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SUMMARY 

In the class ofnonlinear time-series models, mixture models may be employed to describe those 
data sets that depict sudden bursts, outliers and flat stretches at irregular time epochs. In this paper, 
mixture autoregressive conditional heteroscedastic (MAR-ARCH) model is thoroughly studied. As an 
illustration, weekly wholesale onion price data during April, 1998 to November, 2001 is considered. 
After eliminating trend, seasonal fluctuations are studied by fitting Box-Jenkins airline model to residual 
series where appropriate filters are determined by using OCSB auxiliary regression. Presence ofARCH 
is examined by applying Lagrange multiplier (LM) test. Estimation ofparameters is carried out using 
Expectation Maximization (EM) algorithm and the best model is selected on the basis of Bayesian 
Information Criterion (BIC). Relevant computer programs for estimation of parameters along with 
their standard errors and computation ofBIC are developed in MATLAB. version 5.3. It is concluded 
that, for data under consideration, a two-component MAR-ARCH is the best in the class of MAR­
ARCH family. Further, identified MAR-ARCH model is also shown to perform better than three­
component MAR model identified earlier in terms ofhaving fewer numbers ofparameters and lower 
BIC value. 

Key words: MAR-ARCH model, EM algorithm, Airline model, Bayesian information criterion, 
Naive approach, Forecasting. 

1.	 INTRODUCTION (1996), may be employed. A heartening feature of this 
family is that it encompasses well-known self-exciting 

Linear Gaussian time-series mode~s have dominated threshold autoregressive (SETAR) family (Tong (1995)). 
development oftime-series model building for past seven Recently, Ghosh et al. (2006) have thoroughly studied 
decades or so. However, these are not able to describe two families of mixture nonlinear time-series models, 
volatility due to clustering of outliers, which is present viz. Gaussian mixture transition distribution (GMTD) 
in many real data sets. To handle such a situation, Engle models and Mixture autoregressive (MAR) models and 
(1982) introduced autoregressive conditional compared their performance for modelling as well as 
heteroscedastic (ARCH) models in which study of forecasting of weekly wholesale onion price data. It is 
autocorrelation of squared residual series is required, concluded that, for the data under consideration, MAR 
unlike linear models. Ghosh and Prajneshu (2003) have family is superior to GMTD family. 
shown that AR(p)-ARCH(q) model provided a good 

The purpose ofthe present paper is to study a more description to these types of data. 
general family of nonlinear time-series models by 

However, some other realistic features, such as flat combining MAR andARCH families, along similar lines 
stretches, bursts, occasional outliers and sharp changes as Wong and Li (2001). The main advantage of doing 
can not be successfully tackled through ARCH approach. this is that heteroscedastic nature ofmixture components 
This results in conditional distributions to be mUltimodal, distribution can be captured which, in turn, allows one 
which is not so in a linear set up. To this end, mixture to consider more general structure of heteroscedastic 
nonlinear time-series models, pioneered by Le et al. conditional variance. Resultant model is then applied to 
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weekly wholesale onion price data as an illustration. 
Estimation of parameters is carried out using EM 
algorithm and the best model is selected on the basis of 
Bayesian Information Criterion (BIC). One-step and two­
step ahead predictive distributions are obtained using a 
naive approach. The distributions are found to be 
unimodal and bimodal when volatility function is 
respectively low and high. Properties of stationarity 
along with stability of the fitted model is studied. Both 
point and interval forecasts are carried out and it is shown 
that, for data set under consideration, two-component 
MAR-ARCH model performs best not only in MAR­
ARCH family, but also among other mixture families. 

2. MIXTURE AUTOREGRESSIVE 
CONDITIONAL HETEROSCEDASTIC MODEL 

For modelling ofnonlinear time-series data, MAR 
model suffers from a limitation, analogous to that ofAR 
model, that squared autocorrelation structure is not able 
to model intricacies of complex conditional variances 
satisfactorily. Accordingly, MAR model is generalized 
to MAR-ARCH model, which consists ofa mixture of 
K autoregressive components with autoregressive 
conditional heteroscedasticity. The model is defined by 

F~llyt-l)= !ak<l>k.t(hk.I)-1/2] (I)
k=I 

where ek.I = YI - <Pko -<Pk1 Y1-1 - ... - <PkPk ' hk.1= I3ko + 
2I3kI

e2k. t-l + ... + I3kPk e k. I-qk and is denoted as 

MAR-ARCH (K;Pl'P2' .... 'Pk;qI'q2' ....'qk). Here 

F(yllyt-l) is conditional cumulative distribution 

function of YI given past information, evaluated at 
YI,yt is information up to time t; <1>(.) is (conditional) 
cumulative distribution function of Standard Gaussian 
distribution; a 1+ ... +aK =l,ak >0 (k=1,2, ... ,K).Let 
p = max(pl' P2,···,Pk)' q = max(qI,Q2,...,qK)and <P(.) 
be the probability density function ofa standard normal 
distribution. To avoid possibility of zero or negative 
conditional variance, following condition for I3ki 's must 
be imposed: 

I3ko > 0, k = 1, 2, ..... K; I3ki ~ 0 
i=1,2, ....'Qk' k=I,2, ...,K 

Shape of conditional distribution of series changes 
over time as conditional means and variances of 
components, which depend on past values oftime-series 
in different ways, differ. Conditional variance of yI is 
given by 

Var(y, Iy'-') ~ ~,Uk hk., +~UkJ.lL, - [ ~1 UkJ.lk.,J 
(2) 

The first term allows modelling of dependence of 
conditional variance on past 'errors', while second and 
third terms model change of conditional variance due 
to difference in conditional means in the components. 

3. ESTIMATION OF PARAMETERS 

The EM algorithm, which is most readily available 
procedure for estimating mixture models, is employed 
for estimation of parameters. Suppose that observation 
Y = (yI'.... 'yn) is generated from MAR-ARCH model 
(I). Let Z = (ZI "",Zn) be unobserved random variable, 
where ZI is a K-dimensional vector with component k 

kthequal to one, if yI comes from component 
of conditional distribution function, and zero 

kthotherwise. Denote component of ZI as Zk, t . 
Let a=(aI,a2,..·,aK_I), ak = (<PkO,<Pkl,,,,,<Pk )', 
I3k=(l3ko,l3kl' .. ·,l3kqk)', k=l, 2, ... , KP~nd 
a= (a', e/, 13/, ...., ak', 13k')' where' denotes transpose 
ofa vector or a matrix. The (conditional) log-likelihood 
is given by 

1= ~)I = t {!Zk.t log(ak)­
l=p+q+I l=p+q+I k~I 

!(Zk.1 12)log(hk.t ) - 6(Zk.le~.t 12hk.I)} (3) 

where N = n - p - q. First order derivatives of log­
likelihood with respect to awere derived by Wong and 
Li (2001). Iterative EM procedure estimates parameters 
by maximizing log-likelihood function (3). It comprises 
an E-step and an M-step described as follows: 

E-step: Suppose that a is known. The missing data 
Z are replaced by their conditional expectation, 
conditional on the parameters and on observed data Y. 
In this case, conditional expectation of kth component 
of ZI is just conditional probability that observation 
YI comes from k th component of mixture distribution, 
conditional on a and Y. Let 'tk.t be conditional 
expectation of Zk. I . Then E-step equations are: 

'tk.t = a k(h k.1)-I/2<p[ek.1(hk.t )-1/2] 
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M-step: Suppose missing data are known. The 
estimates of parameters e can be obtained by 

maximizing log likelihood e. This can be done on 
replacing Zk, t by 'tk,t in first order derivatives of log­
likelihood (3). The parameter estimates of a are 

~=1/<n-p-q) t 'tk,t;k=I, ...,K (5)
t=p+q+l 

Newton-Raphson method is used for parameter 
estimates of e 's and 13k 's. Starting with initial values 

6ek(O) and I3k( ) , values of e k and 13k in subsequent 
iterations are given by 

e(i+l) = e(i) + {a 2f/a 2eI . .}~ (6)k k k e(l)f3(l) ae 
and	 k e(i)f3(i) 

l3(i+l) = 13(i) + { a 2f/a 213 I. .}ai{jf (1)
k k k e(l+l)f3(l) aA ....k e(i+l)f3(i) 

where e~) and 13~) are values in ilb iteration. The 
parameter estimates 8k and ~k in a particular M-step 
are obtained by iterating (6) and (7) until convergence 
is achieved. Final estimates ofparameter vector e are 
obtained by iterating E-steps and M-steps until 
convergence is achieved. The standard errors of 
parameter estimates can be computed by Missing 
information principle (Louis (1982». The observed 
information matrix, I, can be computed from complete 
information matrix, Ie' and missing information matrix, 
1 , with the relation: 

m 

1=1 -I =~_Na2f e v) ­
c m ae2 '	 1\ 

e 

(8) 

The formulae for computing Ie and 1 m are give~ in 
Wong (1998). The dispersion matrix of estimates e is 
given by inverse ofobserved information matrix, I. Since 
there is no software package available for execution of 
EM algorithm and for estimating information matrices, 
relevant computer programs are developed in MATLAB, 
5.3. To save space, salient parts ofthe same are appended 
as Annexure - I. However, entire listing can be obtained 
from the first author on request. 

4. STABILITY OF FITTED MAR-ARCH MODEL 
AND FORECASTING IN HOLD-OUT-DATA 

A number oftests related to breakpoint in structural 
change in the relationship examine whether parameters 
of best-fitted model based on BIC are stable across 
various subsamples ofdata. The idea ofChow breakpoint 
test is to fit the model separately for each subsample 
and to see whether there are significant differences in 
estimated equations. A significant difference indicates a 
structural change in the relationship. The F-statistic is 
based on comparison of restricted and unrestricted sum 
of squared residuals. In the simplest case involving a 
sin~e breakpoint, F-statistic is computed as 

F=l{;';-(U'Iu1+U''U,)}f~'IUI + U'IU1Ycr- 21<)1 
(9) 

where ii' ii is restricted sum ofsquared residuals, u;u is 
sum of squared residuals from subsample i, T is total 
number of observations and k is the number of 
parameters in the model. 

Before carrying out forecasts based on fitted MAR­
ARCH model, Chow forecast test is employed by 
estimating parameters of the model for a subsample 
comprising first T1 observations. This fitted model is then 
used to predict values of remaining T

2 
hold-out data. 

The test for stability of model related to forecasting is 
carried out by F- statistic defined by 

F={<U'U'-U'U)/T2}/~'U/(Tl-k} (10) 

where ti'ii is residual sum of squares when model is 

fitted to all T observations, u'u is residual sum of 
squares when fitted to Tt observations and k is number 
ofestimated parameters. 

5. AN ILLUSTRATION 

Weekly wholesale onion price data ofNasik variety 
at Azadpur Mandi, New Delhi during the period from 
first week of April, 1998 to first week of November, 
2001 collected from N.A.F.E.D., New Delhi is 
considered. It showed marked volatility by touching 
value of Rs. 4000 per quintal in October, 1998 and 
remained stable in the range of Rs. 450 to Rs. 700, 
depicting flat stretches with occasional bursts of large 
amplitude to the tune of Rs. 850 to Rs. 900, during 
October, 1999. In subsequent years, price remained on 
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the average ofRs.350 in first halfand above Rs. 500 for 
second half exhibiting another phase of flat stretches. 

5.1 Fitting of Trend and Seasonal Airline Model 

Formal test procedure for testing presence of 
stochastic trend in case ofintegrated process is based on 
the model 

Yt =1l+~t+PYt_1 +e; (11) 

where e; is a stationary process with mean zero and 
variance (j2 . The null hypothesis that P = 1 is based on 
the statistic analogous to the regression statistic ~t and 
is given by -1.84, which is not significant at 5% level. 
Substituting P = 1, in (11), the model to be considered 
reduces to 

~IYt =Il+~t+e; (12) 

Regressing ~IY t on linear trend, fitted model is 
1\ 

~IYt =6.06-0.04t+et (13) 

Box-Jenkins approach to model seasonal time-series 
data is to apply various differencing filters ~k to y t 
and investigating Estimated Autocorrelation Functions 
(EACF) of transformed series. Usually differencing is 
applied until EACF shows an easily interpretable pattern 
with only a few significant autocorrelations. We consider

1\ 

EACF ofresidual time-series {e*} and compare it with 
t 

Table 1 : Estimated autocorrelation functions ofweekly 
onion price data 

Lags et alet (l\et ) C a la l2et 

1 1.00" 0.31" 0.78" 0.84" 

2 0.74" -0.38" 0.02 0.01 

3 0.71" -0.04 0.10 0.06 

4 0.64" -0.11 0.56" 0.54" 

5 0.53" 0.56" 0.35" -0.09 

6 0.61" -0.53" 0.64" -0.06 

7 -0.54" 0.04 -0.56" -0.19 

8 0.61" -0.54" 0.74" 0.17 

9 -0.53" -0.58" 0.52" 0.13 

10 -0.51" 0.64" 0.16 0.54" 

11 -0.55" 0.25" 0.02 0.87" 

12 -0.65" 0.51" 0.32" 0.79" 

13 0.73" 0.59" -0.24" 0.89" 
.. Significant at 5% level 

autocorrelation function for seasonal ARMA type 
models. For seasonal time-series, however, we should 
also consider the correlation around s, 2s, ... where s 
denotes number of seasons per year. Onion is grown in 
the country in four seasons, namely, July - September, 
October - December, January - March and April- June. 
Hence in our case s =4. The four relevant EACF's are 
presented in Table 1. The significant EACF values of 
~1~12et at 1,11,12 and 13 suggests parsimonious model 
structures, known as 'Box-Jenkins airline model', given 
by 

1\* _ s _ (14)
~t~s e t - (1 + 8IL)(l + 8 L )Et , t - s +2,s + 3, ...s

For given data, estimates ofparameters 81 and 82 
are obtained as -0.17 and 0.15 respectively. 

S.2 Testing for ARCH 

One method oftesting for ARCH in Et in fitted 
model (14) is based on TR 2, where R 2 is obtained from 

1\ 

fitting a regression of squared residuals, TIt (obtained 
after fitting Et on its conditional mean Ill) on a constant 
and p of its lags. Assuming the conditional mean is 
correctly specified, Engle (1982) shows that TR2 is 
asymptotically equivalent to a Lagrange multiplier (LM) 
test and is distributed asymptotically as a X2

(p) random 
variable under null hypothesis. In our case, TR2 and LM 
values are computed as 14.87 and 26.47 respectively, 
which are significant at 5% level. Lumsdaine and Ng 
(1999) suggested 'naive' approach which approximates 
unknown conditional mean in a better way by computing 
'recursive residuals' containing true conditional mean 
not captured by regression function. The final model is 

1\ 1\ 

et =Z~r+g(wt-l)+Vt (15) 
1\ 1\ 

where Zt is a vector oflagged values of et. g(Wt-l) 
is a (possibly nonlinear) function of recursive residuals 
~ 1-1. The quantity ~ ~ is used for testing ARCH effects 
through TR2 and LM statistics and their values are' 
computed as 7.40 and 20.01 respectively, and are found 
to be significant at 5% level. 

5.3 Fitting of MAR-ARCH Model 

We consider two-component and three-component 
MAR-ARCH models for detrended and deseasonalised 
weekly onion price series. The order selection criterion 
followed here is Bayesian Information Criterion (BIC) 
as, unlike other criteria, viz. Akaike Information Criterion 
and Final Prediction Error, it leads to a consistent order 
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selection (Fan and Yao (2003». The best two-component 
MAR-ARCH model, defined by model (l) with 
<1>ko =O,k = 1,2 is found to be MAR-ARCH (2;0,1; 1,1) 
having BIC value 0007.98. The model is given by 

F(~t I~t-1) =0.75<I>{e1,t/~}+0.24<I>{e2,t/~} 
(16) 

where el t =et,h l t =0.14+0.38e2
1 t-l,e2 t =et +0.84et_, , 2 ., 1 

and h 2. t =1.61 + 1.54 e2,H . The standard errors for 
/I. /I. /I. /I. /\ /\ /I. 

(ai, a2,<1>21,1310,1311,132o,(321) are (0.08, 0.03, 0.29, 
0.04, 0.16, 0.61, 0.83) respectively. It is observed that 
occasional outliers in time-period July, 1998 and August, 
1998, October, 1999 and November, 2001 are captured

/I.

by large h2,t with small a2 and bursts can be 
/I. 

accommodated with a larger al during October, 1998. 
Flat stretches during April, 1999 to June, 1999 are 

captured by low value of Var(Yt\yt-l). The best three­
component model is a MAR-ARCH (3; 1,1,0;2,0,1) with 
<1>kO = 0, k = 1,2,3 having BIC value of 442.05. 
The parameter estimates and standard errors of 
/1./1./\/1./\ /1./1./1./\ /\ /I. 

(aI, a2, a3, <1>1l ' <1>21,1310 ; 1311 , 1312,1320,1330,(331) are 
(0.44,0.48,0.09,0.41, -0.27, 0.13, 0.37, 1.35,0.19,5.54, 
0.42) and (0.11,0.13, 0.20, 0.21,0.04,0.09,0.26,0.91, 
0.05,3.56, 1.13) respectively. Wong andLi (2000) have 
pointed out that another related criterion, viz. BIC· may 
have better performance regarding selection criterion of 
number ofcomponents. According to this criterion also, 
best MAR-ARCH model is found to be MAR-ARCH 
(2;0,1;1,1). It is noticed that best MAR-ARCH(2;0,1;1,1) 
model satisfies first and second order stationary 
conditions, given in Wong and Li (2001). The fitted 
MAR-ARCH(2;0,1;1,1) model along with data points 
and residuals is depicted in Fig.l. 

5000 

~ 4000 
T9
.§ 3000 
C" 

:6 2000 
a: 

it8' 10000-1:~l4t~~~::::~~~~:~~~: 
c:: o ~~ 818181818181888888151515 15 15
8 -1000 '~1o~~~~1~~~~~1~~~~~1~ 

-2000 Time 

Fig. 1 : Fitted MAR-ARCH (2; 0, 1; 1,1) model along with 
actual data points and error series 

As discussed in introduction, we study one-step and 
two-step predictive distributions from fitted two­
component MAR-ARCH model. One-step predictive 

/\

distributions, F(Et l,g 't-l) for the series at time t = 31 
and t = 108 for fitted MAR-ARCH model are shown in 
Figs. 2(a) and 3(a). Similarly two-step predictive 
distributions are obtained by 'naive' approach (Granger 

/I. /I. /\ /I. /\ /I. 

E30 E32 E31 E30 E32 E31 

(a) (b) 

Fig. 2 : (8) One-step, and (b) two-step predictive 
distributions of (~t} series at t = 30 along with actual 

values of series at t - 1, t and t +1 

1\ 1\ 1\ 1\ 1\ 1\ 
E 106 E 107 E 108 E 106 E107 E108 

(a) (b) 

Fig.3 : (8) One-step, and (b) two-step predictive 
distributions of {~t} series at t = 107 along with actual 

values of series at t - 1, t and t +1 
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Fig. 4 : Volatility computed from fitted MAR-ARCH 
(2;0,1;1,1) model in seasonally adjusted onion price series 
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and Terasvirta (1993» and exhibited in Figs. 2(b) and 
3(b). For t = 31, distribution is bimodal while for 
t = 108, it is unimodal. This is justified by the fact that 
volatility function obtained from eq. (2) shows high 
volatility during time t = 31 whereas it is low during 
t = 108, as shown in FigA. 

5.4 Test ofARCH in Post Model Fitting 

McLeod and Li (1983) proposed a portmanteau test 
for linearity based on squared residuals after fitting the 
model. This approach is motivated by the result that if 
process {Z,} is a stationary Gaussian time-series, then 

If residual series is having ARCH, where squared 
errors are correlated (even though errors are 
uncorrelated), McLeod and Li test statistic, analogous 
to Ljung-Box portmanteau test statistic, is 

Q =N*(N* + 2)!r; I(N* - k) (18) 
k=l 

detects nonlinearity, where rk is sample autocorrelation 
function of squared residuals, N* is the number of 
observations after fitting MAR-ARCH model. 
Comparative studies by Lukkonnen et al. (1988) suggest 
that McLeod and Li test is ofvalue when testing linearity 
against ARCH-type alternatives. In our case, value of 
statistic comes out to be 21.30 for fitted MAR-ARCH 
model. Comparison with X2 tabulated value shows that 
null hypothesis of absence of ARCH is rejected at 5% 
level. 

5.5 Cross-Validation of Fitted Model 

The cross validation of fitted MAR-ARCH 
(2;0,1; 1,1) model is carried out using eqs. (9) and (10). 
It is found that during third week of October, 1998 to 
second week ofNovember, 1998, there are bursts in the 
data. The F-statistic based on eq. (9) reveals that null 
hypothesis that, price behaviour in pre- and post­
November, 1998 period remain unaltered, can not be 
rejected at 5% level. So, fitted model is stable over entire 
time-period. Stability of the model for forecasting 
purposes is examined by predicting three hold-out-data 
during 3rd week of October, 2001 to }"\ week of 
November, 2001 using eq. (16). Forecast values of 
wholesale onion price along with actual values in 
brackets for these weeks are respectively Rs. 805042 
(775.33), Rs. 749.83 (787.50) and Rs. 762.83 (750.00). 
Thus mean absolute percentage error came out as 

2.32%. Formal tests based on F-statistic in eq. (l0) which 
compares between residual sum of squares when 
equation is fitted to all observations and residual sum of 
squares when equation is fitted to first subsample reveals 
that forecast error is insignificant. In case of interval 
forecast, volatility values for these weeks are computed 
as Rs. 88.31, Rs. 83.06 and Rs. 122.06 respectively. This 
clearly shows that actual values for all three weeks lie 
within intervals of corresponding forecast values plusl 
minus respective volatility values. 

To sum up, it is concluded that two-component 
MAR-ARCH model provides an excellent description 
of data under consideration. 

6. CONCLUDING REMARKS 

In this paper, we consider mixture nonlinear time­
series models for analyzing onion price data. It is shown 
that two-component mixture autoregressive conditional 
heteroscedastic model performed better than other 
mixture models for modelling as well as forecasting 
purposes. Generally, in studying price phenomenon over 
time, standardization ofprices prevailing during various 
time-epochs with respect to some standard price index 
is required. However, in the present instance, as per 
discussions with subject matter specialists it was decided 
that there was no need to do this for the present data set. 
It is hoped that other research workers, in future, would 
also apply these models to their data sets having sudden 
bursts, flat stretches and outliers. Work is in progress to 
investigate another extension of MAR nonlinear time­
series models, called LMARX models, which involve 
logistic mixture autoregressive process with exogenous 
variables, like market availability, and shall be reported 
elsewhere in due course. The advantages of LMARX 
model over other nonlinear time-series models include 
a wider range of shape-changing predictive 
distributions, ability to handle cycles and conditional 
heteroscedasticity. 
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ANNEXURE-I
 

PROGRAM TO ESTIMATE PARAMETERS, S.E.,
 
HIC OF MAR-ARCH MODEL
 

fpo=fopen('d:\mararch\mar arch\(3;1, 1,0;2,0,1).xls','w'); 
fpi=fopen(' d:\mararch\data.txt' , 'r'); 
n=172;k=3; ip(l)=1;ip(2)=1;ip(3)=O;iq(1)=2;iq(2)=O;iq(3)=1; 
ipmax=ip(1); 
for i=2:k 
if (ip(i»ipmax) 
ipmax=ip(i); 
end (2 times) 
iqmax=iq( 1); 
for i=2:k 
if (iq(i»iqmax)
 
iqmax=iq(i);
 
end (2 times)
 
for i=l:k
 
icord(i)=O.O;
 
for j=l:i
 
icord(i)=icord(i)+ipG)+iqG)+1;
 
end (2 times)
 
for iter=l: I0
 
ipmax = ip(1);
 
for i=2:k
 
if (ip(i) > ipmax)
 
ipmax = ip(i);
 
end (2 times)
 
iqmax = iq(1);
 

for i=2:k
 
if (iq(i) > iqmax)
 
iqmax = iq(i);
 
end (2 times)
 

(i) E-STEP
 
for i=ipmax+iqmax+1:n
 
for j=l:k
 
com =y(i);
 
for jj=1:ip(j)
 
com = com - phat(jjj)*y(i-jj);
 
end
 
ht = shat(j,I);
 
for jj=1:iq(j)
 
error = y(i-jj) ;
 
for jjj=1 :ip(j)
 
error = error - phat(jjjj)*y(i-jj-jjj);
 
end
 
ht = ht + shat(jjj+1)*error"2.0;
 
end
 
h(j) = 1.0/sqrt(ht)*exp(-com"2.01ht/2.0);
 
end
 
denom= 0.0;
 
forj=l:k
 
denom = denom + ahat(j)*h(j);
 
end
 
for j=l:k
 
z(ij) = ahat(j)*h(j)/denom; end; end
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(ii) M-STEP
 
for j=l:k
 
asn(j) = O.O;asumd = 0.0;
 
end
 
for i=ipmax+iqmax+1:n
 
for j=l:k
 
asn(j) = asn(j) + z(ij);asumd = asumd + z(ij);
 
end (2 times)
 
for j=l:k
 
ahat1(j) = asn(j)/asumd;
 
end
 
(iii) COMPUTING OF INFORMATION MATRIX
 
for i=1:k-1+icord(k)
 
for j=1:k-l+icord(k)
 
dim(ij) = 0.0;
 
end (2 times)
 
for kl=1:k-1
 
for 1=1:k-1
 
if (kl = 1)
 
dic(kl,l) = (n-ipmax-iqmax)* (l.O/ahat(kl) + 1.0/ahat(k»;
 
else
 
dic(k1 ,1) = (n-ipmax-iqmax)/ahat(k);
 
end (3 times)
 
for it=ipmax+iqmax+1:n
 
for kl=l:k
 
for i=l:ip(kl)
 
for j=1:ip(k1)
 
i1=k-l +icord(kl )-ip(kl )-iq(k1 )-1 +i;
 
i2=k-1 +icord(k1 )-ip(kl )-iq(k1 )-1 +j;
 
dic(i 1,i2)=dic(i 1,i2)+(it,k1)*( 1/21hhh(kl ,it)J\2*fih(k1,it,i)*
 

fih(k1,itj)+1Ihhh(k1,it)*fie(k1,it,i)*fie(kl ,itj»; 

end (2 times) 
for i=1:iq(k1)+1 
for j=1:iq(k1)+1 
il = k-1+icord(k1)-iq(k1)-1+i; i2 = k-1+icord(kl)-iq(k1)-1+j; 
dic(il ,i2)=dic(i1,i2)+z(it,k1)/21 

hhh(k1,it)J\2*bih(k1 ,it,i)*bih(k1,itj) 
end (4 times) 
idem = k-1+icord(k); vtheta=inv(dim);dl = O.O;dlik=O.O; 
for it=ipmax+iqmax+l:n 
dlt = O.O;lik = 0.0; 
for i=l:k 
dlt = dlt+ ahat(i)lsqrt(hhh(i,it»* exp(-eee(i,it)"2.01hhh(i,it)/2.0); 
lik = lik + z(it,i)*log(ahat(i»- (z(it,i)/2.0)*log(hhh(i,it»­

z(it,i)*eee(i,it)*eee(i,it)/(2*hhh(i,it)J\2); 
end 
dl = dl +log(d1t); dlik = dlik + lik; 
end 
bic=-2.0*dlik + log«n-ipmax-iqmax»*(k-1+icord(k»; 
(iv) STANDARD ERRORS
 
for i=1:k-1+icord(k)
 
vse(i)=sqrt(vtheta(i,i»;
 
end
 
vseakt=O.O;
 
for i=1:k-1
 
for j=1:k-1
 
vseakt=vseakt+vtheta(ij);
 
end (2 times)
 

vseakt=sqrt(vseakt); 
st=fclose(fpo); 


