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SUMMARY 

Robustness ofsome optimal block designs for triallel crossing plans against interchange ofa pair 
of crosses has been dealt with using connectedness and efficiency criteria. The interchanged crosses 
may have no line in common, one line in common or two lines in common with the substituted cross. 
Each of these aspects has been investigated separately. 
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1. INTRODUCTION 

In plant breeding experiments, triallel crosses form 
an important class ofmating designs, which are used for 
studying the genetic properties of a set of inbred lines. 
When reciprocal crosses are excluded,p inbred lines give 

rise to nc =3 PC3 possible crosses of the type 

(iJ xi2)xi3; i1 :t:i2 *"i3, (il,i2,i3,=1,2, ... ,p) {see 
e.g. Hinkelmann (1965)}. The mating designs for triallel 
crosses introduced by Rawlings and Cockerham (1962a) 
are generally conducted in completely randomized 
designs (CRD), or in randomized complete block (RCB) 
designs as environmental designs involving n

c 
crosses. 

As p increases, the number of triallel crosses, nc ' 

increases manifold. As a consequence more resources 
are required for conducting experiments. Furthermore, 
accommodation of large number of crosses in a RCB 
design usually results into large intra block variances. A 
sample ofthe complete triallel crosses, i.e., partial triallel 
crosses (P.T.C.) introduced by Hinkelmann (1965) and 
subsequently studied by Arora and Aggarwal [(1984), 
(1989)], Ceranka et al. (1990) and Ponnuswamy and 
Srinivasan (1991), etc. may be used in such situations. 

Recently Das and Gupta (1997), following the 
approach of Gupta and Kageyama (1994) and Dey and 
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Midha (1996) in case ofdiallel experiments, constructed 
block designs starting with p lines rather than nc crosses 
that are universally optimal in D(p, b, k). D (p, b, k) 
denotes the class of connected block designs for triallel 
crosses in p lines with b blocks each of size k; the total 
number of experimental units, n, being less than nco For 
construction ofthese designs, Das and Gupta (1997) used 
nested balanced block designs with sub-block size 3. 

The optimal design theory developed in the above 
investigations assumes absence of disturbances like 
missing observations, outlying observations or 
inadequacy of assumed model, etc. These assumptions 
may, however, be violated in real life; thus rendering 
even an optimal design poor. Consequently, the design 
that is efficient for estimating various treatment contrasts 
may no longer remain efficient after it undergoes a 
disturbance. Interchange ofa pair of treatments (crosses) 
is one such aberration that needs attention during the 
execution of an experiment. Interchange of a pair of 
crosses is said to have occurred, iftwo experimental units 
belonging to different blocks receive the crosses 
originally designated for the other. Such discrepancy may 
occur due to the following reasons 

(i)	 due to interchange of tags or labels attached to 
the seed packets of different crosses that could 
not be detected before the application ofcrosses 
to the experimental units, and 



84 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

(ii)	 human errors in the preparation of field layout 
plan, where each of a pair of blocks 
accommodates a cross originally designated for 
the other. 

These types of disturbances were first reported by 
Pearce (1948) in a randomized block design set up. These 
disturbances have been termed as mechanical errors by 
Gomez and Gomez (1976) whereas Pearce (1983) called 
these as errors in the application of the treatments. The 
properties of the original design may be affected in 
presence ofsuch discrepancy. Therefore, there is a need 
to address the problem by knowing the designs that are 
insensitive to such types of disturbances. Batra 
et al. (1997) studied the robustness of block designs 
against interchange of a pair of treatments. Recently, 
Panda et al. (200 1) investigated the robustness ofoptimal 
block designs for triallel cross experiments against 
exchange of a cross. Here, an attempt has been made to 
investigate the robustness of optimal block designs for 
triallel crosses against interchange of a pair of crosses. 

In Section 2, preliminaries of block designs for 
triallel crosses have been discussed. The interchanged 
crosses may have no line in common, one line or two 
lines in common with the substituted cross. Each ofthese 
cases has been investigated separately in Sections 3, 4 
and 5, respectively. In each situation, a relationship 
between the information matrix of the resulting design 
and that ofthe original design has been established. The 
eigenvalues of the information matrix of the resulting 
design have been obtained when the original design is 
variance balanced with respect to line effects. Robustness 
has been investigated using the connectedness criterion 
{see e.g., Ghosh (1979)} and the efficiency criterion {see 
e.g., John (1976)}. 

2. EXPERIMENTAL SET-UP 

Let d be a block design with b blocks each ofsize k 
for a triallel cross experiment in p inbred lines. Evidently, 
n = bk is the total number of observations. In a triallel 
cross experiment the genotypic effect of the hybrid 
consists of single-line effects, two-line specific effects 
and three-line specific effects. We assume here that for 
a partial triallel cross experiment {in which every line 
appears as half parent an equal number of times, say rH 

and every line appears as full parent an equal number of 
times, say rF' in a single set of crosses and each of the 

crosses (il x ;2 ) x;3 appears at most once} the two- and 

three- line specific effects are of importance. The line 
effects, still, are of two types viz. effects as half parent 
and effects as full parent, i.e., the ordering of lines in a 
triallel cross is important. Some plant breeders argue that 
these ordering effects can also be averaged over line 
effects. Hence, in the present investigation, similar to 
Das and Gupta (1997), we consider the situations where 
the ordering oflines in a triallel cross is not of importance 
and consider the following linear additive fixed effect 
model for the observations 

(2.1 ) 

where Y is n x 1 vector of observed responses, ~ is 

general mean effect, g and ~ are the column vectors of 
p line and b block effects, respectively. In is the vector 
of n unities, l:i.~ is the design matrix of observation vs 
line effects i.e. the (ex, ~)lh element in l:i.~ is 1, if ex1h 

observation pertains to ~lh line and is zero, otherwise. 
l:i.; is the design matrix of observation vs block effects 
. h ( A)lh I . 1 'f lh b .A"I.e., t e ex, I-' e ement In L.12 IS ,1 ex 0 servatlOn 
pertains to ~lh block and is zero, otherwise. Also, E is 
the vector ofrandom errors which follows N 

n'
(0 cr2I 

n 
). 

The information matrix for estimating linear 
functions of line effects, using d, under model (2.1) is 

(2.2) 

where Gd = ~l~ = «gdit» with gdii =Sdi' and for; '" i', 
gdii' being the number of crosses in d in which; and ;' 
appear together and Sdi is the number of replications for 
the l'lh line. Nd = l:i.1l:i.; = «ndij»' ndij being the number 
oftimes the line; occurs in block} ofd and K d = l:i. 2 l:i.; 
is the diagonal matrix of block sizes. The design d will 
be connected if and only if rank (Cd) = P-1. 
Henceforth, we shall deal with connected designs only. 
Furthermore, Das and Gupta (1997) gave several results 
on the optimality of the designs considered in 
D (p, b, k). For better understanding, we state two of 
these theorems in Appendix. 

Das and Gupta (1997) have obtained optimal 
designs for triallel crosses using nested balanced block 
designs with sub block size 3. Consider a nested balanced 
block design d with parameters v = p, b

l
, b • kJ' k = 3. 

n z z 
Ifwe now identify the treatments ofd

n 
as lines ofa triallel 

cross experiment and perform crosses among lines 
appearing in the same sub-block of d , we get a block 

n 
design d* for a triallel experiment involvingp lines with 
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n = b2 crosses arranged in b = b I blocks, each of size 
k =kl /3. The information matrix ofd* is 

Cd* =(p _1)-1 k-lb {3k(k -1- 2x) + p x(x + I)} 

[I p	 - (1/p)lpl~] (2.3) 

Thus, from (2.3) and Theorem 2, d* E D (P, b, k), 
constructed using a nested balanced block design with 
parametersp. b I = b. b2 = bk. k l = 3k. k2 = 3 is universally 
optimal in D (p. b, k). Now, we discuss the robustness of 
optimal triallel crosses in the following sections. 

3. ROBUSTNESS AGAINST INTERCHANGE OF 
DISTINCT CROSSES 

Without loss ofgenerality, we assume that the cross 
involving lines 1, 2 and 3 in Block-l has been 
interchanged by the cross involving lines 4, 5 and 6 in 
Block-2 ofthe design d. We denote the resulting design 
after interchange of the crosses by d The incidencer 
matrix of d in the partition form can be written as 

(3.1) 

where 

"j is the 6 x 1 vector corresponding to affected lines vs 

lh affected block, (i = 1, 2) 

u
j 

is the (p ­ 6) x 1 vector corresponding to unaffected 
lines vs l"th affected block 

Np	 is the 6 x (b - 2) matrix corresponding to affected 
lines vs unaffected blocks 

N
u	 

is the (p - 6) x (b - 2) matrix corresponding to 
unaffected lines vs unaffected blocks 

After interchange of distinct crosses, the resulting 
incidence matrix (NI) will be 

011 02/ N p]
N/ = 

[	 (3.2)
UI Uz Nu 

where, nIl =(nl -el +ez), and "2/ =(oz +el -ez) 
with 

el =[1 1 1 0 0 0]' 

and ez = [0 0 0 1 1 1]' 

As the cross involving lines 1, 2 and 3 is 
interchanged with the cross involving lines 4, 5 and 6, 

their incidence is one in their respective blocks. However, 
the lines belonging to the substituted cross may either 
be present or absent in the blocks where substitution takes 
place. Thus, "I and "2 can be expressed as 

01 =[1 1 1 XI Xz x3]" and 

0z =[x4 Xs x6 1 1 1]' (3.3) 

where X/~ (i = 1,2, ... ,6) takes values 1 or 0 depending 
upon the presence or absence ofthe corresponding line. 
The resulting information matrix (CI) ofdl can be written 
as (details are given in the Appendix) 

Cj = C
d 

- Al	 (3.4) 

It can be easily seen that Al is symmetric with row 
and column sum zero and Aj commutes with information 
matrix Cd ofa variance balanced block design for triallel 
crosses. Therefore, the eigenvalues of resulting 
information matrix (C/) can be obtained by subtracting 
the eigenvalues of Al from that of Cd' Thus, the 
eigenvalues ofC

I 
are 

(i) 80 =0 with multiplicity 1 

(ii) = J..l with multiplicity (p - 3)811 

(iii) 82/ =(J..l- 81) and 

(iv) 831 = (J..l- 8z)	 (3.5) 

Here, J..l =3b(k -1)/(p -1) is the unique non-zero 
eigenvalue ofCa For design dj to be connected, rank(CI) 
should be p - 1. In other words J..l *8i , i = 1, 2. It is 
difficult to obtain the conditions for which J..l *8i in 
general. Hence, we shall study the particular designs. 
Furthermore, for a connected design, the efficiency of 
the resulting design (d[) relative to the original design 
(d) is seen to be 

E= (p-l)J..l-
1 

(3.6)[ (p - 3)81/ + 8i; + 8il ] 

All the designs can be classified into 10 distinct 
cases depending upon the values ofx'j s, (i = 1, ... ,6). 
Rest of the cases are identical with these 10 cases in the 
sense that the other cases reduce to these by simply 
t'enumbering the lines and the blocks. The ten distinct 
cases and the corresponding eigenvalues ofAl are given 
in Table 3.1. 

Here, we have considered, the symmetric BIB 
designs for obtaining the optimal block designs for triallel 
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Table 3.1. Distinct cases and the eigenvalues of AJ 

Case Values of Eigenvalues 

No. XI a•. Ox~	 2 

o	 o o 0 o 

II 0	 o o 0 o 

III	 0 o o 0 

IV	 0 o o 

V	 0 o o o 

VI	 0 o o 

VII	 0 o 

VIII	 o o 

IX	 o 

___X 

crosses so that the value of a and thereby the non-zero 
eigenvalues ofA[ can easily be obtained. 

The design d[ becomes disconnected when 
ai' (i =1,2) equals I..t, the non-zero eigenvalue of Cd" 
As an illustration, we consider the following. 

Example 3.1: Consider an experimental situation 
in which 24 distinct triallel crosses involving 9 lines are 
arranged in 12 blocks each of size 2. The design with 
block contents is 

Block-l (1 x 2 x 3), (4 x 5 x 6) 

Block-2 (1 x 2 x 3), (7 x 8 x 9) 

Block-3 (4 x 5 x 6), (7 x 8 x 9) 

Block-4 (1 x 4 x 7), (2 x 5 x 8) 

Block-5 (l x 4 x 7), (3 x 6 x 9) 

Block-6 (2 x 5 x 8), (3 x 6 x 9) 

Block-7 (1 x 6 x 8), (2 x 4 x 9) 

Block-8 (1 x 6 x 8),(3 x 5 x 7) 

Block-9 (2 x 4 x 9), (3 x 5 x 7) 

Block-10 (1 x 5 x 9), (2 x 6 x 7) 

Block-II (1 x 5 x 9), (3 x 4 x 8) 

Block-12 (2 x 6 x 7), (3 x 4 x 8) 

o	 ±~(36k -16 -12a)/k 

[1±~(36k -16 -12a)J/k 

[2±~(36k -12 -12a)J/k 

[3±~(36k -12a)J/k 

[2 ±~(36k -12a- 4)J/k 

[3 ±~(36k -12a)J/k 

[4 ±~(36k + 12 -12a)J/k 

[4 ±~(36k - 12a - 20)J/k 

[5 ±~(36k -12a + 19)J/k 

[ 6 ±~(36k - 12a + 36)JIL.../k _ 

Now, in this design, if the cross (l x 2 x 3) in 
Block-l	 gets interchanged with cross (7 x 8 x 9) 
in Block-2, it is the Case IV in Table 3.1. For this case, 

OJ = [1	 1 1 0 0 Or and 

02 = [1	 1 1 1 1 1r 
Further, it can be easily seen that the unique non­

zero eigenvalues of infonnation matrix Cd is 4.5 with 
multiplicity 8. The non-zero eigenvalues of A[ are 4.5 
and -1.5 respectively. Using (3.5), it can be easily seen 
that two ofthe eigenvalues ofC[ are zero and the design 
becomes disconnected. 

Similarly, when the cross (4 x 5 x 6) in Block-l 
gets interchanged with cross (7 x 8 x 9) in Block-2, then, 
it is the Case I given in Table 3.1. Similarly one can 
observe other cases. 

The general condition for which d[ remains 
connected cannot be obtained due to uncertainty in the 
number of observations, n « nJ Therefore, the 
connectedness has been studied for particular designs 
obtainable from the methods of construction given by 
Das and Gupta (1997). The designs with p::; 30 are 
given in Table A 1 (Appendix). Efficiencies (E's) of d

1 

relative to d for connected designs in different cases have 
been computed using (3.6). It is seen that all the designs 
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except D , D and D have E ~ 0.9500 and thus are 
3 4 I2 

robust from the connectedness and efficiency criterion. 
The design D 

3 
is disconnected in cases IV and VI. The 

value ofE is 0.8346 in Case-X for design D 4 and 0.7906 
in Case-X for design D I2 indicating that these designs 
are not robust. 

4. INTERCHANGE OF CROSSES WITH ONE 
LINE IN COMMON 

Without loss ofgenerality, we assume that the cross 
involving 1, 2 and 5 in Block-l has been interchanged 
with the cross involving lines 3, 4 and 5 in Block-2, so 
that line 5 is common in both the crosses. 

Here, like (3.1), the incidence matrix can be written 
as 

(4.1) 

"j is the 5 x 1 vector corresponding to affected lines 
vs ,1h affected block U= 1, 2) 

u
j 

is the (p - 5) x 1 vector corresponding to unaffected 
lines vs ph affected block 

N is the 5 x (b - 2) matrix corresponding to affected 
p 

lines vs unaffected blocks 

N)s the (p - 5) x (b - 2) matrix corresponding to 
unaffected lines vs unaffected blocks 

After interchange of a pair of crosses having one 
line in common the resulting incidence matrix becomes 

(4.2) 

where nl/ =(n/ - el + e2)' and n21 =(n2 - e2 + e1) 

with el =[1 1 0 0 1r, and e2 =[0 0 1 1 1]' 

Let n1 =[1 1 XI x2 1]' 

and n2 =[X3 x4 1 1 Ir 

where Xj' U = 1, 2, 3, 4) takes values one or zero 
depending on the presence or absence of the line 3, 4 in 
Block-l and lines 1, 2 in Block-2, respectively. 
Substitution ofn; and njf'U = 1,2) in (4.2) yields (A2.5) 
with values of X, Y, Z and S given at (A2.8) in the 
Appendix. 

All the designs can now be classified into 6 distinct 
cases depending upon the values ofXi (0, I), U= 1 ,2, 3, 
4). These cases along with the corresponding non-zero 
eigenvalues ofAI are listed in Table 4.1. 

Example 4.1: As an illustration, we again consider 
Example 3.1 and suppose that the cross (l x 2 x 3) in 
Block-l gets interchanged with cross (1 x 4 x 7) in Block­
4. It is the Case IV given in Table 4.1. For this case 

nl = [1 1 1 0 lr and 

n2 =[1 0 1 1 lr 

It can be easily seen that the unique non-zero 
eigenvalues of information' matrix Cd in this case is 4.5 
with multiplicity 8. The non-zero eigenvalues of Al are 
3 and -1 respectively. Furthermore, using (3.6), it can 
be easily seen that the efficiency ofthis design is 0.8148. 
Similarly one can observe other cases. 

Table 4.1. Distinct cases and the non-zero eigenvlues of Al 

Case Values of Eigenvalues 

No. XI x2 81.82 

II 

III 

IV 

V 

VI 

0 

0 

0 

0 

0 

0 

0 

o 

o 

o 

o 

o 

±[ ~(24k - 8a+ 8)J/k 
[1 ±~(24k - 8a- 8)J/k 
[2 ±~(24k - 8a)J/k 
[2 ±~(24k - 8a)J/k 
[3 ±~(24k - 8a+ 8)J/k 
[4 ±~(24k - 8a + 16)J/k 
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Here also connectedness and efficiencies of d
l 

relative to d have been computed for optimal block 
designs for triallel crosses that are symmetric with respect 
to the lines. It is seen that all the designs given in 
Table Al except D D2, D3, D4, DB' and D I6 have 

" E ~ 0.9500 and as such are robust. The design D] is 

disconnected in Case V. For the design D2, E = 0.5000 
in Case VI, for D3, E = 0.2424 in Case-V, for D4' 

E = 0.9223 in Case VI, for DII' E = 0.7246 in Case IV, 
and for D16, E = 0.7391 in Case IV implying that these 
designs are not robust. 

S. INTERCHANGE OF CROSSES WITH 
TWO LINES IN COMMON 

Without loss ofgenerality, we assume that the cross 
involving lines 1, 3 and 4 in Block-l has been 
interchanged with the cross involving lines 2, 3 and 4 in 
Block-2, so that the lines 3 and 4 are common in both 
the crosses. Here, 0i' ui' (i = 1,2), N p and N. ofNd in 
(3.1) are of order 4 x 1, (p - 4) x 1,4 x (b - 2) and 
(p - 4) x (b - 2), respectively having same meaning. 

After interchange of a pair of crosses having two 
lines in common o'I'U = 1, 2) will be 

01/ = 01 - e l + e2, and 02/ = 02 + e j - e2 with 

el=[1 a 1 11, ande2 =[0 1 1 11 (5.1) 

Let 01 =[1 XI 1 11 and 02 =[X2 1 11 

(5.2) 

wh~re Xi' U= 1, 2) takes values 1 or 0 depending on the 
presence or absence of the line 2 and 1 in Block-l and 
Block-2, respectively. Substitution ofoi, and nil' (i = 1, 2) 
in (4.2) yields (A2.5) with values ofX, Y, Z and S given 
at (A2.1 0) in the Appendix. 

Table 5.1. Distinct cases and eigenvalues of Al 

Case Values of Eigenvalues 

No. ai' a2 

o	 0 ± ~(12k - 4 - 4a.)/k 

(12k - 2 - 40.)
II o	 +----­

k 

Here, all designs can be classified into 3 distinct 
cases depending upon the values Xi' (i = 1, 2). These 
cases along with the non-zero eigenvalues are given in 
Table 5.1. 

Example 5.1: As an illustration, we consider an 
experimental situation in which 14 distinct triallel crosses 
involving 7 lines are arranged in 7 blocks each ofsize 2. 
The design with block contents is 

Block-l (2 x 3 x 5), (4 x 6 x 7) 
Block-2 (3 x 4 x 6), (1 x 5 x 7) 
Block-3 (4 x 5 x 7), (1 x 2 x 6) 

Block-4 (1 x 5 x 6), (2 x 3 x 7) 
Block-5 (2 x 6 x 7), (1 x 3 x 4) 

Block-6 (1 x 3 x 7), (2 x 4 x 5) 
Block-7 (1 x 2 x 4), (3 x 5 x 6) 

Now, if in this design, the cross (4 x 6 x 7) in 
Block-l gets interchanged with cross (2 x 6 x 7) in 
Block-5, then it is the Case III given io Table 5. I. For 
this case 

01=[111 11,and02 =[1 1 1 11 

It can be easily seen that the unique non-zero 
eigenvalues of information matrix Cd is 3.5 with 
multiplicity 6. The non-zero eigenvalues of AI are 

1± J3. From (3.6), it can be easily seen that the 

efficiency of this design is 0.909 I . 

Connectedness and efficiencies ofthe designs given 
in Table A1have been studied as in earlier sections. The 
minimum value of E for the designs D

I
, DB and D 

I6 
is 

attained at 0.9091, 0.6667 and 0.6393, respectively in 
Case III. Rest of the designs for which interchange is 

possible have E ~ 0.9500 and are, therefore, robust as 

judged from the connectedness and efficiency criterion. 

6. CONCLUSIONS 

It is clear from the above that all the designs given 
in Table Al (Appendix) are robust against interchange 
ofa cross exceptthe designsD

1
, D

2
, D3, D4, DIP D I2 and 

D 16• The designs D
1
, D

2
, D

3 
become disconnected in some 

cases and D4 , D u ' D I2 and D I6 have relative efficiencies 
less than 0.9500 in one or more cases. 
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APPENDIX 

AI. Some results on optimality of designs in D (p, b, k). 

Theorem 1. {Theorem 2.1, Das and Gupta (1997)} 

for dE D(p, b, k) 

tr(Cd ) ::,:;k-lb (3k(k -1- 2x) + px (x + I)} 

where x = [3k/p], [.] being the integer valued function and 
tr(A) denotes the trace of the matrix A. 

Corollary 1. {Corollary 2.1, Das and Gupta (1999)}. For 

dE D(p, b, k), if 3k/P ~ 1 (i.e., x ~ 1) then 

tr(Cd ) :s; k-1b{3k(k -1 - 2x) + px (x + I)} 

:s; 3bk (p - 3)/p :s; 3b(k -1), and 

if 3k/p :s; 1(i.e. x = 0) then tr(Cd):S; 3kb (k -1) 

Again, if ndij = 0 or 1 for all i,j, then tr (Cd) = 3b(k - 1)
 

Theorem 2. {Theorem 2.2, Das and Gupta (1997)}
 

Let d' E D(p, b, k), be a block design for triallel crosses
 
satisfying
 

(i) tr(Cd.)=k-'b {3k(k-I-2x)+px(x+ I)},and 

(ii) Cd> is completely symmetric 

Then d* is universally optimal in a relevant class ofcompeting 
designs in D (p, b, k) and, in particular, is A-optimal. 

A2. Expressing the information matrix, CJ' of d, as 
C,=Cd-A, 

A2 (i) When the interchanged crosses are distinct 

In this case, the diagonal matrix of block sizes (K ) in a 
d

partition form can be written as 

(A2.1) 
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1 1 1 Xl X2 x3 

1 1 1 Xl X2 x3 

1 1 1 Xl X2 X3 
y= 

Xl Xl Xl -(2xl +1) -(Xl +~ +1) -(Xl +X3 +1) 

~ x2 ~ -(Xl +x2 +1) -(2x2 +1) -(x2 +x3 +1) 

x3 x3 X3 -(Xl +X3 +1) -(x2+x3+1) -(2x3+1) 

The eigenvalues of A
J 

have been obtained by solving the 
equation 

(A2.6) 

Solution of (A2.6) yields, the non-zero eigenvalues of A
J 

as 

81, 82 = k -1 [(Xl +X2 + X3+ X4+Xs + X6 ) 

±~(Xl+X2+X3+X4+XS+X6)2+c] (A2.7) 

(A2.3) 
where 

Further, substitution of (A2.3) in (A2.2) yields 
c = 6Q + (XI + x2 + X + x 5x3) (2x x x )+ x4 s 6 - 1

- 2 - 3

N, KdlN; = NdKdlN~ + A, -6 (XI - x2) (x2 - x3) -3 (XI - x6) (x4 + X + x6)s
The resulting infonnation matrix (CJ) of dJ can be written as + (Xl + x + x ) (3x - 2x - x )2 3 l s 6

(A2A) - (xs - x ) (4x
4 
+ 4x + lOx6)

6 s
(x4 - + X - ), andHere, AI can be expressed as - X S) (Xl + X 2 + X 3 s+ X6 5x4

Q= u') u l + U'2 u2 - 2u')u2 with 
(A2.5) 

U'I U) =3k-3-x4 -xs-x6, U'2U2 =3k-3-x l -x2 -x) 

where	 u')-1I = a -x) -x -x) -x -xs-x2 2 4 6 

x =[02(e; - e;) + (el - e2)0;,]	 a being the number of common lines between the affected 
blocks. 

y =[01 (e; - e;) - (el - e2)0;tl 
A2(ii). When the interchanged crosses have one line in 

S=(U2 -ul)(e; -e;) common 

Z =O(p-6)x(p-6)' the null matrix 

Substituting the values of ° 1,°2 ,°11 and 02/ from (3.2) and	 2x3 +1 x3 +x4 +1 -x3 -x3 1 

U1n'l) = U) n'l - ul(e'l - e'2)
 

U2n'21 = U2n'2 + u2(e'l - e'2)
 

(3.3) in (A2.2), we get 

2x4 +1 x4 +xs +1 x4 +x6 +1 -x4 -x4 -x4 
x4 +XS +1 2xs +1 Xs +x6 +1 -xs -xs -xs 

X= 
x4 +x6 +1 

-x4 

Xs +x6 +1 

-xs 

2x6 +1 

-x6 

-x6 

-1 

-x6 

-1 

-x6 
-1 

-X4 -xs -x6 -1 -1 -1 

-x4 -xs -x6 -1 -1 -1 

and 

x3 +x4 +1 2x4 +1 -x4 -x4 1 
Here, X = -x3 -x4 -1 -1 -1 

-x3 -x4 -1 -1 -1 
-1 -1 0 

1 Xl x2 1 
1 Xl X2 I 

and y = XI Xl -(2xl +1) -(Xl +X2+1) -1 

x2 x2 -(XI +x2+1) -(2x2 +1) -1 

-1 -1 0 
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S=(U2 -u\)(e; -e;), and Z=0(p-5)x(p-5) (A2.8) 

Solution of IAl - 8 I 1=0 gives the nonl-zero eigenvalues of 

AI as 

81, 82 = [(Xl + X2 + X3 + X4) ± J(XI + X2+ X3 + x4)2 + C ]/k 
(A2.9) 

with C = 4Q + (XI - x2) (XI + x3 + x4 - 3x2) +2 (x, - x) 
(x, + x2 - x3 - x4) - (x3 - x4) (XI + x2 + x4 - 3x3), and 
Q = U'IUI + U'2 u2 - 2u',u2 

A2 (iii). When the interchanged crosses have two lines in 
common 

Here, X, Y, Sand Z of AI in (A2.5) are 

x2 1
[2X' +1 -1 -1X = x2
 

1 -1 0
 lnd 
1 -1 0 

-2xl -1 -1 
Y:= [~I 

Xl 1 

1 -1 0 ~]1 -1 0 

S = (u2- u,) (e'l - e'2)' and Z = 0(P_4)' (p-4) (A2.10) 

Solution of IAl - 811:= 0, gives the non-zero eigenvalues of 

AI as 

8 8 := (xI + x2) + (2x~ + 2xi) + 2Q 
(A2.H)I' 2 k ­ k2 

where Q:= (6k - 2 + XI + x2 - 2a.)/k 

A3. Some variance balanced block designs for triallel 

crosses with p ~ 30 

Table AI. Variance balanced block designs for triallel 

crosses for p ~ 30 obtainable from Oas and Gupta (1997) 

Oesign Parameters Source 

p b k 

01 7 7 2 SI-F4 

02 9 4 3 SI-FI 

03 9 12 2 SI-F3 

04 10 10 3 SI.P5(i) 

05 10 40 3 SI·F2 

06 13 13 4 SI·F4 

07 13 52 3 SI-F2 

08 15 35 4 SI-F3 

09 15 7 5 SI·Fl 

010 16 16 5 SI-PI3 

011 16 112 5 SI-F2 

012 19 19 3 SI-P6 

013 19 19 6 SI-F4 

014 19 76 3 SI-F2 

015 21 70 3 SI-F3 

016 21 70 4 SI-F3 

017 21 70- 6 SI-F3 

018 21 10 7 SI-Fl 

019 25 100 3 SI-F2 

020 25 25 8 SI-F4 

021 27 117 8 SI-F3 

022 27 13 9 SI-FI 

S1: Oas and Gupta (1997); F# : Family # of Oesigns 
P : Table 3 ofPreece [1983] 


