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SUMMARY 

This paper proposes the class of unbiased dual to ratio estimators of the 
population mean in case of interpenetrating sub-samples design. which 
includes Srivenkataramana [7J estimator. The case of simple random 
sampling without replacement (SRSWOR) is also studied where similar class 
of unbiased dual to ratio estimators is developed which includes 
Srivenkataramana's estimator as a special case. Exact expression for the 
variance formula of the proposed class of estimators in SRSWOR is derived. 
The results are illustrated by means of a numerical example. 

Key words : Dual to ratio estimators, Interpenetrating sub-sample 
design, SRSWOR. 

i. introduction 

Consider a finite population of size N consisting of units (V I' V 2, ... , VN)' 

Let y be the characteristic of interest taking value Yj on the unit 

Vi' (i 1, 2, ... , N). Information on an auxiliary characteristic x, related to y, 

taking value Xi on the unit Vi' is available in most of the sample survey 

situations. We are interested in estimating the parameters such as population 
N Y

total Y L Yi or the population mean Y The method of ratio 
N

i=1 

estimation for estimating the population mean Y (or equivalently the total Y) of 
the study variate y, consists in getting an estimator R of the population ratio 

R Y/X = ~Yi/~Xi and multiplying this estimator by the known 

population mean X = X/N of the x-variate (or by X when estimating the 

total Y). 

--_.................._-_...... 




212 JOURNAL OF THE iNDIAN SOCIEn' OF AGRICULTURAL STATISTICS 

n n 

Let y =n -I LYi and x=n-I L xi be the unbiased estimators of 
i 1 i =1 

population means and X corresponding to the variates y and x respectively. 
It is assumed that X is known. For simplicity, We assume all measurements to 
be nonnegative; and X and x to be positive. Let the correlation coefficient 
between y and x be positive. Then, the traditional ratio estimator is defined by 

(Ll) 

to estimate Y. 

Here, n < N is sample size. Then clearly 

_* N X -nx 
x =---- 0.2)

N-n 

is also unbiased for X and correlation coefficient between y and i* is 

negative. 

It is well known that when the correlation coefficient between response and 
subsidiary variate is negative, the product method of estimation is quite effective 
to estimate Y. Keeping this in view, Srivenkataramana [7] suggested a dual to 
ratio estimator 

(1.3) 

to estimate Y The advantage of this estimator over ratio estimator is that the 
expression of its bias and mean square error can be derived exactly while it is 
not with ratio estimator. . . 

It is known that the estimator Yd in (1.3) is biased. The bias of Yd is 

likely to be small ([see Srivenkataramana [7]). However, an unusual situation, 
which has a large coefficient of variation (CV) of x may exist vis-a-vis 
possibility of large bias arises. In such case, use of exactly unbiased estimators 
may be of great advantage (Rao [4]). The technique to make the estimator 
unbiased is to modify the sampling procedure such that the same estimator 
becomes unbiased, and other is to modify the form of estimator by correcting it 
for the bias (Hartley and Ross [11, Robson [5]). Murthy and Nanjamma [3] have 
extensively studied the problem of construction of unbiased ratio estimators for 
any sample design using the technique of interpenetrating sub-samples. 

In this paper, we shall first consider the case of independent 
interpenetrating sub-samples and obtain a new class of unbiased dual to ratio 
estimators. An optimum estimator is obtained in this class and the results are 
modified for SRSWOR case. 
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2. The Class of Unbiased Dual to Ratio Estimators 

First, we discuss the interpenetrating sub-sample model considered by 
Murthy and Nanjamma [3]. Let (Yi' x,) be unbiased estimates of the population 

totals Y and X respectively from of the ilh independent sub-samples, (i = 1,2, .... 
n). 

--* y X ..!!... 
-==- and YdX 

where 

We. now consider the following weighted estimator for Y as 
A A A 

Y::: WoY + WIYd + W2Y; (2.1) 

where W/s, (i = O. 1, 2) are suitably chosen weights attached to different 
estimates of Y such that their sum is unity, i.e. 

Wo + WI + W2 =1 (2.2) 

Y is unbiased for Y if 
A 

E(Y)::: Y 

or if E[WI CYd Y) +WiY; Y)}= 0 

A A 

or if W1B(Yd)+W2B(Y;):::O (2.3) 

Now, B(Yd):::E[y{N:-;XX}-Y] 

::: E[ (N~ n) ('1 - Y) - (N ~ n) ( , ; JJ-Y] 

::: [{ n } 1{E(yx yx)}l
(N - n) X 'J 

(2.4) 

N 

where, 1l1l(y,x)=N-1 L(Y; Y)(x; X). Notice that for the 
; =1 

interpenetrating sub-sample model, we have 

~ ~-~~~--~~--~~~--~~~--~- ~ -----------~~~---



214 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS 

B&;) 

(2.5) 

From (2.4) and (2.5), we have 

B&;);:: nB6'd) (2.6) 

Now, letting WI =W, a constant, say, then from (2.3) and (2.6), we have 

W2 ;:: WIn. Putting, WI ;:: Wand W2 ;:: - n-IW in (2.2), we obtain Wo;:: (1 ­

WC), where C ={(n 1)/n}. 

Thus. substituting Wo;:: (1 - WC), WI ;:: Wand W
2 

;:: n-1W in (2.1), we 

obtain a class of exactly unbiased dual to ratio estimators for Y as 

Y [(1- WC)y + W(Yd - (1 C)Y;)] (2.7)u 

Remark 2.1 : Notice that W;:: 0 gives the conventional unbiased estimator 

Y y. With W = 1, we have the estimator given by 

Y(l)= {Yd + ~ (y Yd')} 

While, W = C-1 
;:: [ n n 1). gives the estimator 

...::;... ~* 


Y(2);:: n(Yd - Yd ) 


n 1 


which is the estimator due to Srivenkataramana [7]. Several other estimators can 
be had from (2.7) just by putting the suitable values of W. 

Remark 2.2 : In a similar fashion, the class of almost unbiased dual to 
product estimators for Y can be obtained as 

Y~P) [(1-W'C)y+W'(Ypd-(l C)Ypd*)] 

n ­
-Y~* -l~ X C -I( 1) and W·where, Ypd = y(X/x*), pd;::n £.J Yi , =n n- is a 

i =I 

suitably chosen scalar. 

--_...---_... _----­
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3. Choice ofan Optimum Estimator in the Class of Yu in (2.7) 

From (2.7) we have 

V(Yu ) = W2 [C2V(y) + VCYd) + (1 C)2 V<Yd') - 2C Cov(y, Yd) 
• A A 

2(1 - C) Cov(Yd, V;) + 2C(1- C) Cov(y, Yd')] 

- 2W[CV(y) Cov(y, Yd) + (1- C) Cov(y, Y;)] + V(y) (3.1) 

Minimization of this leads to the optimum of W, which is given by 

W(opt) A I B (3.2) 

where A CV(y)-Cov(y,Yd)+(l-C)Cov(y,Y;), and 

B = [C2V(y) + V<Yd ) + (1- C)2 V(Y;) - 2C Cov(y, Yd ) 

A A A 

- 2(1 C) Cov(Yd , V;) + 2C(1- C) Cov(y, V;)] 
After some simplification, it can be shown that W(opt) can alternatively be 

written as 

W _ Cov (y, V')
(opt) - ..!:.., (3.3) 

V(Y) 

where Y' [cy - y* ] and y* :: [ Yd (1 - C) Yd• ] 

This gives, V(y~oPt» = V(y) (1- p2) (3.4) 

where p is the correlation coefficient between y and Y'. 

Remark 3.1 : From (3.4), it is immediate that V(YjOP1» < V(y). 

Furthermore, it may be recalled that 

MSEcYd ) V(y) + 2RCov(y, x*) + R 2V(x'), which leads to the condition that 

y~OP!} is better than the dual to ratio estimator, if 
A A 

V(y~Pl) < MSE(Yd ) (3.5) 

4. The Class of Unbiased Dual to Ratio Estimators for SRSWOR Design 

In case of SRSWOR, let Yi and Xi denote respectively, the y and x values 

of the i 'h sampled unit, (i = 1,2, ... , n). We have 

---_.._---------------­
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- X ..Q... -\ Xi 
y-=- and Yd = n LYi-=- (4.1)-* [ *J
X i 

n 
I X 

• NX-nx.
where x. = I 

'I N-n 

~ ~ 

It can easily be shown that under SRSWOR, the biases of Yd and V; are 

given by 

(4.2){~ S~x} 
Bey;) = _{_n_ N -1 Syx} (4.3)

N n N X 

where Syx { N ~ 1 !!11 (y, X)} 

From (4.2) and (4.3), it follows that 

B(Vd ) N - n 
(4.4)Bey;) =n(N - 1) 

As before, we have the "class of unbiased dual to ratio estimators" for V 
given by 

(4.5) 

N(n -1)
where W is a suitably chosen scalar, and C· 

n(N -1) 

Remark 4.1 : Notice that W = 0 gives the usual unbiased estimator V y, 

I. h .and W gIves t e estlmator 

y:={n(N-I)}lyx*j_{ N-n }In-lty/~Il
N(n-I) X N(n-I) 1 i=1 l X) 

[l':}1~ ,;;}] (4.6) 

which is due to Srivenkataramana [7] where 

--------_...... 
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n 


Syx == (n -1)-1 L (Yi - Y)(Xi - x,) 

;=1 


Remark 4.2 : For W = -~ ,q being a constant, the estimator Y; can be 
C 

expressed as 

1X 1 s x 1 (4.7)-=-..Ys (q<O)= [(q+l)y-q Yx'l +Nf 

This is analogous to Sastry [6] estimator, which is in fact a generalization 
of Srivenkatarmana [7] estimator (q =-1 gives Srivenkataramana's estimator). 

5. Variance of Estimator Y: in (4.5) 

From (4.5), we have 

Y(Y:) == W2[C'2y(y) + YcYd ) + (1- C')2y(y;) - 2C'Cov(y,Yd ) 


'* • ~* '* ~* 
+ 2C (1- C )Cov(y, Yd ) - 2(1 - C )Cov(y, Yd )] 

- 2W[C'y(y) - Cov(y, Yd ) + (I c')Cov (y, y;)] + Y(y) 

(5.1) 

For determining the values of variances and covariances involved in (5.1), 
let 

tj == Xi - X 
and e y- t==x X 


where e and t denote the sample means of ej's and tj ·s. 


We used the method of getting expectations of symmetric functions of 
sample observations in samples drawn by simple random sampling from a finite 
population, (see Sukhatme and Sukhatme [9]). The exact values of the variances 
and covariances involved in (5.1) can be obtained vis-a-vis hence the exact 

variance of the proposed estimator Y:. 
As remark~d by Murthy [2] that the values of 
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and E(e 2 i2) are generally small even for moderate sample sizes. hence the 

terms involving these can be neglected. To get tangible idea about the variance 

of class of estimators V;. we take into consideration the variance for V; upto 

the terms of O(n -I) (or alternatively to the first degree of approximation). For 

this we have 
1'1. " "" 

V(Yd ) =V(Y;) = Cov(Yd • Y;) 

f y2[C2 * C2( * =- ry+g xg 
n 

where g*=[_n]
N-n 

- f 
and V(y) -1l2o 

n 

where II =~~ertS and f={N-n} 
rs NL.. I N-lI 

1=1 

Substituting these expressions in (5.1), we get the variance of Y;, to terms 

of order O(n -I) 

VCY;) y2.!..[C; + WgC~(Wg 2k)] (5.2) 
n 

where g =[N(n -l)/(N -l)(N - n)] and k = p(C ICx)p is the correlationy 

coefficient of Y and X, and ,C y and Cx are the CVs of Y and X, respectively. 

The variance of Y: in (5.2) is minimized for 

(5.3) 

Thus, the minimum variance of is given by 

-.~--~.... --..------- .--.....--~.~~--
~~- ...----.... ---­



219 THE CLASS OF UNB1ASED DUAL TO RATlO EST1MATORS 

(5.4) 

which is equivalent to the approximate variance of usual linear regression 
estimator. 

6. Theoretical Comparisons 

To compare Y: with y, we note that the estimator Y: is better than y if 

either 0 < W < (2k/g) 
or 2k/g < W < 0 (6.1) 

A 

The proposed estimator Y: will dominate over Srivenkataramana's 

estimator Yd if 

C
L

either (1 - 1) < W < {2k; g. } 

{ 2k gg.} < W < (1or C· I) (6.2) 

Further, to compare V(Y;) with the usual ratio estimator, we first write 

the mean squared error of YR to the first' degree of approximation. 

MSE(YR) =.!.. y2 [C; + C~ (1- 2k)] (6.3) 
n 

Thus it follows from (5.2) and (6.3) that the estimator Y; will be more 

efficientthan YR if 

1 W 2k-l
either < <-­

g g 

2k -1 W 1 or --< < (6.4) 
g g 

7. Numerical Illustration 

In this section, we study the performance of various estimators of 
population mean Y by considering the population studied by Srivenkataramana 
and Tracy [8]. The population consists of 

y 12 22 38 15 18 31 15 20 10 25 
x 14 25 37 18 20 30 15 21 12 28 
y 11 17 12 22 14 26 08 16 13 19 
x 14 19 12 23 16 28 09 15 15 20 
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Here, sample size n 5, Y = 18.2, X =19.55, C = 0.40I36,C x 0.35530,y 

P 0.9842 and k 1.1118. 

~. 

Table 7.1 gives the relative variance of Yu for various choices of 

W, Y, YR' Yd , Y: and per cent relative efficiencies (PRE's) of Y~ for different 

choices of W, YR '. Yd , Y' with respect to y. It shows that the performance ofs 

dual to ratio estimator Yd is poor than usual ratio estimator YR. Thus, one can 

recommend the use of YR over Yd for such type of data. However, it is seen 

from the table that for a wide range of W, the performance of the estimator Y~ 
is better than the ratio estimator YR' The range of the values of W are given 

below where Y~ is respectively better than y, Y and YRd 

(i) 0 < W < 7.97 

(ii) 1.19<W<6.78 

(iii) 3.56 < W < 4.40 

Notice that the relative efficiencies corresponding to Y: for the optimum 

choice of W for 3.96 is maximum among the estimators considered. 

Table 7.1. Exhibiting the relative variances (RVs) and percent relative efficiencies 
(PREs) of different estimators of Y with 

RV(Y:) PRE (Y:, y) 

1.0 
1.5 
2.0 
3.0 
3.25 
3.50 
3.75 

W(Opt) = 3.96 
4.00 
4.25 

~ 

Yd 

YR 

0.09225 
0.06528 
0.04392 
0.01423 
0.Oto08 
7.1644 x to'3 
5.4945 x to'3 
5.0525 x 10'3 

5.0678 x 10,3 
5.8844 x 10,3 

0.08155 

0.08155 

6.630 x 10,3 

174.00 
256.75 
372.08 

1131.72 
1598.49 
2248.49 
2931.89 
3188.34 

3178.72 
2737.56 

197.53 

197.53 

2429.74 

http:1.19<W<6.78
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