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SUMMARY 

Oilseed production of our country has shown a drastic increase since mid-1980s, primarily due 
to the setting up of"Technology Mission on Oilseeds". One important issue to be resolved is whether 
or not increase in yield of oilseed crops is mainly responsible for this transformation. Present paper 
attempts to examine this statistically using oilseed yield data from years 1950 to 2000. In first step, 
ARIMA time-series approach is adopted to model the data; however it could not explain the sudden 
jumps. So nonparametric regression approach, which requires fewer assumptions, is employed. To 
this end, computer programs are developed in Matlab, Ver. 5.3.1 to carry out estimation of location of 
jump and computation of critical values ofjump size. It is shown that nonparametric regression with 
jump points provides a good description of data under consideration and gives statistical evidence of 
jump in productivity of oilseeds. Finally, one-step ahead forecast is carried out with the fitted 
nonparametric regression model. 

Key words: Oilseed yield data, ARIMA approach, Nonparametric regression, Jump point, Local 
polynomial regression. 

1. INTRODUCTION Revolution". An excellent account ofvarious aspects of 
this success story is given in Rai (1999). 

India is among largest oil economies in the world 
In this paper, country's oilseed yield data during occupying a distinct position in terms of diversity in 

the years 1967-68 to 2003-04, taken from DES (2004), annual oilseed crops. Main oilseed crops are: groundnut, 
is considered for data analysis. Generally, for analyzing rapeseed, mustard, soybean, sunflower, safflower, 
this type of time-series data collected over time, Auto sesame, niger, linseed, and castor. Annual production of 
Regressive Integrated Moving Average (ARIMA) oilseed crops was virtually stagnating at around 
methodology (Box et al. (1994)) is employed. One 10 million tonnes over a span ofmore than fifteen years 
disadvantage of this methodology is that time-series despite considerable increase in area under oilseed crops 
under consideration should be stationary or should be from 10.73 million hectares in 1950-51 to 19.01 million 
capable of becoming so by means of differencing or hectares in 1985-86. Till mid-1980s, supply lagged far 
detrending. Accordingly, Structural time-series approach behind demand, thus forcing the Government to import 
is adopted by Prajneshu et af. (2002) for modelling and large quantities ofedible oils. Turning point carne in 1986 
forecasting country's lac production data.with setting up of "Technology Mission on Oilseeds". 
Mukhopadhyay and Sarkar (2001) have carried out Soon, India attained a status of "Self sufficient and net 
detailed trend analysis of agricultural production data exporter" during early nineties with an all-India record 
of West Bengal during the period 1950-51 to 1992-93 production of 25 million tonnes during 1996-97. This 
and found no statistical support for acceleration during transformation is rightly termed as the "Yellow 
1980s, as proposed by some previous studies. 

I. Indian Agricultural Statistics Research Institute. One drawback of above type of research work is 
New Delhi-/lOOJ2 that it is based on the assumption oflinearity, which does 

not hold in reality. Another drawback is that models may 
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not be robust in the sense that slight contamination of 
data might lead to erroneous conclusions. Further, a time­
series might be of the type that there is no suitable 
parametric model that gives a good fit (Prakasa Rao 
(1996)). Under these circumstances, one might take 
recourse to nonparametric regression approach, which 
is based on fewer assumptions. 

Purpose of present paper is to model oilseed yield 
data of our country nonparametrically. Details of this 
approach, when there is presence ofjump points in data, 
are thoroughly discussed. Relevant computer programs 
for analyzing data, developed in Matlab, Ver. 5.3.1, are 
appended as Annexure-I. Finally, the methodology is 
applied to data and its capability to identify jump point 
is demonstrated. 

2. ARIMA TIME-SERIES APPROACH 

In this section, oilseed yield data is modelled using 
ARIMA approach, as given in Box et al. (1994). These 
models predict response as a linear combination of its 
own past values. In first instance, it is noticed that the 
original data is not stationary but can be made so after 
first differencing. Subsequently, using SAS, Ver. 8e 
software package, appropriate model identified to 
describe the present data is found to be ARIMA (0, 1, 1) 
with following estimates 

Constant = 11.44, MAl = 0.81, SE = 78.14 
(2.76) (0.10) 

Here figures in ( ) indicate the standard errors of 
corresponding coefficients. Further, goodness of fit 
statistics are 

AIC = 417.92, SBC = 421.09, MSE = 6106.38 

High values of above goodness of fit statistics 
indicate that ARIMA model is not appropriate to explain 
sudden jumps present in the data. 

3. NONPARAMETRIC REGRESSION 
METHODOLOGY 

3.1 Basics 

A fundamental problem in statistics is to develop 
models based on sample of observations and making 
inference using the model so developed. Regression 
analysis provides information on relationship between 
response variable and predictor variable as 

y=m(X)+E (1) 

A parametric (linear or nonlinear) model assumes 
that the form ofm(.) is known except for some unknown 
parameters and shape of function is entirely dependent 
on parameters. Often, it is difficult to guess most 
appropriate functional form just from the shape ofcurve 
and in such situations, nonparametric regression 
approach, which does not require strong assumptions 
about shape of curve, is very useful. Only assumption 
made here is that m(.) belongs to some infinite 
dimensional collection of functions. Smoothing 
techniques are usually employed to estimate regression 
function nonparametrically (HardIe (1990». 

Local linear regression smoothers are generally used 
in order to obtain a smooth fit of regression function, 
when no suitable parametric model is available. Kernel 
Weighted Local Linear Smoother (KWLLS), proposed 
by Fan (1992), is the popular method used in 
nonparametric estimation. In this method, estimator of 
m(.) is given by value of a 0 where a 0 (and a I) 

minimizes local least square function 

t [Yi-aO -a1 (X-X)]2 K(x-xi) (2) 
i=l 
Here, K(x) is a kernel density function. Most 

commonly used kernel is Epanechnikov kernel given as 

0.75 (1 - x2 ) for Ix I ~ 1 
K(x) = 

[ o otherwise 

Thus, estimator ofregression function m(x) is given 
by 

n n 
m(x) = a = ~ W y./~ Wo L.J x, J L.J x· (3)

j=l J j=l J 
where 

n
 

W = K[(x-xj)/h]{LK[(x-xi)/h] (x-x)2

Xj 

i=l 

n 

-(x - xj)LK[(x - xj)/h] (x - Xj)} 
j=l 

3.2 Choice of Smoothing Parameter (Bandwidth) 

Choice of an optimum bandwidth is of great 
importance in nonparametric regression. A large 
bandwidth will produce oversmoothed curve, while a 
small value ofit produces an undersmoothed curve. Cross 
validation or leave-one-out method is most commonly 
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used technique for obtaining optimum value ofsmoothing 
parameter (h). This is based on regression smoothers, in 
which jlh observation is left out. Thus, resultant modified 
estimator is 

n 
~ ( ) -I ~ W ( )mh.j x j =n LJ h,j xi Yi 

i .. j 

where 

Wh . (X.)
oJ I 

=K[(Xj -X)/hH±K[(Xj -Xk)/h]cXj -xk)2 
k..j 

n 
-(Xj -Xi) ~K[(Xj-xk)/h](Xj-Xk)} 

k"j 

Further, cross validation function, CV (h), is given 
by 

CV(h) = n-I ±[Yj- mh,j(Xj)]2 (4) 
j=1 

The optimum value of smoothing parameter (h) is 

obtained by minimizing CV (h). To achieve this task, 

computer programs are developed in MATLAB, 

Ver. 5.3.1 (1999), and are given in Annexure-I. 

3.3 Data Analysis 

For the given data, optimum bandwidth (h) is 

estimated as 0.135. This value of h is used for further 

estimation ofm(.), as given in eq. (3). The MSE value, 
viz. 3719.76 is found to be significantly lower than that 

ofARIMA model. However, residuals corresponding to 

data during late 1980's and early 1990's are seen to be 

very large, indicating the need for including aspect of 

jump points in the above methodology. 

4. NONPARAMETRIC REGRESSION WITH 
JUMP POINTS METHODOLOGY 

In this section, focus is on modelling sudden jumps 
in the data under study. Mc Donald and Owen (1986) 
used split linear fit of data to estimate jump point. 
Muller (1992) provided estimators for location and size 
of change points in nonparametric regression based on 
left and right one-sided kernel smoothers. The above 
methods are suited for equally spaced fixed design case. 
lose and Ismail (1999), extending the work of 
Loader (1996), developed generalized estimators for 

location and size of jump in regression function or its 
derivatives, based on analysis of residuals from 
nonparametric kernel regression method. In this section, 
this approach is followed and is briefly discussed below 

The regression function m(.) with change points at 

1. of size !!.. t ,j= 1,2,... ,p is defined by 
J J 

m(x) = g(x) + f!!..t . D[t ',1] (x) (5)
j=1 J J 

where g(.) is a continuous function defined on 
[0, 1] and D is indicator function. The regression function 

m with change points for m' , the first derivative ofm at 

t j of size At .,j = 1,2,... , P is given by 
J 

m(x) =g(x)+ fAt.(x-t.) D[t .. Ij(x) (6)j=1 J J J 

Let 

m+(t j) = lim m(t) , m_(t j ) = lim met) 
t'!'tj tttj 

Further, let 

!!..\j=m+(t)-m_(tj),. A,j= m'+(t) - m'_(t) 

One-sided estimators of m+ (x t ) and m_ (x t ) are 

n n 

m±(x t) = L Wit. Y/L Wit. (7)
i=1 J i=1 J 

where 

W±tj =K±[(xt-Xj)/h] [S±2-(Xt -Xj)S±1] 

and n 

S±j = L K± [eXt - xi)/h](x t - xi Y,j= 0,1,2, ... 
i=1 

Ifthere exists a change point for m(.) at Xl of size, 

!!..t' it is possible to take estimate ofchange point as that 

point where I~i Iis maximum over the set Xi E [h, I-h]. 

For the given data, using cross validation method, 
optimum bandwidth (h) is found to be 0.135 after 
transforming x variable (time) into [0, 1]. Using eq. (7), 
jump location and size is estimated using computer 
program given in Annexure-I. For given data, only one 
jump is estimated and that takes place during the year 
1987-88 having a size of 163 kg I ha. Since the number 
ofchange points is not known in advance, critical value 
ofjump size has to be estimated to decide the number of 
significant change points. 
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4.t Estimation ofCritical Value 

" In absence of change points, At follows normal 
distribution with mean zero and variance CJ 2. Therefore, 
to compute critical value for testing significance ofjump 
size, an estimate of CJ 2 is needed. To this end, Wu and 
Chu (1993) constructed an estimator as a trimmed mean 
ofsquared difference ofneighbouring observations, i.e. 

n-q 

cr2 = L ~J [2(n-I-2q)] (8) 
i=2+q 

where ~i =(Yi - Yi_l)2, i = 1(1)n and ~i are arranged 

in ascending order. Substituting the expression of 

02 
from eq. (8), Jose and Ismail (1999) derived a 

modified estimator of 0 2 as 

n 2 n 2 
cr2 = [ ~ W+t/(~ W+t) 

t j=l j=l 

+~ W~,/ (~W_lj)'] a' 

Critical value is obtained as 

C n =crt Zn*/2 

where a is level ofsignificance and a. *=1- (l_a)lIn. 
As critical value obtained for jump at 5% level during 
year 1987-88, viz. 154.98 is less than estimated jump 
(163 kg/ha), a significant jump at that point is established. 
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Fig.t. Fitted nonparametric regression with jump 

points model to all India oil seed yield data 

Evidently, oilseed yield estimates corresponding to 
data during late 1980's and early 1990's are closer to 
actual values, resulting in a reduction in MSE value from 
3719.76 to 2387.19. This shows that sudden boom in 
oilseed productivity during late 1980s has, indeed, 
contributed to the success of "Yellow Revolution", A 
graph of fitted model along with data is exhibited in 
Fig. 1. Finally, one-step ahead forecast for the year 2004­
05 is computed as 1053.67 kglha. 
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ANNEXURE-I 

PROGRAM TO ESTIMATE JUMP POINTS AND 
JUMP SIZES 

fpi=fopen('C:\data\oilyield.txt', '1"); 
fpo=fopen('c:\data\oilyieldjump.xls', 'w'); 
n=37; 

DATA GENERATION 

[z]=fscanf(fpi, '%f' ,[2,37]); 
for i=l:n 

x(i)=z(1 ,i)/z(1,n); y(i)=z(2,i); 
end; 

CROSS VALIDATION FOR ESTIMATION OF 
BANDWIDTH 

for nh = 3:nl2 
h = nhln; mse=O.O; 
for i = l:n 
a1(i)=O.O;a2(i)=O.0;a3(i)=0.O;ak1=0.0;ak2=0.0; j=i; 
1'1 =(x(j)-x(i))lh; 

while 1'1<1, 
kl=(1-rl *1'1)*0.75; ifrl=O; kl=O; end; 
al(i)=al(i)+kl; a2(i)=a2(i)+kl *1'1 *h; 
a3(i)=a3(i)+kl *1'1 *1'1 *h*h; akl =akl +kl *y(j); 
ak2=ak2+kl*y(j)*rl*h; 
j=j+1; ifj<=n; 1'1=(x(j)-x(i))Ih; else 1'1=1; end; end; 
j=i-l; ifj<l; r1=-I; elserl=(x(j)-x(i))Ih; end; 

while 1'1>-1, 
kl =(1-1'1 *1'1 )*0.75; al (i)=al(i)+kl; 
a2(i)=a2(i)+kl *1'1 *h; a3(i)=a3(i)+kl *1'1 *1'1 *h*h; 
akl=akl+kl*y(j);ak2=ak2+kl*y(j)*rl*h; 
j=j-l; ifj<l; r1 =-1; else 1'1 =(x(j)-x(i))Ih; end; end; 
dm1(i)=al (i)*a3(i)-a2(i)*a2(i); 
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m(i)=akl*a3(i)-a2(i)*ak2; m(i)=m(i)/dml (i) 
mse=mse+(y(i)-m(i»*(y(i)-m(i»; end; 

mse=mse/n; fprintf(fpo, \n%5d % IOd\n',nh,mse); end; 
end; 

ESTIMATION OF JUMP LOCATIONS AND 
JUMP SIZES 

for i=1 :h+1 
k(i)=O.75*( I-(i-I )/h*(i-I )/h); 

end; 
a( I, I)=0.0; a(1,2)=0.0; a(2,2)=0.0; 

for r=1:h 
a(1, I )=a( I, I )+k(r+I); a( I ,2)=a(1 ,2)+x(r)*k(r+I); 
a(2,2)=a(2,2)+x(r)*x(r)*k(r+ I); 

end; 
a(l,3 )=a( I, I); a( 1,4)=a(l ,2); a(2,3 )=a( 1,2); 
a(2,4)=a(2,2); a(I,I)=2*a(1,I)+k(I); a(2,1)=0; 
a(3, I )=a( 1,3); a(3 ,2)=a(2,3); a(3,3 )=a(l,3); 
a(3,4)=a(1,4); a(4, I )=a(1 ,4); a(4,2)=a(2,4); 
a(4,3)=a(3,4); a(4,4)=a(4,2); a(2,2)=2*a(2,2); 
a(I,2)=0; 

c( I, I )=a( I, I );c( I ,2)=a(1 ,2);c(2,1)=a(2, I);c(2,2)=a(2,2);
 
ic=inv(c);ia=inv(a);
 
for i=h+ I :n-h,
 

b( I)=0.0; b(2)=0.0; b(3)=0.0; b(4)=0.0;ty=0;
 
for r=1:h
 
ty=ty+k(r)*y(r+i-I )*y(r+i-I )+k(r+I)*y(i-r)*y(i-r);
 
b( I )=b( I )+k(r)*y(r+i-I )+k(r+I)*y(i-r);
 
b(2)=b(2)+x(r)*k(r+ I)*y(i+r)-x(r)*k(r+I)*y(i-r);
 
b(3)=b(3)+k(r+ I)*y(i+r);
 
b(4)=b(4)+x(r)*k(r+ I)*y(i+r);
 
end;
 
d(1)=b(1); d(2)=b(2); soI2=ia* b'
 
soIl =ic* d' ; sri =b*soI2-d*soll;
 
ey=ty-b*soI2; sr(i)=srl*(2*n*h-2)/(ey*2);
 
solei, I )=soI2(1); sol(i,2)=soI2(2);
 
so10,3)=soI2(3); sol(i,4)=soI2(4);
 
end;
 
[q,p]=max(sr);
 

for j=I:4 
sol(pj); 

end; 
fprintf(fpo, '\n%8.4f\n',p); 

ESTIMATION OF NONPARAMETRIC
 
REGRESSION FUNCTION
 

h=0.135;
 
for i=l:n .
 

aO=O; al =0; a2=0;
 
for j=l:n
 
uI=(x(j)-x(i»;
 

u=ul/h; 
kr(j)=0.75*(1-u*u); 

if abs(u» I 
kr(j)=O; 

end; 
aO=aO+kr(j); 
al =al +uI*kr(j); 
a2=a2+ul*ul*kr(j); 
end; 
fork=l:n 

w(i,k)= kr(k)*(a2-(x(k)-x(i»* al )/(aO*a2-al*al); 
end; 

end; 
tr=trace(w); 
m=y*w'; 
st=fclose(fpo); 
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