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SUMMARY 

Bayesian using GIBBS sampling (BUGS) algorithm to obtain numerical 
estimates of parameters of posterior distribution and variance components 
along with heritability (h2

) under 2-way nested random model has been used. 
Using Monte Carlo simulation, a comparison is made between the heritability 
estimates obtained under BUGS approach and traditional approaches like 
ANOVA. ML, REML for different family structures. The Bayesian approach 
is seen to be superior to traditional approaches for estimation of heritability 
under 2-way nested model. 

Key words: Heritability, 2-way nested classification, BUGS, ANOVA. 
ML,REML. 

1. Introduction 

Heritability (hl) is one of the most important genetic parameter, which 
measures the genetic variability, caused by differences in the genetic makeup of 
the individuals, out of the total variability existing in the population. Information 
on this parameter is a prerequisite to the planning of breeding programmes for 
plant and animal improvement. Such information ca,n be obtained through sib 
analysis as a ratio of estimates of genetic variance to the total variance. Quite 
often in species like Poultry, Pig, Sheep and Goats, where a number of sires are 
mated to a set of dams chosen at random, produce several progeny. The data 
obtained from these progeny are nested first according to dams and then sires 
that leads to 2-way classification. While analyzing such classified data, 
frequently the estimates of heritability tum out to be negative. Thus to ensure 
that the estimates of variance components are a1wa~s positive, an empirical 
procedure for obtaining non-negative estimate of h using BUGS has been 
explored. Further, a comparison is made between the estimates obtained under 
BUGS and traditional approaches through Monte Carlo simUlation. 
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2. Model 

The 2-way nested random linear model is given by 

Yij =Si +dij + eijk. i =1.2, ...• s; j =1.2•...• d; k = 1,2, ...• n 

which can be written in matrix notation as 

Y=(ls ®ld ®In)S+(ls ®Id ®In)D+(ls ®Id ®In)e (2.1) 

where. Y is a vector (sdn x 1) of the observations on the kth (k = 1. 2, "'. n) 
progeny of jth (j = 1. 2.... , d) dam mated with ith sire (i = 1. 2..... s). 8 is a 

vector (s x 1) of sire effect. E[8] =~ Is. E[SS'] = a;Is' D is a vector (sd x 1) of 

effect of jth dam mated with ith sire. E[D] = 0, E[DD'] =a~ Isd• e is the random 

term with E[e] = 0, E[ee'] =a:Isdn . Hence. the variance of Y is given by 

V = var (Y) =V= (Is ® Jd ® Jn)a; + (Is ® Id ® Jn)a~ + (Is ® Id ® In )a: 

In. In and I n are n x 1 column vector of l·s. n x n identity matrix and n x n 

matrix of l's respectively. a;. a~. a: and n are scalars (>0). The estimate of 

heritability from sire component and (sire + dam) combined components can be 
obtained as a function of intra-class correlation coefficients 'tl' and 't2' given by 
Fisher (1950) as 

4 ~2 

h2 = as (2.2) 
s &2 + &2 + &2 

s d e 

and 

(2.3) 

The estimate of variance components due to sire effect (&;). dam effect 

(&~) and random term (&:) can be estimated by BUGS or traditional 

approaches. 

3. Heritability Estimation by BUGS 

Bayesian analysis of data under model (2.1) involves treating all of the 
parameters. including the variance components, as random. The joint 

distribution of the random variables (~. S. D.a; ,a~. a:)) and data can be 

represented as 
2 2 2f(Y ,S.D,as ,ad.<J e )= 
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Here it is assumed that 

f(Y/Jl.S,D.o;) -N(/ll sdn,V). f(S/Jl. 0;) -N(/ll s,o;Is) 

and f(DI o~)-N(O.o~Id) 

2	 2 d 2 • ed . d d ·th·wereh Jl. os' 0d an 0e are agaIn assum as In epen ent WI pnor 

distribution as f(Jl) - N(f..lo. o~). f(o;) - IG(a" b l ). f(o~) - IG(a2. b2). and 

f(o;) - IG(a3. b3). Here. IG (.•.) denotes the Inverse Gamma distribution and 

flo. erg. a), bit a2. b2• a3. b3are assumed known (chosen to correspond to diffuse 

prior). Rao and Sanjeev (2001) applied BVGS procedure to estimate heritability 
under one-way classification model using half-sib data. Bayesian inference of 
variance components. based on posterior distribution. requires ingenious 
numerical analysis or analytic approximation (Box and Tiao (1973». In marked 
contrast to such sophisticated method. we use a Monte Carlo Markov Chain 
Method. Gibbs Sampling (Gelfand and Smith (1990). for summarizing the 
posterior distribution. For a set of k vector-valued random variables. i. e.• V io 

U2, ...• Vb the Gibbs sampler algorithm is as follows 

•	 Start with an arbitrary set of values V~O). U~O) ..... V~O) 

• Draw V~I) -I f 1(UIIU~O). U~O) U~O» 

U~) -I f I(U 2 IU\I). U~O) U~O» 

V (I) -I f I(U I U(l) V(l) U(I»
k k I' 2 ..... k-I 

•	 Which consists of a single iteration 

•	 Obtain (u~i). V~) ....,U~» after i such iterations 

•	 m replications of the aforementioned i iterations produces m iid k tuples 

(V(i) V(i) V(i» . (j - 1 2 )
Ij' 2j .... , kj , - , m 

•	 From m iid k-tuples (vg), vW , ,V~l), the posterior density estimate for 

f(V s) is given by 
m 

[lJ.]i =~ ~)(US IV r = V~p; t;to s)
 
m i=1
 

Subsequently. different statistics of interest, like posterior mean. standard 
deviation, etc. can be computed. 

We begin with a set of starting values for Jl, S. 0;.o~. 0; and then 

successively generate values from the conditional posterior distribution of each 
parameter. conditioning on the most recently generated values of the other 
parameters at each step. 
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To diagnose the convergence of the generated Gibbs sequence, we run 
multiple chains of Gibbs sampler from over-dispersed starting values and 
compute the Gelman and Rubin (1992) potential scale reduction factor (R I/Z), 

which assess the between chain and within chain variation. Value of statistic 
R1/2 near one for the model parameters indicates that the Gibbs iterations are 
reasonably close to the stationary (posterior) distribution. From the posterior 
distribution of variance components, the estimates of variance components are 
worked out (as the posterior mean) and used to estimate the heritability using 
equations (2.2) and (2.3). Here, we choose the values of the parameters of the 

prior distributions as ~ = 0, 05 =1 x 10-10
, al = bl = az = bz = a3 = b3= 0.001. 

These chosen parameters of prior distribution for the variance components lead 
to a non-informative prior distribution and thus a proper posterior distribution. 
We consider three different Gibbs chains of length 2,50,000 each to obtain 
draws from the posterior distribution of the parameter given data with arbitrary 

chosen diversified starting values of ~ o~, o~ and o~ . The initial 1,50,000 

draws of each chain are discarded and then every 10th draw is stored. So, the 
three chains give a posterior sample of 30,000 uncorrelated draws. It is observed 
that Gelman and Rubin (1992) potential scale reduction factor RI/Z for all the 
model parameters approached unity indicating the approximate convergence of 
Gibbs sequence. This was also confirmed by examining the plots of kernel 

density estimates for ~, 0;, o~ and o~ based on 30,000 samples. The 

computations are made based on the programmes developed in WinBugs 
Version 1.4 (2002). 

4. Simulation Study 

In this section, the simulation procedure for generating data under model 
(2.1) is briefly described, for the purpose of comparing the Bayesian approach 
with traditional approaches like ANOVA, ML, REML (Searle et al. (1992». 
Ronningen (1974) gave a general account of the use of Monte Carlo simulation 
techniques for statistico - biological models of interest in animal breeding. 
Ronningen (1974) procedure to simulate 2-way nested model is as follows 

, d' ,Yijk =~ + 0sSj + 0d ij + 0eeijk (4.1) 

where s:, d;j ,and e:jlc are the standard random normal variates. The values of ~' 

os' 0 d and 0 e are so chosen so as to give true heritability at levels 0.10, 0.25 

and 0.50. In a 2-way nested data, if the estimation of hZ of a trait with true value 
0.10 is of interest, then to simulate data for such a population, we obtain the 
values of os' 0d and 0e' from the relationship in (2.2). By considering 
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h2=0.10 and a; + a~ + a; =1.0, this resulted as =./0.025 , ad =./0.025 and 

= ./1- 0.05 . Substituting these values in equation (4.1), data are generated ae 

for different sample sizes and family structures. Similarly data sets are simulated 
for medium (h2 = 0.25) and high (h2 = 0.50) heritability values. We also 
considered here a real data set, given in Narain et al. (1979), for comparison of 
h2 estimates from BUGS and traditional approaches. The reference population is 
a large non-inbred flock of White Rock Chickens. Five sires are chosen at 
random and each sire mated to three females. The eight-week body weights of 
the progeny obtained was considered as the character of interest. 

5. Results 

The variance components are estimated from the Monte Carlo simulated 
data using BUGS and traditional approaches. In order to compare different 
approaches of heritability estimation, for a given family structure (s, d, n) and 
sample size, the data under 2-way nested classification are simulated, as 
described in Section 4.1, over 100 times. The estimate of h2 is obtained from 
each simulated sample. Average of these estimates over the simulated samples is 
taken as the expected value of the estimator under traditional and Bayesian using 
Gibbs sampling approach. Deviation of the expected value from the population 
value provides the bias in the estimate. Variance of the estimates is determined 
by considering the estimates of all the simulated samples. 'The mean square error 
(MSE) is worked out from the relationship 

MSE (h2) = Variance (h2) + Bias2 (h2) 

To compare the performance of the BUGS and traditional approaches, we 
used Cartesian graphs to plot the estimates obtained under different (s, d, n) 
combination and varying sample sizes: 50, 80, 120, 200 and 300. Separate 
graphs are given for sire and (sire + dam) components and also for different 
heritability levels. For convenience, the twelve (s, d, n) combinations (5, 5, 2), 
(8, 5, 2), (5, 4, 4), (l0, 4, 2), (6, 10, 2), (10, 6, 2), (5, 10, 4), (l0, 10, 2), 
(20,5,2), (10, 10, 3), (15, 10, 2) and (30, 5, 2) have been represented by 
assigning them the number codes 1 to 12 in that order. The graph depicts that for 
medium and high heritability (h2 = 0.25 and 0.50), the (sire + dam) component 
estimates are closer to the population values, particularly, when BUGS approach 
is used. Whereas the performance of BUGS is comparable, in terms of bias, with 
the other approaches when the estimates obtained are from sire component and 
when the population heritability of the trait under consideration is low to 
medium. Further, the bias, sampling variance and MSE of h2 estimates are 
presented in Tables 1 to 3. Perusal of Table 1 reveals that in the case of low 
heritability (h2 = 0.1), estimates from sire component, the MSE is highest for the 
ANDVA method than others because of high sampling variance. The high 
sampling variance for ANDVA is due to the occurrence of around 40 percent of 
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Table 1. Bias, sampling variance (SV) and mean squared error (MSE) of heritability
 
(h2 =0.1) under traditional and Bayesian approaches for different sample
 

sizes and family structures
 

Sample Structure Herit- REML ML ANOVA Bayes 
Size ability h2 2 h2 

h:+d h2 2 h2 2 
5 hS+d 5 5 hS+d 5 hS+d 

0.136 0.162 0.082 0.100 0.008 0.067 0.137 0.185 
0.083 0.047 0.051 0.032 0.178 0.104 0.023 0.025 
0.102 0.073 0.058 0.042 0.178 0.108 0.042 0.059 
0.102 0.068 0.070 0.026 -0.003 0.002 0.099 0.122 
0.067 0.022 0.049 0.017 0.133 0.042 0.029 0.022 
0.078 0.026 0.054 0.018 0.133 0.042 0.039 0.037 

-0.047 -0.026 -0.075 -0.063 -0.093 -0.088 0.045 0.052 
0.005 0.005 0.002 0.002 0.013 0.014 0.002 0.001 
0.008 0.006 0.008 0.006 0.022 0.021 0.004 0.004 
0.Q15 -0.025 -0.014 -0.046 -0.076 -0.117 0.029 0.101 
0.023 0.013 0.017 0.009 0.067 0.036 0.005 0.012 
0.024 0.014 0.017 0.011 0.073 0.049 0.005 0.Q22 
0.007 -0.001 -0.030 -0.029 -0.025 -0.043 0.053 0.076 
0.014 0.006 0.009 0.004 0.025 0.012 0.010 0.009 
0.014 0.006 0.010 0.005 0.026 0.014 0.013 0.015 
0.005 -0.029 -0.020 -0.049 -0.041 -0.074 0.016 0.084 
0.Q15 0.006 0.010 0.004 0.032 0.016 0.005 0.008 
0.015 0.007 0.011 0.006 0.034 0.022 0.005 0.015 

-0.006 -0.026 -0.036 -0.046 -0.017 -0.049 0.024 0.022 
0.013 0.004 0.008 0.003 0.016 0.008 0.008 0.004 
0.013 0.005 0.009 0.005 0.016 0.010 0.008 0.004 

-0.004 0.001 -0.025 -0.019 -0.010 -0.013 0.003 0.049 
0.008 0.004 0.006 0.004 0.009 0.005 0.003 0.011 
0.008 0.004 0.007 0.004 0.009 0.005 0.003 0.014 
0.033 -0.006 0.020 -0.024 -0.014 -0.033 -0.013 0.038 
0.046 0.010 0.040 0.009 0.067 0.015 0.008 0.006 
0.047 0.010 0.040 0.010 0.067 0.016 0.008 0.007 

-0.001 -0.035 -0.021 -0.046 -0.006 -0.047 -0.002 0.032 
0.006 0.003 0.005 0.003 0.007 0.004 0.003 0.007 
0.006 0.004 0.005 0.005 0.007 0.006 0.003 0.008 
0.003 -0.023 -o.Q15 -0.038 0.002 -0.028 -0.008 0.036 
0.006 0.002 0.005 0.002 0.006 0.002 0.003 0.011 
0.006 0.002 0.005 0.003 0.006 0.003 0.004 0.012 

-0.019 -0.043 -0.029 -0.053 -0.037 -0.057 -0.021 0.037 
0.012 0.003 0.011 0.002 0.017 0.003 0.004 0.002 
0.013 0.005 0.012 0.005 0.019 0.006 0.005 0.004 

50 5x5x2 
Bias 
SV 

MSE 

8x5x2 
Bias 
SV 

MSE 

80 5x4x4 
Bias 
SV 

MSE 

IOx4x2 
Bias 
SV 

MSE 

120 

6xl0x2 
Bias 
SV 

MSE 

IOx6x2 
Bias 
SV 

MSE 

5xl0x4 
Bias 
SV 

MSE 

200 10x1Ox2 
Bias 
SV 

MSE 

20x5x2 
Bias 
SV 

MSE 

IOx1Ox3 
Bias 
SV 

MSE 

300 15x1Ox2 
Bias 
SV 

MSE 

30x5x2 
Bias 
SV 

MSE 
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Table 2. Bias, sampling variance (SV) and mean squared error (MSE) of heritability
 
(h2 =0.25) under traditional and Bayesian approaches for different sample
 

sizes and family structures
 

Sample 
Structure 

Herit- REML ML ANOVA Bayes 

Size ability h2 
h;+d h 2 

h;+d h2 
h;+d h2 

h;+ds s s s 

50 5x5x2 
Bias 
SV 

MSE 

0.032 0.050 -0.025 -0.013 -0.061 -0.028 0.087 0.119 
0.102 0.060 0.070 0.044 0.181 0.122 0.054 0.039 
0.103 0.062 0.071 0.045 0.185 0.123 0.062 0.053 
0.090 -0.016 0.038 -D.065 0.048 -0.055 -D.061 -D.008 
0.150 0.033 0.116 0.028 0.191 0.043 0.007 0.016 
0.158 0.033 0.117 0.032 0.194 0.046 0.010 0.016 

-0.064 -0.098 -0.123 -0.148 -0.090 -0.149 0.004 -D.013 
0.032 0.012 0.021 0.008 0.044 0.022 0.023 0.006 
0.036 0.022 0.036 0.030 0.052 0.045 0.023 0.006 
0.006 -0.106 -0.046 -D.138 -0.060 -0.178 -0.016 0.054 
0.066 0.022 0.053 0.017 0.121 0.047 0.034 0.Ql8 
0.066 0.033 0.056 0.036 0.125 0.078 0.034 0.021 

-0.026 -0.093 -0.082 -D.128 -0.044 -0.128 -D.043 -0.012 
0.049 0.014 0.035 0.011 0.059 0.023 0.017 0.016 
0.050 0.022 0.042 0.027 0.061 0.039 0.019 0.016 
0.009 -0.102 -0.034 -D.130 -0.014 -0.132 -D.014 0.037 
0.051 0.Ql5 0.040 0.011 0.065 0.024 0.034 0.021 
0.051 0.025 0.041 0.028 0.066 0.041 0.034 0.022 

-0.030 -0.108 -0.082 -D.138 -0.036 -0.125 0.006 -0.017 
0.038 0.011 0.026 0.008 0.041 0.Ql5 0.044 0.Ql5 
0.039 0.023 0.032 0.027 0.042 0.031 0.044 0.Ql5 

-D.011 -0.079 -0.044 -D.103 -0.012 -0.092 -D.013 -0.002 
0.028 0.008 0.023 0.007 0.028 0.009 0.028 0.020 
0.028 0.014 0.025 0.018 0.028 0.Ql8 0.029 0.020 
0.Ql5 -0.089 -0.007 -D. 110 -0.009 -0.104 -D.030 -0.001 
0.066 0.016 0.061 0.016 0.086 0.021 0.062 0.023 
0.066 0.024 0.061 0.028 0.086 0.032 0.063 0.023 
0.020 -0.098 -0.014 -D.117 0.020 -0.106 0.019 0.007 
0.013 0.005 0.012 0.005 0.013 0.005 0.Dl8 0.019 
0.014 0.Ql5 0.012 0.018 0.014 0.016 0.018 0.019 
0.011 -0.092 -0.014 -D.I09 0.011 -0.095 -0.015 -0.015 
0.Ql5 0.003 0.013 0.003 0.015 0.004 0.Ql8 0.022 
0.015 0.012 0.014 0.015 0.Ql5 0.013 0.018 0.022 
0.014 -0.103 -D.003 -D.116 0.007 -0.113 -0.044 0.009 
0.039 0.008 0.036 0.008 0.043 0.008 0.041 0.010 
0.039 0.019 0.037 0.021 0.043 0.021 0.043 0.010 

8x5x2 
Bias 
SV 

MSE 

80 5x4x4 
Bias 
SV 

MSE 

~ 

IOx4x2 
Bias 
SV 

MSE 

120 

6x1Ox2 
Bias 
SV 

MSE 

IOx6x2 
Bias 
SV 

MSE 

5xl0x4 
Bias 
SV 

MSE 

200 lOxl0x2 
Bias 
SV 

MSE 

20x5x2 
Bias 
SV 

MSE 

IOx1Ox3 
Bias 
SV 

MSE 

300 15x1Ox2 
Bias 
SV 

MSE 

30x5x2 
Bias 
SV 

MSE 
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Table 3. Bias, sampling variance (SV) and mean squared error (MSE) of heritability
 
(h2 =0.5) under traditional and Bayesian approaches for different sample
 

sizes and family structures
 

Sample 
Size 

Structure 
Herit­
ability 

REML ML ANOVA Bayes 

h2 
h;+d h2 

h;+d h2 
h;+d h 2 

h;+ds s s s 

50 5x5x2 
Bias 
SV 

MSE 

-0.003 -0.096 -0.093 -0.168 -0.046 -0.144 -0.006 0.042 
0.176 0.079 0.126 0.059 0.237 0.129 0.134 0.084 
0.176 0.088 0.134 0.087 0.239 0.150 0.134 0.086 
0.Ql8 -0.157 -0.051 -0.212 -0.003 -0.176 -0.032 -0.054 
0.140 0.Q35 0.117 0.033 0.167 0.045 0.144 0.071 
0.140 0.060 0.119 0.078 0.167 0.076 0.145 0.074 

-0.178 -0.263 -0.258 -0.323 -0.184 -0.296 -0.127 -0.093 
0.051 0.019 0.034 0.014 0.054 0.027 0.046 0.022 
0.082 0.088 0.100 0.119 0.088 0.115 0.062 0.030 

-0.131 -0.293 -0.193 -0.332 -0.171 -0.348 -0.237 -0.084 
0.070 0.024 0.059 0.019 0.111 0.044 0.031 0.050 
0.087 0.110 0.097 0.i30 0.140 0.165 0.088 0.057 

-0.074 -0.241 -0.151 -0.285 -0.077 -0.266 -0.086 -0.092 
0.123 0.034 0.093 0.027 0.124 0.043 0.070 0.038 
0.129 0.091 0.116 0.108 0.130 0.114 0.077 0.047 

-0.074 -0.241 -0.151 -0.285 -0.077 -0.266 -0.086 -0.092 
0.123 0.034 0.093 0.027 0.124 0.043 0.070 0.038 
0.129 0.091 0.116 0.108 0.130 0.114 0.077 0.047 

-0.072 -0.248 -0.155 -0.291 -0.074 -0.254 -0.089 -0.065 
0.094 0.028 0.067 0.021 0.096 0.030 0.095 0.032 
0.100 0.089 0.091 0.106 0.102 0.095 0.103 0.037 

-0.021 -0.211 -0.072 -0.240 -0.022 -0.224 -0.062 -0.078 
0.070 0.018 0.061 0.017 0.070 0.021 0.053 0.040 
0.071 0.063 0.067 0.075 0.071 0.071 0.057 0.046 
0.016 -0.211 -0.012 -0.233 0.005 -0.220 -0.155 -0.069 
0.102 0.026 0.094 0.025 0.116 0.030 0.056 0.045 
0.102 0.071 0.094 0.079 0.116 0.078 0.080 0.049 
0.059 -0.201 0.004 -0.230 0.059 -0.206 0.080 -0.006 
0.024 0.008 0.021 0.008 0.024 0.008 0.025 0.032 
0.027 0.049 0.021 0.061 0.027 0.051 0.031 0.032 
0.020 -0.208 -0.016 -0.230 0.020 -0.212 0.029 -0.058 
0.040 0.009 0.036 0.008 0.041 O.Qll 0.051 0.047 
0.041 0.052 0.037 0.061 0.041 0.056 0.052 0.050 
0.012 -0.229 -0.010 -0.244 0.011 -0.235 -0.141-0.024 
0.049 0.010 0.047 0.010 0.049 0.010 0.033 0.020 
0.049 0.063 0.047 0.070 0.049 0.065 0.053 0.020 

8x5x2 
Bias 
SV 

MSE 

80 5x4x4 
Bias 
SV 

MSE 

10x4x2 
Bias 
SV 

MSE 

120 

6xlOx2 
Bias 
SV 

MSE 

lOx6x2 
Bias 
SV 

MSE 

5xlOx4 
Bias 
SV 

MSE 

200 lOxlOx2 
Bias 
SV 

MSE 

20x5x2 
Bias 
SV 

MSE 

lOxlOx3 
Bias 
SV 

MSE 

300 15xl0x2 
Bias 
SV 

MSE 

30x5x2 
Bias 
SV 

MSE 
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(8) (b) 
Population heritability =0.10 Population heritability = 0.10 

0.3 r-r-..:-------:~-__,03 r----~-------_, 

I 0.2

0.1 

o 
1 2 3 4 5 6 7 8 I 10 '1 12

-0.1 '-- --1 

, 2 3 4 5 6 7 6 I '0 '1 12 

(c) (d) 

o'----=---_-_---J 

Population heritability =0.25 Population heritability =0.25 
0.4 .,-------~---__,0.4.,------------, 

0.30.3~_~ 
102~1~~~~~ J 

~ 02 
! 

0.10.' 

O'--c---_--~--_---'0'----_------_--1 
1 2 3 4 5 8 7 8 9 10 11 12 1 2 3 4 5 8 7 8 9 10 11 12 

(e) (1)
 
Population heritability =0.50 Population heritability = 0.50
 

0.6 r-----------.---, 0.8 - ­

0.5~: 

I::~.....
 
0.2 

0.1 ~---_----~-~ 

1 2 3 4 5 8 7 8 9 10 11 12 0.1 
1 2 3 4 5 8 7 8 9 10 '1 12 

__ REML __ML ......ANOVA --BUGS 

Fig 1. Graphs showing the estimates of sire component (a, c. e) and (sire + dam) 
component (b, d, f) heritability under different approaches and family structures 
at three levels of heritability (h2). 

negative estimates under all the family structures. The negative estimates of 
ANOVA method are truncated to zero in ML as well as REML methods, due to 
which the sampling variance gets reduced as compared to ANOVA, in tum 
reduced the MSE. Thus, the true picture of heritability is not revealed by these 
traditional approaches. Whereas. in case of Bayesian approach all the estimates 
are non-negative and the sampling variance as well as MSE is found to be 
minimum, irrespective of sample size and family structure. It is further observed 
that the MSE of the estimates, under (sire + dam) component, are found to be 
higher than sire component of heritability estimates. When h2 =0.25 and 0.50, a 
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similar trend in the perfonnance of Bayes method over other methods is 
observed from Tables 2 and 3. 

The estimates of variance components and h2 obtained from real data under 
BUGS and traditional approaches are given in Table 4. From ANOVA method 
dam component of variance comes out to be highly negative and from ML and 
REML it is truncated to zero. Because of this the estimates of heritability under 
sire and (sire + dam) components comes out to be entirely different and thus 
becomes unreliable. As the simulation study shows that Bayesian approach is 
more reliable than others, the estimates of h2 under sire and (sire + dam) 
components are expected to be drawn from a population with medium 
heritability value. 

Table 4. Estimates of heritability from real data under different methods of estimation 

Method of 
Variance Component Estimates Heritability Estimates 

estimation -2 -2 
as ad 

-2 
Oe 

-2 -2
hs hS+d 

ANOVA 1015.240 -425.040 6664.900 0.559 0.162 

ML 699.290 0.000 6346.240 0.397 0.198 

REML 1050.610 0.000 6346.140 0.568 0.284 

BUGS 642.600 691.200 6777.000 0.340 0.328 

Finally, we conclude that the Bayesian method of estimation is suitable for 
estimating h2 under 2-way nested mating design as compared to traditional 
methods, particularly for small sample data. Further, for low heritability values 
one should go for estimating heritability from sire component whereas for 
medium heritability values it can be estimated by either sire or (sire + dam) 
component. For high heritability values it is preferable to estimate heritability 
from (sire + dam) components. 
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