa -1 
x [{ (m+l)(m-2a) } (3.13) 

(3.14) 

/\ a2a 
Vg (1th ) = --------=­

(m - 2)(2p _1)2 

X[I-4a {m-2a+ [(m-4a)2 +12aa)1f2 r] 
(3.15) 

2 
_ a [1- 682 

Yo9 (1t/\ 
h 
) 

-
a 2a +---­

(m-2)(2p-l)2 (m-3) (m-3)(m-4) 

,
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8a 2 [ 1-2a(m-1){m+8 
m(2p-1) 

+[(m-3a+1)2 + 88a] 1/2rl
] (3.17) 

1\ 82a 2a 
VC7t)­ 1+-­

11 h - m(2p-1)2 Cm-2) 

1x 681 J]

[cm-3a+1)+tm-5a+1)2 + 16a8}'2]J 

(3.18) 

where A and B are same as defined earlier. 

The values of the variance VCnh ) and its upper 
bounds V.(nm), j = I to 11 have been computed for 
different ~alues ofp, m, 8, 7t are shown in Table 1. 

From Table 1, we observed that for 7t = 0.1, P = 0.2, 
1\ 

8=0.74, when 4:5m:57, the upper bound V7 (7th ) is 
1\ 1\ 

nearest to exact variance V(7th ) followed by VIl (7th ) • 
1\ 

For m = 3 the upper bound V7 (7th ) is sharpest one but 
1\ 

followed by VIO (7th ). For m = 8, 9, the upper bound 
1\ 1\ 

V7 (7th ) and VIl (7th ) give the same value closestto the 
1\ 1\ 

exact variance V(7th ) followed by VIO (7th ) • The upper 
1\ 1\ 

bounds V7 (7th ) and VIl (7th ) gives the same value equal 
1\ 

to the exact variance followed by V9(7th ). When 
1\ 

11:5 m :514, the values of upper bounds V7 (7th ), 
1\ 1\ 

V9(7th ) and VII (7th ) are same and match with the exact 
1\ 1\ 1\ 

variance V(7th ) followed by VS(7th ) and VIO (7th ) 
1\ 

whose values are very close to the exact variance V(7th ) • 
1\ 

For m ~ 15 , it is observed that the upper bounds V7 (7th ) , 
1\ 1\ 1\ 1\ 

Vs(7th ), V9(7th ), VIO (7th ) and VIl (7th ) give the same 
1\ 

value which equals to the exact variance V(7th ) followed 
1\ 1\ 

by VS(7th ). Thus, the upper bounds V7 (7th ) and 

1\ 

VII (7th ) appear to be the best approximation to the exact 
1\ 

variance V(7th ) • 

When 7t = 0.1, P = 0.8, 8 = 0.26, we note that the 
1\ 

upper bound VIl (7th ) is a good approximation of the 
1\ 1\ 

exact variance V(7th ) , except for m = 3 where V7 (7th ) 
1\ 

is closest to that of V(7th ). It is observed that for m = 3, 
1\ 

the upper bound V7 (7th ) is closestto the exact variance 
1\ 1\ 

V(7th ) followed by VIO (7th ), while form = 5, the upper 
1\ 1\ 

bound VII (7th ) is closed to the exact variance V(7th ) 
1\ 

followed by VS(7th ). For m = 6, the upper bound 
1\ 1\ 

VII (7th ) is nearest to the exact variance V(7th ) followed 
1\ 1\ 

by Vs(7th ) , while for m = 7, 8, the VII (7th ) is closest to 
1\ 1\ 

the exact variance V(7th ) followed by V9 (7th ). For 
1\ 1\ 

m = 9, the upper bounds V9(7th ) and VlI (7th ) yield the 
1\ 

same value equal to the exact variance V(7th ) followed 
1\ 

by VS(7th ) • For 10:5 m :513, the common value ofupper 
1\ 1\ 1\ 

bounds Vs(7th ), V9(7th ) and VIl (7th ) is equal to the 
1\ 1\ 

exact variance V(7th ) followed by VS(7th ). Form = 14, 
1\ 1\ 1\ 

the upper bounds V7 (7th ) , VS(7th ), V9(7th ) and 
1\ 

VIl (7th ) give the same value and equal to the exact 
1\ 1\ 

variance V(7th ) followed by Vs(7th ) • For m ~ 15 • the 
1\ 1\ 1\ A 

upper bounds V4 (7th ), (7th ) , (7th ), V (7t ),VS V7 S h
1\ 1\ 1\ 

V9(7th ), VIO (7th ) and VIl (7th ) give the same value 
1\ 

equal to the exact variance V(7th ). For small 

predetermined number of yes answer, 5:5 m :5 8 and 

even for large predetermined number of yes answers, 
1\ 

the upper bound (7th ) appears to the goodVIl 
1\ 

approximation to the exact variance V(7th ). However, 

for large values of m (~15) other upper bounds as 

indicated above, also give value very close (or exact) to 
1\ 

the exact variance V(7th ) • 

When 7t = 0.5, p = 0.2, 8 = 0.5; it is seen from 
1\ 

Table 1 that for m = 3, V7 (7th ) is closest to the exact 
1\ 1\ 

value ofthe variance V(7th ) followed by VIO (7th ) • For 
1\ 

3 < m :5 7, we see that V7 (7th ) is nearest to the exact 
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Table 1. The actual variance and its upper bounds 

For 1t = 0.1, p=0.2, 0=0.74. a =0.26 

m " V(7th ) 
" VI (7th ) V2 (7th ) 

" V3 (7th ) 
" V4 (7th ) 

" Vs(7th ) 
" V6 (7th ) 

" V7 (7th ) 
" Vg (7th ) 

" V9 (7th ) VlO (7th ) 
,/\ 

VII (7th ) 

3 0.\522\2 0.154772 0.159471 0.395489 . 0.201204 0.357816 0.152278 0.159471 - 0.152382 0.153119 

5 0.086833 0.087448 0.088279 0.131830 0.101533 0.088660 0.370628 0.086843 0.087088 0.088965 0.086869 0.086862 

6 0.071352 0.071713 0.072170 0.098872 0.075755 0.072010 0.374181 0.071357 0.07\437 0.07\578 0.07\372 0.07136\ 

7 0.060527 0.060755 0.061032 0.079098 0.062278 0.060816 0.376832 0.060529 0.060561 0.06057\ 0.060538 0.060530 

8 0.052539 0.052692 0.052873 0.065915 0.053368 0.052684 0.378890 0.052540 0.052555 0.05255\ 0.052546 0.052540 

9 0.046406 0.046514 0.046638 0.056498 0.046847 0.046486 0.380536 0.046407 0.046414 0.046410 0.046410 0.046407 

10 0.041551 0.041629 0.041718 0.049436 0.041807 0.041599 0.381882 0.041551 0.041555 0.041552 0.041554 0.041551 

11 0.037613 0.037672 0.037737 0.043943 0.037771 0.037643 0.383005 0.037613 0.037615 0.037613 0.037615 0.037613 

\2 0.034355 0.034400 0.034450 0.039549 0.034458 0.034375 0.383955 0.034355 0.034356 0.034355 0.034356 0.034355 

13 0.03\615 0.031651 0.031690 0.035954 0.031685 0.031629 0.384771 0.0316\5 0.031616 0.031615 0.031616 0.03\615 

14 0.029279 0.029308 0.029339 0.032957 0.029329 0.029289 0.385479 0.029280 0.029280 0.029279 0.029280 0.029279 

15 0.027265 0.027288 0.027313 0.030422 0.027300 0.027272 0.386098 0.027265 0.027265 0.027265 0.027265 0.027265 

16 0.025509 0.025528 0.025548 0.028249 0.025535 0.025514 0.386645 0.025509 0.025509 0.025509 0.025509 0.025509 

17 0.023965 0.023981 0.023998 0.026366 0.023985 0.023969 0.387132 0.023%5 0.023965 0.023965 0.023966 0.023965 

18 0.022598 0.022611 0.022625 0.024718 0.022613 0.022601 0.387568 0.022598 0.022598 0.022598 0.022598 0.022598 

19 0.021378 0.021389 0.021401 0.023264 0.021390 0.021380 0.387961 0.021378 0.021378 0.021378 0.021378 0.021378 

20 0.020282 0.020292 0.020302 0.021972 0.020292 0.020284 0.388316 0.020282 0.020282 0.020282 0.020283 0.020282 

For 1t = 0.1, p=0.8, 0=0.26, a =0.74 

m .A
V(7th ) VI (7th ) 

----" V2 (7th ) 
" V3 (7th ) 

/\

V4 (7th ) 
/\ 

VS(7th ) 
/\ 

V6 (7th ) 
,A 

V7 (7th ) 
/\ 

Vg (7th ) 
./\

V9 (7th ) VlO (7th ) Ivll (7th ) 

3 0.079528 0.084859 0.091418 0.138956 - 0.083077 0.119457 0.080928 0.091418 - 0.081031 0.084831 

5 0.038244 0.038881 0.039476 0.046319 0.039553 0.038161 0.128183 0.038357 0.038374 0.038880 0.038394 0.038296 

6 0.030148 0.030458 0.030742 0.034739 0.030407 0.030114 0.130071 0.030192 0.030176 0.030185 0.030213 0.030159 

7 0.024844 0.025016 0.025173 0.027791 0.024924 0.024829 0.131379 0.024864 0.024853 0.024849 0.024876 0.024847 

8 0.021112 0.021217 0.021312 0.023159 0.021144 0.021105 0.132343 0.021122 0.021115 0.021113 0.021130 0.021113 

9 0.018348 0.018416 0.018478 0.019851 0.018363 0.018344 0.133085 0.018353 0.018349 0.018348 0.018358 0.018348 

10 0.016220 0.016266 0.016309 0.017369 0.016228 0.016217 0.133676 0.016223 0.016220 0.016220 0.016226 0.Q16220 

11 0.014532 0.014565 0.014596 0.015440 0.014537 0.014531 0.134156 0.014534 0.014532 0.014532 0.014536 0.014532 

12 0.013161 0.013186 0.013209 0.013896 0.013164 0.013160 0.134556 0.013163 0.013161 0.013161 0.013164 0.013161 

13 0.012026 0.020990 0.012062 0.012632 0.012028 0.012025 0.134894 0.012027 0.012026 0.012026 0.012028 0.012026 

14 0.011071 0.011085 0.011099 0.011580 0.011072 0.011070 0.135183 0.011071 0.011071 0.011071 0.011072 0.011071 

15 0.010256 0.010267 0.010228 0.010689 0.010256 0.010255 0.135433 0.010256 0.010256 0.010256 0.010257 0.010256 

16 0.009552 0.009561 0.009570 0.009925 0.009553 0.009552 0.135652 0.009552 0.009552 0.009552 0.009553 0.009552 

\7 0.008939 0.008946 0.008953 0.009264 0.008939 0.008938 0.135846 0.008939 0.008939 0.008939 0.008939 0.008939 

18 0.008399 0.008405 0.008411 0.008685 0.008400 0.008399 0.136018 0.008399 0.008399 0.008399 0.008400 0.008399 

19 0.007921 0.007926 0.007931 0.008174 0.007921 0.007921 0.136171 0.007921 0.007921 0.007921 0.007921 0.007921 

20 0.007494 0.007499 0.007503 0.007720 0.007495 0.007494 0.136310 0.007494 0.001494 0.007494 0.007495 0.007494 
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For 1t = 0.5, p =0.2, 8=0.5, a =0.5 

m V(7th ) 
1\ 

VI (7th ) 
1\ 

V2 (7th ) 
1\ 

V3 (7th ) 
1\ 

V4 (7th ) 
1\ 

VS (7th ) 
1\ 

V6 (7th ) 
1\ 

V7 (7th ) 
1\ 

Vg (7th ) 
1\ 

V9 (7th ) 
1\ 

VIO (7th ) Vll (nh ) 

3 0.157925 0.163936 0.173611 0.347222 . 0.\86076 0.298959 0.158550 0.173611 . 0.\58829 0.162037 

5 0.084368 0.085490 0.086806 0.115741 0.092593 0.084896 0.317063 0.084445 0.084728 0.086806 0.084513 0.084452 

6 0.068152 0.068764 0.069444 0.086806 0.070271 0.068298 0.321678 0.068186 0.068255 0.068359 0.068224 0.068174 

7 0.057107 0.057474 0.057870 0.069444 0.057870 0.057159 0.325036 0.057124 0.057144 0.057\40 0.057\46 0.057114 

8 0.049116 0.049353 0.049603 0.057870 0.049453 0.049138 0.327598 0.049125 0.049132 0.049124 0.049139 0.049119 

9 0.043074 0.043235 0.043403 0.049603 0.043244 0.043084 0.329621 0.043079 0.04308\ 0.043076 0.043088 0.043075 

10 0.038348 0.038462 0.038580 0.043403 0.038442 0.038353 0.331261 0.038351 0.038352 0.038349 0.038357 0.038348 

II 0.034552 0.034636 0.034722 0.038580 0.034609 0.034555 0.332618 0.034554 0.034554 0.034552 0.034558 0.034552 

12 0.031437 0.03\501 0.031566 0.034722 0.031473 0.031439 0.333761 0.031439 0.031439 0.031437 0.031442 0.03\437 

13 0.028836 0.028885 0.028935 0.031566 0.028860 0.028837 0.334737 0.028837 0.028837 0.028836 0.028839 0.028836 

\4 0.02663\ 0.026670 0.026709 0.028935 0.026648 0.026632 0.335580 0.026632 0.026632 0.02663\ 0.026634 0.02663\ 

\5 0.024739 0.024770 0.024802 0.026709 0.02475\ 0.024739 0.336315 0.024739 0.024739 0.024739 0.024741 0.024739 

\6 0.023097 0.023122 0.023148 0.024802 0.023106 0.023097 0.336%3 0.023097 0.023097 0.023097 0.023099 0.023097 

\7 0.02\659 0.021680 0.021701 0.023\48 0.021666 0.02\660 0.337538 0.103359 0.021660 0.021659 0.02\660 0.02\659 

18 0.020390 0.020407 0.020425 0.021701 0.020395 0.020390 0.338052 0.020390 0.020390 0.020390 0.020391 0.020390 

\9 0.019261 0.019275 0.019290 0.020425 0.019264 0.019261 0.338513 0.019261 0.019261 0.019261 0.019261 0.019261 

20 0.018250 0.018262 0.018275 0.019290 0.018253 0.GI8250 0.338931 0.018250 0.018250 0.018250 0.018250 0.GI8250 

1\ 1\ 

variance V(7th ) followed by Vll (7th ), while for 
1\ 

m = 8,9, the upper bound Vll (7th ) is closest to the exact 
1\ 1\ 

variance V(7th ) followed by V9 (7th ). Form= 10, the 
1\ 1\ 

upper bound VII (7th ) gives the exact variance V (7th ) 
1\ 

followed by V9 (7th ) • For m = 11, 12, the values ofupper 
1\ 1\ 

bounds V9 (7th ) and Vll (7th ) are same and equalto the 
1\ 1\ 

exact variance V(7th ) followed by Vj (7th ), G= 5, 7, 8, 
1\ 1\ 

10). Form = 15, 16, the upper bounds VS(7th ), V7 (7th ) , 
1\ 1\ 1\ 

Vg (7th ), V (7t (7th ) give the same value equal 9 h ), Vll 
1\ 1\ 

to the exact variance V(7t ) followed by VIO (7th ) ~Forh 

17 ~ m ~ 20, the values of the upper bounds Vs(7th), 
1\ 1\ 1\ 1\ 1\ 

V7 (7th ), Vg(7th ), V9 (7th ), VIO (7th ) and Vll (7th ) are 
1\ 

same and exact to the true value of variance V(7th ) 
1\ 

followed by V4 (7th ) • 

1\ 

Thus, we see that the value of V7 (7th ) is closest to 
1\ 

the exact variance V(7th ) for smaller size for m (i.e. 
1\ 

m ~ 7 ) and for large m (~ 8), Vll (7th ) is best choice. 

Finally, we conclude that, when the probability of 

yes answers greater than or equal to 8 (i.e. 8 ~ 0.5 ), the 
1\ 

upper bound V7 (7th ) is to be preferred for 3 ~ m ~ 7 ; 
1\ 

while for m ~ 8, the upper bound VII (7th ) is to be 

preferred. When 8 < 0.5, m = 3, the upper bound 
1\ 1\ 

V7 (7th ) is to be preferred, while for 3 < m ~ 5, VII (7th ) 
1\ 

is to be chosen. However, 8 ~ 0.5, m ~ 5, VII (7th ) is a 

good choice along with other upper bounds. In general, 
1\ 1\ 

we note that the upper bounds V7 (7th ) and Vll (7th ) are 

to be preferred in practice. These upper bounds give 
1\ 

values much closer (or equal to the exact variance V(7th ) 
1\ 

for large values of m) to the exact variance V(7th ) in 
1\ 1\ 

comparison to the upper bounds VI (7th ) and V2 (7th ) 

suggested by Mangat and Singh (1991). 

Remark 3.1. Following Sukhatme et al. (1984), we get 

1\ 

an unbiased estimator ofthe variance V(7th ) as 
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1\ 1\ 

V(~)- 8(1-8) 
h - (n-2)(2p-1)2 

Remark 3.2. Similar studies can be carried out in the 
case where the respondents do not truthfully (or the 
respondents belonging to the sensitive class report with 
some probability) 
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