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SUMMARY 

Procedure is thoroughly discussed for arriving at the appropriate reparameterization in respect of 
a nonlinear statistical model with a view to achieving close-to-linear (Ratkowsky (1990» behaviour. 
Details are given to compute the two root-mean-square measures of curvature for assessment of 
nonlinearity for all parameters combined as well as marginal curvatures for individual parameters. The 
method for identifying appropriate reparameterization is then discussed through the use of"Expected­
value parameters" and "Simulation" techniques. As an illustration, a nonlinear statistical model for 
aphid population growth (Prajneshu (1998» is considered. 
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1. INTRODUCTION 

It is well recognized that any type of statistical 
inquiry in which principles from some body of 
knowledge enter seriously into the analysis is likely to 
lead to a 'Nonlinear model'. Accordingly, in recent years, 
a number ofsuch models have been developed in various 
disciplines. These models are generally "mechanistic" 
in nature as the underlying parameters have specific 
biological interpretations. Quite often these arise as the 
solutions of differential, or integro-differential, or 
difference equations. Usually the functional forms 
obtained as such are fitted to the data resulting in highly 
nonlinear behaviours. Unfortunately, hardly any attention 
is paid to the various reparameterizations and 
consequently, the parameter estimates generally do not 
satisfy, even remotely, any optimum properties, like that 
of unbiasedness, minimum variance, distribution being 
nonnal (Ratkowsky (1990)). Therefore, detennination 
ofthe optimum reparameterization for a nonlinear model 
is of great relevance. 

Accordingly, purpose ofthe present paper is to make 
a systematic study of above aspect. Next section 
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discusses briefly two root mean square measures of 
curvature as well as marginal curvatures for individual 
parameters. Procedure for providing guidelines for 
replacing nonlinear parameters by ones with better 
statistical properties is also described. In S~ction 3, as 
an illustration, a nonlinear statistical model, applied to 
aphid count data on potato leaves, is considered. S-Plus 
software package and a FORTRAN program, written by 
Kang and Rawlings (1998), are used for data analysis. 
Optimum parameterizations oforiginal parameters ofthe 
nonlinear statistical model for describing dynamics of 
aphid population growth are obtained. Residual analysis 
for the model with independently and identically 
distributed (Li.d.) error tenns revealed presence of first 
order autoregressive (AR(I)) errors. Finally, the 
parameterized model with AR( 1) errors not only 
provided an extremely good fit but also ensured desirable 
properties for the parameter estimates. 

2. PROCEDURE FOR REPARAMETERIZATION 

2.1	 Measures ofNonlinearity 

In order to examine the extent ofnonlinearity of a 
model, the two root mean square (rms) measures of 
curvature, viz. intrinsic curvature (IN) and parameter­
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effects curvature (PE) need to be computed. The details 
are given in Bates and Watts (1988). IN is inherent to 
the model and can not be changed by any 
reparameterization, while PE is dependent on a particular 
parameterization. A low IN value ensures nearly Wlbiased 
predicted values of the response variate. Furthermore, 
low values of IN as well as PE ensure joint confidence 
regions for the parameters to be close to being ellipsoidal 
and confidence-limits for individual parameters to be 
close to being symmetrical. 

PE needs to be computed only when IN is within 
permissible limits. A low value of PE indicates that the 
model exhibits close-la-linear (Ratkowsky (1990» 
behaviour; otherwise an appropriate reparameterization 
should be identified so as to reduce PE as much as 
possible. It is desirable that both IN and PE measures 
multiplied by Fp,n_p (ex) should be small, say less than 
0.3. Here pis e number ofparameters ofthe model, n 
is the number ofobservations and Fp,n_p (ex) denotes the 
upper ex% point of Fp.n_p-distribution. 

One disadvantage ofthe above curvature measures 
is that they cannot identify those parameters which are 
primarily responsible for nonlinear behaviour of the 
model in a multiparameter situation. Accordingly, as a 
next step, marginal curvatures for individual parameters 
may be computed (Clarke (1987». As a rule ofthumb, 
if marginal curvature multiplied by t n_p(.05), where 

t n_p(.05), the upper 0.05 quantile of t n_p-distribution, 

is less than 0.1, curvature effects may be ignored and 
linear approximation would suffice. Kang and Rawlings 
(1998) showed that, for a given parameterization, 
marginal curvature for transformed parameter can be 
computed without determining inverse transformation. 

As pointed out by Bates and Watts (1988), extent 
ofnonlinearity of individual parameter estimates can be 
assessed graphically by employing profile-t plots. These 
plots graphically reveal the extent of nonlinearity in 
individual parameter estimates. For a nonlinear model, 
profile-t function 't(Op) can be computed as follows: 
Suppose the vector of parameters)s 0= (01'02)T and 
we wish to test HO~OI = OlD' Let °be the overall least 

" squares estimate, 0211, be the conditionalleast-s'luares 

estimate of °2 with °1 = OlD andput ~(o 0)= (01O, 82IdT. 
Then sum of square function is given ~ 

~ 1\ 

R(OIO) = RSS(O(OlO» - RSS(O) (2.1) 

where RSS denotes the residual sum of squares. The 
profile - t function defined as signed square root 

't(01O) = Sign(OIO - e)~R(OlO)/S (2.2) 

has an approximate t-distribution under Ho. Confidence­
interval for OJ is the set {Ol- t < 't(Oj) < t}, where t is 
approximate percentage point of t n_p distribution. 

Plots of this proftle-t function provides exact 
likelihood intervals for individual parameters and, in 
addition, it reveals how nonlinear situation is. For 
coordinate directions along which the approximate linear 
methods are accurate, plots ofnonlinear t-statistic, 't(Oj) 
against OJ over several standard deviations on either side 
of maximum likelihood should be straight. Any 
deviations from straightness serve as a warning that linear 
approximation may be misleading in that direction. 

2.2	 Choice of Suitable Reparameterization 

After obtaining information about those parameters 
which deviate from linear behaviour, the next step is to 
choose suitable parameterization. Unfortunately, there 
are very few guidelines available for replacing such 
parameters by ones with better properties. Ratkowsky 
(1990) suggested that one way of achieving this is to 
find Expected-value parameters while another way is to 
perform Simulation studies. 

2.2.1 Expected-value Parameters 

These can be obtained by choosing p-values of 
explanatory variable X, p being the number of 
parameters. The new parameters are the expected- value 
parameters yl' Y2'''·' Yp after eliminating original 
parameters. They seem to be best kind ofparameters as 
they invariably lead to parameters with good estimation 
properties. However, it has got a limitation that their 
defining equations often cannot be solved for the 'old' 
parameters in terms of the expected-value parameters. 
Therefore, one cannot always obtain an algebraic 
expression for the reparameterized model. This prevents 
universal application ofthis procedure. 

2.2.2 Simulation Studies 

By taking parameter estimates and estimate of 
residual variance about regression line of a model as 
true values, a large number, say 1000, ofsimulated data 
sets may be generated by allowing error term to change 
randomly (which is having normal distribution and 
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required variance) at each value ofexplanatory variable 
for each data set. The estimates of parameters are then 
obtained f<;>r each generated data set and histograms are 
plotted for individual parameters. These histograms 
would provide an idea about parameters which are 
behaving nonnormally and also indicate probable 
reparameterization. A long right-hand tail suggests 
replacement of the parameter in the model function by 
an exponential of the parameter, while one with a long 
left-hand tail suggests replacement of parameter by 
logarithm of the parameter. Furthermore, distributional 
properties ofeach parameter can be studied by computing 
skewness coefficient ('01) , kurtosis coefficient ('02 ) and 
bias. 

For 1000 data sets, '01 is approximately distributed 
as N (0, (6/1000)112) and '02 is approximately distributed 
as N(0,(24/ 1000)112). Value of '01>±0.152 (at 5% level) 
or ± 0.200 (at 1% level) and value of '02 > ± 0.304 (at 
5% level) or ± 0.399 (at 1% level) indicates significance 
ofskewness and kurtosis respectively. Further, absolute 
value of %bias greater than 1% is an indicator of 
nonlinear behaviour of the parameter. 

3. RESULTS AND DISCUSSION 

As an illustration, mean data of Aphis gossypii 
glover per 100 potato leaves recorded at Central Research 
Station, Modipuram, India at weekly intervals during 
1983 to 1987 is considered (Verma and Parihar (1991 )). 
Relevant data is reproduced in Table 1 for ready 
reference. The following nonlinear statistical model, 
hereinafter referred to as 'Model I' (Prajneshu (1998)) 
is fitted to this data: 

N(t) = aebt (1 +debt )-2 + E (3.1) 

where the error term E is assumed to be independently 
and identically normally distributed. Standard software 
packages, like SAS, SPSS can be employed to achieve 
the task. However, none ofthe packages, except perhaps 
S-plus, contain ready-made programs for computing rms 
curvature measures of nonlinearity and profile-t plots. 
Therefore, this package is used for statistical analysis of 
present data. The details are given in Venables and Ripley 
(1999). 

The estimates ofparameters a, b and d ofModel I, 
along with their asymptotic standard errors and 95% 
confidence-intervals are presented in the second column 

Table 1. Aphis gossypii glover per 100 potato leaves at 
weekly intervals during 1983-87 

Time (weeks) Number ofaphids 
per 100 leaves 

0 0.0 

1 6.5 

2 7.6 

3 6.6 
4 13.0 

5 5.3 

6 6.7 

7 16.3 

8 16.0 

9 16.0 

10 20.6 
11 35.6 
12 53.0 

13 86.8 

14 75.3 

15 33.8 

16 17.3 

17 8.0 

18 4.5 

19 0.0 
20 0.5 

21 0.3 
22 1.5 

ofTable 2. The rms curvature measures are also reported 
in the same column. It may be noted that intrinsic 
nonlinearity (0.21) is within acceptable limits. However, 
parameter-effects nonlinearity (12.23) is extremely high, 
indicating thereby the need for reparameterization of 
parameters. In order to identify the parameters which 
are causing such a high value, marginal curvatures of 
individual parameters are computed using FORTRAN 
program NLIN-CURV.ED ofK.ang and Rawlings (1998). 
A subroutine MODEL has to be supplied to the program, 
which requires first and second derivatives ofModel I, 
given below: 

btaN(t)/a a =e / (1 +debt 
)2 (3.2) 

a N(t)/ab =taebt (1- debt 
)/(1 +debt 

)3 (3.3) 
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Table 2. Parameter estimation, TInS curvatures measures,
 
marginal curvature, measures of nonlinearity
 

and simulation studies
 

Modell Model II 

(i) Parameter estimation: 
a 0.0018 

(0.0017) 
[0.001, 0.0070] 

-6.34 
(0.99) 

[-8.17, - 4.76] 

b 0.92 
(0.08) 

[0.800, 1.0700] 

0.92 
(0.08) 

[0.80, 1.07] 

d 0.Os55 

(0.Os59) 

[0.000, 0.0002] 

-12.13 
(1.67) 

[- 14.03, - 10.04] 

(ii) rms Curvature effects: 

(IN) ~~.2o(.05) 0.21 0.21 

(PE) ~F3.20(.05) 12.23 0.24 

(iii)	 (Marginal curvatures) ~l05): 

a 0.78 0.08 
b 0.07 0.07 
d 0.82 0.07 

(iv)	 Simulation Studies: 
Skewness: 

a 0.61 ** - 0.18NS 

d 0.61** - O.lQNs 

Kurtosis: 
a - 1.06** 0.29NS 

d 1.05** 0.27NS 

%Bias: 
a - 23.30** 0.02NS 

d - 24.02** O.OINS 

Note: Figures in parentheses are asymptotic standard 
errors. Figures in square brackets are 95% lower 
and upper confidence limits respectively. 

** indicates significant at I % level and 
NS indicates non-significant. 

aN(t)jad =_2a(ebt )2 /(1+ debt )3 (3.4) 

a2N(t)/aa2 =0 (3.5) 

a 2N(t)/aaab = taebtO-debt)/ (1 + debt )3 (3.6) 

a 2N(t)/ab2 = t2aebt [(1- debt )2 - 2debt ]/(1 + debtt 
(3.7) 

a 2N(t)/a aad =- 2(ebt )2 /0 + debt )3 (3.8) 

a 2N(t)/a bad = - 2ta(ebt )2(2 - debt )/(1 + debt )4 (3.9) 

a 2N(t)/ad2 =6a(ebt )3/(1+debt )4 (3.10) 

Detail ofMODEL subroutine supplied to the main 
program NUN_CURV.ED is given in Annexure-I ofthe 
website www.ciba.nic.inlcs/annex.htm (Sarada (2005». 

The results of computation in respect of Model I 
are presented in column 2 of Table 2. Marginal 
curvatures for parameter estimates of a (0.78) and d 
(0.82) are significantly higher than 0.1 while that for the 
parameter b (0.07) is within acceptable limits. Profile-t 
plots (Fig. 1) also reveal that parameters a and d are 
deviating from planar assumption, suggesting thereby 
the need for a suitable reparameterization for these 
parameters. Unfortunately, Expected-value parameters 
cannot be obtained for (3.1) as parameters b and d cannot 
be eliminated. So, with a view to having an idea about 
reparameterization, simulation studies are carried out. 
One thousand simulated samples are generated and 
coefficient of skewness, kurtosis and %bias are 
calculated for parameters a and d and the results are 
presented in column 2 of Table 2. The histograms plotted 
for these parameters are presented in Fig. 2. The two 
histograms are having long right-hand tail, which implies 
that parameters should be replaced by their exponentials. 

Accordingly, the model in (3.1) is reparameterized 
as 

(3.11) 

which is referred to as Model II in subsequent discussion. 
The marginal curvatures for the transformed model are 
computed by NLlN-CUR.ED program by supplying to 
it TRANSF subroutine, which is given in Annexure-II 
of the website www.ciba.nic.in/cs/annex.htm 
(Sarada (2005». All the above statistics are now 
computed for Model II and the results are presented in 
column 3 of Table 2. The intrinsic nonlinearity (0.21) 
remains the same, as expected. 

Further, the marginal curvatures of all the three 
parameter estimates are now within acceptable limits, 
and the parameter-effects nonlinearity reduces to 0.24, 
which being less than 0.3, indicates that now it is not 

significant. Further, the % bias for parameter estimates 
ofa and d has also reduced drastically. The profile-t plots 
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Fig. 1. Profile-t plots for Model I and Model II 
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Fig. 2. Histograms of 1000 simulated standardized parameter estimates of Model I and Model II 
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are also now nearly straight (Fig. 1) and histograms for 

the two parameter estimates are also symmetric (Fig. 2). 
Thus, Model II is a suitable reparameterized model for 
the given situation. A perusal of Table 2 shows that 
reparameterization has resulted in a substantial decrease 
in percentage asymptotic standard errors for parameter 

estimates. In fact, for parameter estimate of a, it has 
decreased from 98.9%to 15.6% while for the parameter 

estimate of d, it has come down from 107.4% to 8.5%. 
Similar results hold in respect of width of 
confidence-intervals and these have also become more 
symmetric. 

Further, results of residual analysis for Model II 

are presented in column 2 of Table 3. The value ofRun 
test statistic (-2.98) lies in the critical region at 5% level 
and so errors are not independent. Durbin-Watson test 
statistic (0.77) near to zero indicates possibility ofAR(1) 
error structure. Therefore, Model II with AR(l) error 

structure is fitted to the data and the results are reported 
in column 3 of Table 3. A perusal indicates that the 
assumption ofindependence oferrors is now not rejected 
at 5% level. Hence Model II with AR(1) error structure 
is appropriate for describing the given data. 

Table 3. Summary statistics for fitting Model II to Aphis 
gossypii glover data 
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StatisticsIError U.d. AR (1) 

(i) 

(ii) 

(iii) 

Parameter estimates: 
a -6.36 

(1.02) 

b 0.93 

(0.08) 

d - 12.15 

(1.06) 

AR(1) 

Goodness of fit statistics: 
RMSE 

Residual analysis: 
Run test (Z) -2.98 

Durbin-Watson test 0.72 

- 11.88 

(1.55) 

1.32 

(0.11) 

- 17.62 

(1.51) 

0.89 
(0.10) 

4.70 

0.00 

2.21 


