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SUMMARY 

Using image method of Dey et al. (1972) on a tactical configuration (a - ~ - k - v) converted 
into design parameters by standard relationship, a three symbol PB array ofstrength (2m + 1) has been 
constructed. In view of this, an example with PB array in three symbols of strength 5 has been given. 
A catalogue of two new designs that can be obtained through the PB array has also been included. Of 
two, one is useful for obtaining new design for practical situations, an actual example of intercropping 
experiments with 9 intercrops has been added. 

Key words: Tactical configuration, Partially Balanced (PB) arrays, Balanced incomplete block 
(BIB) design, Doubly balanced incomplete block (DBIB) design, Strength. 

1. INTRODUCTION 

A new class of arrays called partially balanced 
arrays, was first introduced and studied by 
Chakravarti (1956). He obtained some two symbol 
(2 level) PB arrays by omitting suitably certain 
assemblies from an orthogonal array. Chakravarti (1961) 
subsequently gave a further method of construction of 
these arrays involving six symbols. Bose and Srivastava 
(1964) have shown certain important principal 
submatrices of the' information matrix' corresponding 
to a balanced fractional factorial design (i.e. a PB array) 
belong to the linear associative algebra generated by 
certain well known partially balanced association 
schemes. These algebra have been proved very helpful 
in certain statistical studies given by Srivastava 
and Chopra (1971 a). Rafter and Seiden (1974) have 
found the bounds on the maximum possible number of 
rows and with the problem of constructing PB arrays 
for given sets ofparameters. Rafter (1971) and Srivastava 
(1972) have rightly pointed out that the PB arrays give a 
mathematically challenging field of research which 
unites various branches of the combinatorial theory of 
design ofexperiments. Further, Sinha and Nigam (1983) 
and Nigam (1985) constructed a series of(n + 1) symbol 
PB arrays of strength two from regular group divisible 
designs. 

Dey et at. (1972) have constructed PB arrays of 
strength two and three with three symbols using balanced 
incomplete block (BIB) and doubly balanced incomplete 
block (DBIB) designs. A tactical configuration, 
introduced by Sprott (1955) is a generalised structure of 
a balanced incomplete block design. Sharma and 
Chandak (1999) obtained a tactical configuration oforder 
(2m + 1) from a tactical configuration of order 2m. An 
attempt has been made to construct a three symbol PB 
array ofstrength (2m + 1) using the method ofDey et al. 
(1972) on a tactical configuration converted into design 
parameters by standard relationship. 

2. DEFINITIONS AND NOTATIONS 

Partially Balanced (PB) Arrays 

Let A be an v x b matrix, with elements 0, 1,2, ... , 
s - 1. Consider the st ordered t-plet (XI' x2' ... , XI) that 
can be formed from at-rowed submatrix of A and let 
there be associated a positive integer ~(xI' x2' ••• , x) that 
is invariant under permutations of xl' x2' ... , Xl' If for 
every t-rowed submatrix of A the st ordered t-plets 
(x l' x2' ••• , Xl) occur ~(xl' X2' .•• , Xl) times, the matrix A is 
called a partially balanced array of strength t in b 
assemblies with v constraints, s symbols and the specified 
fJ.(x I' x2' ••• , x,) parameters. 
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The set of all permutations of xI' X2' ••• , x, of an 
array of strength t in s symbols will be called the index 
set of the array and will be denoted by As,t· The array 
of A will be represented as the PB array (v, b, s, t) with 
index set A s•t · 

Tactical Configuration 

Given a set Q of v elements, and given positive 
integers k, ~ (~ ~ k ~ v) and a., we denote by a tactical 
configuration c (a. - ~ - k - v) a system of blocks 
(subsets of Q), having k elements each and such that 
every subset of Q having ~ elements is included in 
exactly a. blocks. If a. =1, then the configuration is 
called the Steiner system i.e., it is a complete 
(l - ~ - k - v) configuration of v elements arranged in 

blocks ofk so that each set of ~ elements occurs exactly 

once (see also Carmichael (1956». 

The symbol A, denotes the frequency ofthe number 
of blocks in which any t treatments a, b, C, ... , occur 
together. 

It is obvious that t =1,2, ... ~, =a., andA13 
AI = r (replication) 

Sharma and Chandak (1999) have shown that a 
configuration oforder (2m + 1) can always be constructed 
for all positive integral values of m. 

[gh
Let Il ijk denote the frequency of the t-plet in the 

t x b (t ~ v) sub-array ofthe b x v array in three symbols 
i, j. k with frequencies f, g, and h respectively such that 
f+ g + h = t. 

For completeness, the image method of Dey 
et al. (1972) is reproduced below: 

Consider a balanced incomplete block (BIB) design 
with usual parameters V, b, r, k, and A. 

Let N ( = nj) be the incidence matrix of this BIB 
design, where 

n.. 
lj 

= 1, if the j lh treatment occurs in the 11h block 

= 0, otherwise 
J 

Evidently, N is a b x v array of symbols (0 1). Let 
any assembly of this array be denoted by a row vector 
z = (z" Z2' ... , z), Zj= 0 or 1. 

Then they defined the "images" of z as z*, given 
by z* = (zJ *. Z2 *•... , Zv *), Zj + Zj* == 2 (mod 3) for all 
i = 1,2, ... , v. Now, let M be a b x v array of"images" of 
each of the assemblies of N. 

3. THEOREM 

The columns of A' when treated as assemblies give 
rise to a PB arrays with three symbols, 2b assemblies 
and strength (2m + 1) where A' is given by 

A' = [N' M'l 

and A' denotes the transpose ofA. 

Proof: The frequency of the ordered t-plet 
(1, 1, 1, ... , (2m + 1» i.e. 

o 2m +1 *
 
110 1 2
 

in any t-columned sub-array of N is obviously the 
number ofblocks in which any (2m + 1) treatments a, b, 
e, ... , occur together and is therefore equal to A2m +1 

(Sharma and Chandak (1999». The frequency of the 
other t-plet (0, 1, 1, ... , 2m) i.e. 

1 2m * 
11 0 1 2 

in any t-columned sub array ofN is the number ofblocks 
in which all treatments occur with only one treatment 
absent. Clearly, the number of such blocks is 
AZm - A Zm + I and similarly the frequency of the blocks 
of ordered t - plet 

2 2m -1 * 
Il 0 1 2 is A Zm -I - 2Azm + AZm + I 

Proceeding like this 

3 2m -2 *
 
110 1 2
 

=AZm -2 -3CIAZm _1 +3C:!A2m -AZm + 1 

In the same fashion 

p 2m - (p -1) * 
11 0 1 2 

=AZm-(p-l) - PCI A Zm -{p-2) + PC2A 2m - {p - 3)'" 

... (-I)PPCp A2m+1 where p =0, 1, 2 ... , 2m 

Therefore, the total number of assemblies 
containing the part or whole ofthe blocks ofthe strength 
(2m + 1) is 
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2m+lL (_I)k 2m+lC A
k k
 

k =1
 

(see, Sharma and Chandak (1999)) and hence the 
frequency ofthe blocks of ordered t-plet not containing 
a single treatment i.e. 

* 2m+l 
2m+l 0 =b ~ (_I)k 2m+lC A 

Il 0 1 2 + LJ k k 
k = I 

Since the assemblies ofM are "images" ofthose of 
N, it follows that in any t-columned sub-array ofM, the 
frequency of the ordered t-plets will be corresponding 
to N i.e., the frequency of the ordered t-plets viz., no 
factor absent, one factor absent, two factor absent and 
so on in N are: 

o 2m+l * 1 2m * 2 2m -1 * 
IlO 1 2' IlO 1 2' IlO 1 2' 

p 2m-(p-l) * 
... , Il 0 1 2 will give rise in M 

* 2m + 1 0 * 2m 1 * 2m -1 2 
11 0 1 2' IlO 1 2' 11 0 1 2' 

* 2m - (p -1) P . 
... , Il0 1 2 ' respectively 

Clearly the frequencies 

* 2m +1 0
 
Il0 1 2 = A2m + I
 

* 0 2m + 1 2m+l 

11 0 1 2 b + L (_I)k 2m+lCkAk 

k =I 

* 2m 
11 0 1 

* 2m-(p-l) p 
11 0 1 2 

=AZm-(P-l) - PC1AZm-(p-Z) + PCZA Zm -(p-3)'" 

... (-l)P PCpAZm +I where p = 0,1, 2 .,. 2m 

Therefor~, in the whole array A, the frequency of 
all ordered t-plets are given by 

o 2m+l 0 
Il 0 1 2 = A2m +I + A2m +I = 2A2m +I 

1 2m o 0 2m 1 
110 2 = A2m - A2m +I = Il01 1 2 

2 2m-l 0 
Il O 2 =AZm - 1 - 2Azm + AZm +11 

0 2m-l 2 
=Il 0 1 2 

Il P 2m - (p -1) 0
 
012
 

=AZm-(p-l) - PC1A 2m -(p-Z) 

+ PCZAZm _ (p _ 3) ...... (-I)P PCp AZm + 1 

o 2m-(p-l) p 
=Il O 1 2 

wherep=O, 1,2 ... ,2m 

and 

o 0 2m +1 
= 11 0 1 2 

Thus, A is a three symbol PB arrays of strength 
(2m + 1) for all positive integral values of m. The 
frequency of all other t-plets combinations are zero. 

Hence the theorem. 

The results ofDey et al. (1972) become a particular 
case when m = 1 in this theorem. 

4. ILLUSTRATIVE EXAMPLES 

Example 4.1 

Consider the incidence matrix of the tactical 
configuration (1-5-6-12) having v = 12, b = 132, r = 66, 
k = 6, A2 = 30, A3 = 12, A4 = 4, As = I and applying the 
construction method given in Section 3 of this paper, 
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we get X is a PB array (v= 12, b = 264, S =3, (= 5), with 
index set AJ,s' 

050 
J..l 012 = A5 + A5 = 2 

140 041 
J..l = A4 - As = 3, J..l = A4 - As = 3 012 012 

230
 
J..l = A3 - 2A4 + As = 5 012 

032 
J..l 012 =).,3 - 2A4 + As = 5 

320
 
J..l A2 - 3A3 + 3A4 - As = 5012 = 

023 
J..l 012 = A2 - 31..3 + 31..4 - As = 5 

410
 
J..l 012 = r - 4A2 + 61..3 - 4A4 + A5 = 3 

0 0 0 1 1 1 0 0 1 1 0 1
 
0 0 1 0 1 0 1 0 1 1 0 1
 
1 0 0 1 0 1 1 0 0 1 0 1
 
1 0 0 0 1 0 1 1 0 1 0 1
 
0 1 1 1 0 0 1 1 0 0 0 1
 
0 1 0 1 1 0 1 0 1 0 0 1
 
1 1 1 0 1 0 0 0 1 0 0 1
 
1 1 0 0 0 1 1 0 1 0 0 1
 
0 1 0 0 0 1 0 1 1 1 0 1
 
1 0 1 0 0 0 0 1 1 1 0 1
 
0 1 0 1 1 0 0 1 0 1 0 1
 
0 1 1 0 0 1 1 0 0 1 0 1
 
1 1 1 1 0 0 0 0 0 1 0 1
 
0 0 0 1 0 1 1 1 0 1 0 1
 
0 0 1 1 0 0 1 0 1 1 0 1
 
0 1 0 0 0 0 1 1 1 1 0 1
 
1 0 0 0 1 1 0 0 1 1 0 1
 
1 0 1 0 0 1 0 1 0 1 0 1
 
1 1 0 1 0 0 0 0 1 1 0 1
 
0 1 1 0 1 1 0 0 0 1 0 1
 
1 1 0 0 1 0 1 0 0 1 0 1
 
0 0 1 1 1 0 0 1 0 1 0 1
 
0 1 1 0 1 0 0 1 1 0 0 1
 
1 0 1 1 1 0 1 0 0 0 0 1
 
0 1 0 1 I 1 1 0 0 0 0 1
 

014 
J..l = r - 4A2 + 6A3 - 4A4 + A5 = 3 

012 

500
 
J..l = b - 5r + lOA2 -lOA3 + 5A4 - As = 1 

012 

005 
J..l 5r + lOA2 -lOA3 + 5A4 - As = 1

012 
= b ­

The frequency of other treatment combinations of 
strength 5 is zero i. e. 

131 221 311

J..l =0 J..l =0 J..l =0012 021 012 

113 212 122
 
J..l =0 J..l =0 J..l =0012 012 012 

104 401 203
 
J..l =0 J..l =0 J..l =0012 012 012 

302

and J..l =0012 

2 2 2 1 1 1 2 2 1 1 2 1
 
2 2 1 2 1 2 1 2 1 1 2 1
 
1 2 2 1 2 1 1 2 2 1 2 1
 
1 2 2 2 1 2 1 1 2 1 2 1
 
2 1 1 1 2 2 1 1 2 2 2 1
 
2 1 2 1 1 2 1 2 1 2 2 1
 
1 1 1 2 1 2 2 2 1 2 2 1
 
1 1 2 2 2 1 1 2 1 2 2 1
 
2 1 2 2 2 1 2 1 1 1 2 1
 
1 2 1 2 2 2 2 1 1 1 2 1
 
2 1 2 1 1 2 2 1 2 1 2 1
 
2 1 1 2 2 1 1 2 2 1 2 1
 
1 1 1 1 2 2 2 2 2 1 2 1
 
2 2 2 1 2 1 1 1 2 1 2 1
 
2 2 1 1 2 2 1 2 1 1 2 1
 
2 1 2 2 2 2 1 1 1 1 2 1
 
1 2 2 2 1 1 2 2 1 1 2 1
 
1 2 1 2 2 1 2 1 2 1 2 1
 
1 1 2 1 2 2 2 2 1 1 2 1
 
2 1 1 2 1 1 2 2 2 1 2 1
 
1 1 2 2 1 2 1 2 2 1 2 1
 
2 2 1 1 1 2 2 1 2 1 2 1
 
2 1 1 2 1 2 2 1 1 2 2 1
 
1 2 1 1 1 2 1 2 2 2 2 1
 
2 1 2 1 1 1 1 2 2 2 2 1
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0 0 0 0 1 1 1 1 1 0 0 1 2 2 2 2 1 1 1 1 1 2 2 1 
0 1 1 1 0 1 0 0 1 0 0 1 2 1 1 1 2 1 2 2 1 2 2 1 
1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 2 2 2 1 1 2 2 2 1 
1 0 0 1 1 0 0 1 1 0 0 1 1 2 2 1 1 2 2 1 1 2 2 1 
1 0 1 0 0 1 1 0 1 0 0 1 1 2 1 2 2 1 1 2 1 2 2 1 
1 1 0 1 0 1 0 1 0 0 0 1 1 1 2 1 2 1 2 1 2 2 2 1 
0 0 1 1 0 1 0 1 1 0 0 1 2 2 1 1 2 1 2 1 1 2 2 1 
1 0 0 1 0 0 1 1 1 0 0 1 1 2 2 1 2 2 1 1 1 2 2 1 
1 1 0 0 1 1 0 1 0 0 0 1 1 1 2 2 1 1 2 1 2 2 2 1 
0 0 1 0 1 1 1 1 0 0 0 1 2 2 1 2 1 1 1 1 2 2 2 1 
1 1 0 1 0 0 0 0 1 0 1 1 1 1 2 1 2 2 2 2 1 2 1 1 
0 1 1 0 1 1 0 0 0 0 1 1 2 1 1 2 1 1 2 2 2 2 1 1 
1 1 0 0 1 0 1 0 0 0 1 1 1 1 2 2 1 2 1 2 2 2 1 1 
0 0 1 1 1 0 0 1 0 0 1 1 2 2 1 1 1 2 2 1 2 2 1 1 
1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 2 2 2 1 1 2 2 1 2 
1 1 0 1 0 1 0 1 0 0 1 0 1 1 2 1 2 1 2 1 2 2 1 2 
0 1 1 0 1 0 0 1 1 0 1 0 2 1 1 2 1 2 2 1 1 2 1 2 
0 1 1 1 0 1 0 0 1 0 1 0 2 1 1 1 2 1 2 2 1 2 1 2 

X =1 0 1 1 1 0 1 0 0 0 1 0 1 2 1 1 1 2 1 2 2 2 1 2 
0 1 0 1 1 1 1 0 0 0 1 0 2 1 2 1 1 1 1 2 2 2 1 2 
1 0 1 0 0 1 1 0 1 0 1 0 1 2 1 2 2 1 1 2 1 2 1 2 
1 0 0 1 1 0 0 1 1 0 1 0 1 2 2 1 1 2 2 1 1 2 1 2 
0 0 0 0 1 1 1 1 1 0 1 0 2 2 2 2 1 1 1 1 1 2 1 2 
1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 2 1 2 2 2 1 2 1 2 
1 1 0 0 1 1 0 1 0 0 1 0 1 1 2 2 1 1 2 1 2 2 1 2 
1 0 1 1 1 1 0 0 0 0 0 1 1 2 1 1 1 1 2 2 2 2 2 1 
0 0 1 0 0 1 0 0 1 1 1 1 2 2 1 2 2 1 2 2 1 1 1 1 
I 0 0 1 0 0 1 0 0 1 1 1 1 2 2 1 2 2 1 2 2 1 1 1 
0 1 0 0 1 0 0 1 0 1 1 1 2 1 2 2 1 2 2 1 2 1 1 1 
0 0 1 1 0 0 0 1 0 1 1 1 2 2 1 1 2 2 2 1 2 1 1 1 
0 1 0 0 0 1 1 0 0 1 1 1 2 1 2 2 2 1 1 2 2 1 1 1 
1 0 0 0 1 0 0 0 1 1 1 1 1 2 2 2 1 2 2 2 1 1 1 1 
0 1 0 1 0 0 0 0 1 1 1 1 2 1 2 1 2 2 2 2 1 1 1 1 
0 0 1 0 1 0 1 0 0 1 1 1 2 2 1 2 1 2 1 2 2 1 1 1 
1 0 0 0 0 1 0 1 0 I 1 1 1 2 2 2 2 1 2 1 2 1 1 1 
1 I 1 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 
0 0 0 1 1 1 0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 
0 0 0 1 1 1 0 0 1 0 1 1 2 2 2 1 1 1 2 2 1 2 1 1 
0 0 1 0 1 0 1 0 1 0 1 1 2 2 1 2 1 2 1 2 1 2 1 1 
I 0 0 1 0 1 1 0 0 0 1 1 1 2 2 1 2 1 1 2 2 2 1 1 
1 0 0 0 1 0 1 1 0 0 1 1 1 2 2 2 1 2 1 1 2 2 1 1 
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0 1 0 0 0 1 0 1 1 0 1 1 2 1 2 2 2 1 2 1 1 2 1 1 
1 0 1 0 0 0 0 1 1 0 1 1 1 2 1 2 2 2 2 1 1 2 1 1 
0 1 0 1 1 0 0 1 0 0 1 1 2 1 2 1 I 2 2 1 2 2 1 1 
0 1 1 0 0 1 1 0 0 0 1 1 2 1 1 2 2 1 1 2 2 2 1 1 
I 1 1 1 0 0 0 0 0 0 1 1 I I 1 I 2 2 2 2 2 2 I 1 
0 0 0 I 0 I 1 1 0 0 I 1 2 2 2 1 2 I 1 I 2 2 I I 
0 0 I I 0 0 I 0 1 0 1 1 2 2 1 1 2 2 1 2 1 2 1 1 
0 1 0 0 0 0 1 1 1 0 1 1 2 1 2 2 2 2 1 1 1 2 1 1 
I 0 0 0 1 1 0 0 1 0 I 1 1 2 2 2 I I 2 2 1 2 I 1 
I 0 I 0 0 I 0 1 0 0 1 1 1 2 1 2 2 1 2 1 2 2 1 I 
0 I 0 I 1 0 0 1 0 1 1 0 2 1 2 1 I 2 2 I 2 I I 2 
0 0 1 0 1 0 I 0 1 1 1 0 2 2 1 2 1 2 1 2 1 1 1 2 
I I 0 0 1 0 1 0 0 1 1 0 1 1 2 2 1 2 1 2 2 1 1 2 
0 1 1 0 1 1 0 0 0 1 1 0 2 1 1 2 1 1 2 2 2 1 1 2 
0 0 1 1 0 0 1 0 1 1 1 0 2 2 1 1 2 2 1 2 1 1 1 2 
I 1 0 1 0 0 0 0 1 1 I 0 1 1 2 1 2 2 2 2 1 1 1 2 
1 0 0 0 1 1 0 0 1 1 1 0 1 2 2 2 1 1 2 2 1 1 1 2 
1 0 1 0 0 1 0 1 0 1 1 0 1 2 1 2 2 1 2 1 2 1 1 2 
0 0 0 1 0 1 1 1 0 1 1 0 2 2 2 1 2 1 1 1 2 1 1 2 
0 0 1 1 1 0 0 1 0 1 1 0 2 2 1 1 1 2 2 1 2 1 1 2 
0 1 0 0 0 0 1 1 I 1 1 0 2 1 2 2 2 2 1 1 1 1 I 2 
1 1 0 1 1 0 1 1 0 0 0 0 1 1 2 1 1 2 1 I 2 2 2 2 
0 1 1 0 1 1 0 1 1 0 0 0 2 1 1 2 1 1 2 1 1 2 2 2 
1 0 1 1 0 1 1 0 1 0 0 0 1 2 1 1 2 1 I 2 I 2 2 2 
I 1 0 0 I 1 I 0 1 0 0 0 1 I 2 2 1 1 I 2 1 2 2 2 
1 0 I I 1 1 0 0 0 0 1 0 1 2 1 1 1 I 2 2 2 2 1 2 
0 1 1 1 0 0 1 1 0 0 1 0 2 1 1 1 2 2 1 1 2 2 1 2 
0 1 0 1 1 0 1 0 1 0 1 0 2 1 2 1 1 2 1 2 1 2 1 2 
0 0 1 0 1 1 1 1 0 0 1 0 2 2 1 2 1 1 1 I 2 2 1 2 
1 0 0 1 0 0 1 1 I 0 1 0 1 2 2 1 2 2 1 1 1 2 1 2 
0 0 1 1 0 1 0 1 1 0 1 0 2 2 1 1 2 1 2 I 1 2 1 2 
I 1 0 0 0 1 1 0 1 0 1 0 1 1 2 2 2 I 1 2 1 2 1 2 
1 0 0 1 0 1 1 0 0 1 1 0 1 2 2 1 2 1 1 2 2 1 1 2 
0 1 0 0 0 1 0 I 1 1 1 0 2 1 2 2 2 1 2 1 I I 1 2 
1 0 1 0 0 0 0 1 1 1 1 0 1 2 1 2 2 2 2 1 I 1 1 2 
1 I 1 1 0 0 0 0 0 1 1 0 1 1 1 1 2 2 2 2 2 1 1 2 
I 0 0 0 1 0 1 1 0 1 1 0 1 2 2 2 1 2 1 1 2 1 1 2 
0 0 0 1 1 1 0 0 1 1 1 0 2 2 2 1 1 1 2 2 1 1 1 2 
0 1 1 0 0 1 I 0 0 1 1 0 2 1 1 2 2 1 1 2 2 1 1 2 
1 0 1 0 0 1 1 0 1 1 0 0 1 2 I 2 2 1 1 2 1 1 2 2 
0 0 0 0 1 1 1 I 1 1 0 0 2 2 2 2 1 1 1 1 1 1 2 2 
1 1 0 0 I 1 0 I 0 1 0 0 I 1 2 2 1 1 2 1 2 1 2 2 
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0 1 1 1 0 0 1 1 0 1 0 0 

0 0 1 0 1 1 1 1 0 1 0 0 

0 0 1 1 0 1 0 1 1 1 0 0 

I 0 1 1 1 0 0 1 1 0 0 0 

0 1 I 1 0 1 1 1 0 0 0 0 

I 0 1 0 I I 1 1 0 0 0 0 

I I 0 1 0 1 0 1 1 0 0 0 

0 I 1 1 1 0 1 0 1 0 0 0 

0 0 0 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 0 0 0 0 0 0 

1 1 1 0 0 0 1 1 1 0 0 0 

1 1 1 0 0 0 1 1 0 1 0 0 

I 1 0 1 0 1 0 1 0 1 0 0 

0 1 1 0 1 0 0 1 1 1 0 0 

0 1 1 1 0 1 0 0 1 1 0 0 

I 0 I 1 1 0 I 0 0 1 0 0 

0 1 0 1 1 1 1 0 0 1 0 0 

I 0 0 1 1 0 0 1 1 1 0 0 

I 1 1 0 1 0 0 0 1 1 0 0 

I 0 1 1 1 1 0 0 0 1 0 0 

0 1 0 1 1 0 1 0 1 1 0 0 

1 0 0 1 0 0 1 1 1 1 0 0 

I 1 0 0 0 1 1 0 1 1 0 0 

Example 4.2 

Let us consider BIB design v = b = 3, r = k = 1, 
/..2= 0, so that N' of Example 4.1, can be made. Taking 

the images of N' as M' using Zj + z; == 2 (mod 3) for 
all i = 1,2, ... , v treatments. The blocks are given below: 

0 o •I 1 2 
1 0.2 1A'=(~	 ~]
0 21 • 2 • 

The combinatorial arrangements, in particular, 
orthogonal and partially balanced arrays of specified 
strength t are used in the construction of balanced 
symmetrical and asymmetrical confounded factorial 
experiments, multifactorial designs (fractional 
replications) and so on (Rao «1947), (1949)) and Nair 
and Rao (1948)). Partially balanced arrays satisfy the 
same properties as orthogonal arrays when used as 
fractional rep] icated factorial designs in terms of 
estimability of main effects and interactions, but the 

2 1 1 1 2 2 1 1 2 1 2 2
 

2 2 1 2 1 1 1 1 2 1 2 2
 

2 2 1 1 2 1 2 1 1 1 2 2
 

1 2 1 1 1 2 2 1 1 2 2 2
 

2 1 1 1 2 1 1 1 2 2 2 2
 

1 2 1 2 1 1 I 1 2 2 2 2
 

1 1 2 1 2 1 2 1 1 2 2 2
 

2 1 1 1 1 2 1 2 1 2 2 2
 

2 2 2 1 1 1 1 1 I 2 2 2
 

1 1 1 1 1 1 2 2 2 2 2 2
 

1 1 1 2 2 2 1 1 1 2 2 2
 

1 1 1 2 2 2 1 1 2 1 2 2
 

1 1 2 1 2 1 2 1 2 1 2 2
 

2 1 1 2 1 2 2 1 1 1 2 2
 

2 1 1 1 2 1 2 2 1 1 2 2
 

1 2 1 1 1 2 1 2 2 1 2 2
 

2 1 2 1 1 1 1 2 2 1 2 2
 

1 2 2 1 1 2 2 1 1 1 2 2
 

1 1 1 2 1 2 2 2 1 1 2 2
 

1 2 1 1 1 1 2 2 2 1 2 2
 

2 1 2 1 1 2 1 2 1 1 2 2
 

1 2 2 1 2 2 1 1 1 1 2 2
 

1 1 2 2 2 1 1 2 1 1 2 2
 

estimates, of main effects and interactions may have 
different precisions besides being correlated. The 
construction and use ofsuch designs have been indicated 
in Chakravarti «(1956), (1961), (1963)) and extensively 
investigated by Srivastava (1972), Srivastava and 
Anderson (1970) and Srivastava and Chopra «(1971a), 
(1971 b), (1971c), (1973)) in the special case s =2, i.e., S 

has two symbols 0 and 1. 

A catalogue oftwo new designs that can be obtained 
through the PB arrays has been given below: 

* The N' and its images M' are PB arrays of 
strength (2m + 1) with three symbols (0, 1, 2). 
In particular, Example 4.1 is a PB array of 

strength 5 with 3 symbols with index set A3,s 
constructed by author in the present paper. 

2.	 * *The constructed PB array in the present paper 
can be used for conducting intercroping 
experiments when the intercrops are sub-divided 
into various groups based on agronomic 
practices including main crop assuming that 
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some of the interaction of intercrops are 
negligible. We construct design for experiments 
where each plot consists of main crop p and q 
intercrops, such that each of these intercrops is 
selected from a group ofr intercrops following 
Rao and Rao (200 I). 

Now, let us consider an intercropping experiment 
using a main cropp and 9 intercrops where the intercrops 
are partitioned into three groups QI' Q2and Q3with 3 in 
each group viz., Q1 = [1, 2, 3], Q2 = [4, 5, 6] and 
Q3 = [7, 8, 9]. Let us designate the symbols 0,1,2, offirst 
row of PB array with intercrops 1, 2, 3 of QI' second 
row with intercrops 4, 5, 6 of Q

2 
'and third row with 

intercrops 7, 8, 9 of Q3' Considering the column of the 
array as the plots ofthe intercrop experiment in addition 
to the main crop 'p' in each plot. The resulting 
intercropping experiment will consist ofthe following 6 
plots: 

(p, 2, 4, 7), (p, 1, 5, 7), (p; 1, 4, 8) 

(p, 2, 6, 9), (p, 3, 5, 9), (p, 3, 6, 8) 

It is to be noted that this method provides 
intercropping design with one main crop and nine 
intercrops divided into three groups of three intercrops 
each. 

In the context ofan actual example ofintercropping 
experiment, Pandey et al. (2003) have studied the effect 
of maize (Zea mays L.) based intercropping systems on 
maize yield as main crop and six intercrops viz., 
pigeonpea, sesamum, groundnut, blackgram, turmeric 
and forage meth by conducting an experiment during 
the rainy seasons of 1998 and 1999 at the research farm 
of Rajendra Agricultural University, Pusa, Samastipur 
(Bihar). The experiement consisting of6 intercrops with 
one main crop was conducted in randomized complete 
block design with 4 replications. Maize was sown at 
75 cm row spacing in sole as well as in intercropping on 
26 and 22 June, respectively, in the first and second year 
of experimentation. One row of pigeonpea at distance 
of75 cm and 2 rows ofother intercrops at 30 cm distance 
were accommodated between 2 rows ofmaize. The intra­
row spacing of 30, 30, 10, 15, 10 and 15 cm were 
maintained by thinning for 6 intercrops. 

• New arrays 
•• New designs for conducting intercropping experiments 

The PB array mentioned in Example 4.2 can be used 
for intercropping experiment for research purposes 
including three more intercrops viz., greengram, 
pearlmillet and soybean in addition to the above 
intercrops. 

ACKNOWLEDGEMENTS 

The author is indebted to the editor and referee for giving 
the critical and valuable comments three times that have 
greatly helped in re-structuring the paper in the present form. 
The author is also grateful to Dr. M.L. Chandak, Ex-Professor 
& Head, Department of Mathematics and Statistics for his 
help during the preparation of the paper. 

REFERENCES 

Bose, R.C. and Srivastava, J.N. (1964). Analysis of irregular 
factorial fractions. Sankhya, A26, 117-144. 

Carmichael, R.D. (1956). Fractional replication in 
asymmetrical factorial designs and partially balanced 
arrays.Sankhya, 17,143-164. 

Chakravarti, I.M. (1956). Fractional replication in 
asymmetrical factorial designs and partially balanced 
arrays.Sankhya, 17,143-164. 

Chakravarti, I.M. (1961). On some methods of construction 
ofpartially balanced arrays. Ann. Math. Statist., 32, 1181­
1185. 

Chakravarti, I.M. (1963). Orthogonal and partially balanced 
arrays and their applications in design of experiments. 
Metrika, 7, 231-243. 

Dey, A., Kulsbreshtha, A.C. and Saba, G.M. (1972). Three 
symbol partially balanced arrays. Ann. Inst. Stat. Math., 
24(3), 525-528. 

Kishan, K. and Tyagi, B.N. (1973). Recent development in 
India in the construction of confounded asymmetrical 
factorial designs. In: A Survey o/Combinatorial Theory. 
J.N. Srivastava et al., eds., North Holland Publishing 
Company, 313-321. 

Nair, K.R. and Rao, C.R. (1942). Incomplete block designs 
for experiments involving several groups ofvarieties. Sci. 
Cult., 7,625. 

Nair, K.R. and Rao, C.R. (1948). Confounding in 
asymmetrical factorial experiments. J. Roy. Statist. Soc., 
RIO, 109-131. 



66 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

Nigam, A.K. (1985). Main effect orthogonal plans from 
regular group divisible designs. Sankhya, B47(3), 355­
371. 

Pandey, LB., Bharati, V. and Mishra, S.S. (2003). Effect of 
maize (Zea mays) based intercropping systems on maize 
yield and associated weeds under rainfed condition. 
Indian Journal ofAgronomy, 48(1), 30-33. 

Rafter, I.A. (1971). Contributions to the theory and 
construction of partially balanced arrays. Ph.D. 
dissertation, Michigan State University. 

Rafter, I.A. and Seiden, E. (1974). Contributions to the theory 
and construction of balanced arrays. Ann. Statist., 2(6), 
1256-1273. 

Rao, C.R. (1947). Factorial experiments derivable from 
combinatorial arrangements ofarrays. J. Roy. Statist. Soc. 
Suppl., 9, 128-139. 

Rao, C.R. (1949); On a class of arrangements. Edinburgh 
Math. Soc., 8, 1l9-125. 

Rao, C.R. (1973). Some combinatorial problems of arrays 
and applications of design ofexperiments. In : A Survey 
of Combinatorial Theory, I.N. SrivaS'tava et al., eds., 
North Holland Publishing Company, 349-389. 

Rao, D.R. and Rao, GN. (2001). Design and analysis when 
the intercrops are in different classes. J. Ind. Soc. Agril. 
Statist., 54(2), 236-243. 

Shrama, H.L. and Chandak, M.L. (1999). A generalization of 
a theorem of Sprott on tactical configurations. 
The Aligarh J. ofStatistics, 19,43-50. 

Sinha, K. and Nigam, A.K. (1983). Balanced arrays and main 
effect plans from regular group divisible designs. J. Stat. 
Plann. Infer., 8, 223-229. 

Sprott, D.A. (1955). Balanced incomplete block designs and 
tactical configurations. Ann. Math. Statist., 26, 752-758. 

Srivastava, I.N. (1972). Some general existence conditions 
for balanced arrays of strength t and 2 symbols. J. 
Combinatorial Theory, 12, 198-206. 

Srivastava, I.N. and Anderson, D.A. (1970). Optimal 
fractional factorial plans for main effects orthogonal to 
two-factor interactions: 2m series. J. Am. Statist. Assoc., 
65, 828-843. 

Srivastava, LN. and Chopra, D.V. (197Ia). On the 
characteristics roots of the information matrix for 
balanced fractional 2m factorial designs of resolution V, 
with applications. Ann. Math. Statist., 42, 722-736. 

Srivastava, IN. and Chopra, D.V. (l971b). Some new results 
in the combinatorial theory ofbalanced arrays ofstrength 
four with 2 $ ~2 $ 6. A.R.L. Technical Report, 71-72. 

Srivastava, J.N. and Chopra, D.V. (l971c). Optimal balanced 
2m factorial designs of resolution V, m $ 6. 
Technometrics, 13,257-269. 

Srivastava, I.N. and Chopra, D.V. (1973). Balanced arrays 
and orthogonal arrays. In: A Survey of Combinatorial 
Theory, I.N. Srivastava, et al., eds., North Holland 
Publishing Company, 411-428. 


